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Fibrations and Grothendieck

topologies

Howard Lyn Hiller

Given a site T , that is, a category equipped with a fixed
Grothendieck topology, we provide a definition of fibration for
morphisms of the presheaves on I . We verify that the notion is
well-behaved with respect to composition, base change, and
exponentiation, and is trivial on the topos of sheaves. We
compare our definition to that of Kan fibration in the semi-
simplicial setting. Also we show how we can obtain a notion of
fibration on our ground site 7T and investigate the resulting

notion in certain ring-theoretic situations.

1. Introduction

Let T be a site; that is, a category equipped with a fixed
Grothendieck topology. We have the adjoint pair

ST [°, ser]
sh

wvhere sh is the associated sheaf functor and S is the full topos of
sheaves with respect to the topology. We define a notion of fibration for
morphisms of presheaves that is well behaved with respect to composition,
base change and exponentiation, and trivializes on the topos S . We
investigate how our notion compares with that of Kan fibrations, when

T = 0nd , the category of finite ordered sets equipped with an appropriate
topology. We then observe we can pull our notion of fibration back to the

ground site T and we investigate it in certain ring-theoretic situations.

Received 11 November 1975.

https://doi.org/10.1017/50004972700024886 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700024886

112 Howard Lyn Hiller

2. Basic notions

Let p : E > B be a map (that is, natural transformation) of

presheaves. We define

DEFINITION. fThe map p is a (weak) fibration if the following
diagram in Sefs is (weak) cartesian:

E(U) ———— B(V)

| |

>
ker[rr Bw) JTT E(Uixuj)] REICA
7 1,J 1
for every covering {Ui - U} in T .
As usual we also define

DEFINITION. X is a (weak) fibrant object in [TO, Sets] if X+ e
is a (weak) fibration. (e is the final object of [TO, Sets] ;
e(U) = {*} for all U in ob(T) .)

We have three immediate trivialities.
FACTS. 1 Every isomorphism is a fibration.
2 A morphism of sheaves is a fibration.
3 X is (weak) fibrant iff X is a (weak) sheaf.

Weak sheaf is the "dual" notion to separated presheaf; that is, it means

the canonical map of sets
x(u) -+ ker[T_T x(v;) :TT x(u; %, Uj]] = HO({Ui - v}, X)
T TJ

is epic for all coverings {Ui > U} in T . (We freely use the above
cohomological abbreviation in the following.)
We now check the desired stability properties.

PROPOSITION 1. If p : E+B is a (weak) fibration, and f : B' + B
is arbitrary them p' : E g B' » B' is a (weak) fibration where
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E XB B'—‘L'*E
p'l lp
B' —?-*B

18 a cartesian square in [To, Se,I‘A:]
u

Proof. Let {Ui -t U} be a covering; we check

B')(v) — B'(V)

l l

B°({u; > v}, B % B') > T T 8' (1)
i
is (weak) cartesian in Sets .

First observe that pullbacks in [TO, sm] are computed pointwise;

50 (E g B')(V) = E(V) x ) B'(V) , for V in ob(T) and induced maps

B(V

are the obvious projections. Let & be in B'(U) and (vi’ wi) be in

Ho({Ui +~ U}, E x, B'} where w, = p'(U.) (vi’ wi] = B'(ui)(s) . Consider

B 1

f(U)(s) in B(U) and {v;} in TTE(y) . We first observe that
7
Bu) F0)(s) = £(0,)B" (u))(8) = £(0)p" (U) (v ;) =
- p(U)F (1) (o0 w;) = p(0) ()

since f' is a projection onto the first factor at each "point". Since p
is a (weak) fibration, there exists a (unique) ¢ in E(U) such that

(1) p(0)(2) = f(U)(s) , and

(2) E(w)(t) = v, .
Consider (&, s) in (E x5 B')(U) , by dint of (1) above. Certainly
p'(U)(t, 8) =& and

(8 x5 B') (w;) (¢, 8) = (E(w)(2), B'(u)(s)]) = (v, w.)

by (2) above. This completes the proof.
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PROPOSITION 2. Let q : X >E, p : E > B be (weak) fibrations;
then pq : X +B 1is a (weak) fibration.

u.
Proof. Let {Ui —E U} be a covering in T and consider

(V) 2all), gy

#({u, > v}, ) —— T;I'B(Ui) )

Let & be in B(U) and {wt} be in HO({Ui+U}, X) such tH&¥

B(w;)(s) = (pq) (U;) )

Certainly q(Ui] (w) is in Ho({Ui -+ U}, X] and is compatible with

i
s 1in the obvious sense. So since p : E > B is a (weak) fibration, there

exists a (unique) ¢ in E(U) such that
(1) p(U)(¢) =s , and
(2 B (#) = q(u,) ;)
Since ¢ : X > E is a (weak) fibration and the second equality gives us

"compatibility", there exists a (unique) 2z in X(U) such that
X(ui)(z) =w, and ¢q(U)(z) t . So then

(pq)(U)(z) = p(U)q(U)(2) = p(U)(t) = s .
This completes the proof.

(Note that Fact 1 and Propositions 1 and 2 verify the (isolated)

properties of a fibration in the sense of Quillen's model categories [4].)
We recall now the notion of exponentiation in our functor category

[TO, Se/&] . Categorically one defines (—)Y as the right adjoint to the
functor (=) x Y . Along with the Yoneda Lemma, this forces the definition

in the category of presheaves
XY(U) o~ nat[homT(—, u), XY] ’énat(homT(-, U)xY, X)

We then have
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PROPOSITION 3. If p : E +» B s a fibration and K <s a presheaf,
then pK 2> B% isa fibration.

Proof. See Appendix.

COROLLARY. If E is a sheaf and K a presheaf then E° is a sheaf.

(This is well-known; see [6], p. 258.)

3. Semi-simplicial application

We now consider a particular situation. Let T = 0ad , the category
whose objects are finite ordered sets and the morphisms are weakly monotone
maps. It is customary to consider the obvious countable skeletal sub-
category whose objects are denoted n={0<1<2<.,, <n} . As usual,
the simplicial sets are the set-valued presheaves on this category. We
describe a Grothendieck topology on Oid and investigate the resulting
notions of fibration and fibrant object. First we define a modified notion

of topology.

DEFINITION. A weak Grothendieck topology is a category with a notion
of covering which satisfies all but the composition axiom for Grothendieck

topologies.

A sheaf with respect to a weak Grothendieck topology has the obvious
meaning. Certainly it also makes sense to speak of the (weak) Grothendieck
topology generated by a partial collection of "coverings". Hence consider
the set C 3

c={n-nu{n : mr;0sq siy=...5i SqH, r=gqp.
7

We thus obtain a {weak) Grothendieck topology generated by C . We call
Ord with this topology the (weak) combinatorial site.

PROPOSITION 4. X is a Kan fibration iff X is a weak fibration on
the weak combinatorial site.

First we have an easy lemma.

LEMMA. The following square is cartesian in Ond if 2 < j ;
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Proof. The diagram commutes by the usual "simplicial" identities in
0nd . Suppose we want to fill in the dotted arrow in the following

commutative diagram;

n TVH‘l

(2

Let I bein m={0<1<2<...<m}. First we claim e(l) #4 - 1 .
Otherwise dj(e'(l)] = di(e(l)] = di(j—l) =4 . But J§ 1is never in the

image of dj . Similarly e'(l) # © . Hence there exist x, y <»n such
that dj_l(x) = e(l) and di(y) = ¢'(l) . We must show x =y . We have
two cases.

Case 1. Suppose e'(l) << . Then e'(l) <j ; so

%@un=%@%m=e%w<i.

Hence e(l) =e'(l) <4 < j ; thus e(l) < j - 1 and (in the notation

above) y=e'(l) , z=e(l) ; so =y .
Case 2. Suppose e'(l) >7 . This splits up into two subcases.
(a) Suppose J < e'(l) . Then
d;(e()) = dj(e'(l)) =e'(1) +1>1 .
Hence e(Z) = (e'(1)+1) -1 =¢e'(1) . So y=e'(L) -1,
and x =Y .
(b) Suppose e'(l) < g . Then

d.(e(1)) = dj[e'(l)) =e' (1) >1 .

https://doi.org/10.1017/50004972700024886 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700024886

Fibrations 117

Hence e(l) =e'(l) -1 . Since e'(l) >Z1 , y=e'(l) -1.
Also e(l) =e'(l) -1<j-1. S xz=e(l) and =y .
This completes Case 2 and the proof.

Proof of Proposition 4. {(ONLY IF) Let sj be in I E(n) and

0=j<n
Tk
t in B(n+tl) such that 3i(sj) = aj(si—l) , t<d, i, #k , and
d
-9,
a
Bi(t) = p(n)(si] . We consider the covering {n — n+l; and the
—_—
dn+l

hypothesis gives us

E(n+1) ———————s B(n+1)

|

ker[ﬁ By ITTE( x,, n]] - TT 8w
7 15J 7

is weak cartesian.

The lermma identifies R xn+1 N and the maps; hence our assumption

is in ker . We thus obtain the desired

implies (so, ey Bps ees sn+l)

(n+l)-simplex in E from the diagram.

(IF) The converse follows from a standard fact about Kan fibrations
(see [3]1, p. 26) and the fact that C is closed under fibre products;
hence is itself the weak Grothendieck topology. To prove the latter claim
we first recall the unique factorization of morphisms in 0rd  as strings

of di's and sj's (see [3], p. 4). Since juxtapositions of cartesian

squares are cartesian, it suffices to check closure under fibre products

induced by the di's and sj's individually. This is tedious and left to
the reader.

COROLLARY. X s a Kan complex iff X 1is a weak sheaf on the weak

combinatorial site.
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4. Fibrations on T : examples

It is also possible to obtain a notion of fibration on our ground site

T . We have the fully faithful Yoneda embedding

7 B [0, sets]

along which we can in some sense "pull back". Suppose

Px ¢ homT(—, E) -~ homT(—, B) is a morphism of representable presheaves

induced by p : F > B . By definition, p, is a fibration if the

following square is cartesian:

homT(U, E) —— homT(U, B)

l l

HO({Ui > U}, homp,(-, E)) > T | nhon(vy, B)
z

for every covering {Ui > U} in T .
In other words we have the following lifting property;

U compatible £

where "compatible" means the diagram

Ui

Ut XU Uj E
U.
J

commutes for all < and j . Similarly E in ob(T) is fibrant if the

following diagram can always be completed:
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Ui compatible E

Numerous sites appear in algebro-geometric contexts. To consider a
particularly simple example let I be the category of affine schemes over
spec(R) ; that is, the opposite of the category of commutative R-algebras
and declare a covering to be a single faithfully flat morphism
spec(B) » spec(4) . (These "affine" sites appear in Dobbs [7] under the
name R-based topologies.) What are the fibrant R-algebras? We have the

following observation.

PROPOSITION 5. E <s a fibrant R-algebra 1ff for any faithfully
flat morphisms S' +~ S , and homomorphism f : E +~ S , for every e 1in
E, fle)®1=10® fle) in 5@y §

Proof. By faithfully flat descent the lifting below exists iff the

bottom oblique arrows are equal;

Also the following is true.
PROPOSITION 6. If E <s fibrant then B + E 1is always a fibration.
Proof. Suppose we have the diagram
S +E
+ 4
S'«B.

Since E is fibrant there exists a map E + S' making the resulting upper
triangle commute. But since S' - § is a monomorphism the lower triangle

also commutes.

For simplicity let us suppose R =1 , so we are considering the

https://doi.org/10.1017/50004972700024886 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700024886

120 Howard Lyn Hiller

category of commutative rings. We have three properties of fibrations.

PROPOSITION 7. If p; : B, > Ei s T =1, 2, are fibrations then so

is pl®p2 : Bl®Be+El®E2 .
COROLLARY. Fibrant rings are closed under tensor product (equals
corpoduct). :
PROPOSITION 8. Epimorphisms of rings are fibrations.
COROLLARY. Fibrant rings are closed under homomorphic images.
PROPOSITION 9. If A <s a ring, S a nultiplicatively closed
subset of A , then the localization map A -+ s is a fibration.
COROLLARY., Fibrant rings are closed under taking rings of fractions.

PROPOSITION 10. Fibrant rings are rigid (that is, have no non-

trivial automorphisms).

We now can produce many examples and non-examples of fibrant rings.
Z 1is trivially fibrant, and all subrings of the rationals are fibrant by
Corollary 3. The finite cyclic rings are fibrant by Corollary 2. The
rings R xX R , for R arbitrary, and the complex numbers are non-examples
by Proposition 4. If R is noetherian, R[t] is never fibrant by
considering the faithfully flat morphism R + R[[t]] . We provide a

representative proof.

Proof of Proposition 9. Suppose we have a commutative square

a —Log

ok

sth— R
g

with < faithfully flat. We must check f(S) is contained in R. , the
invertible elements of R . Let s be in S . Consider the R-module

R/f(s)R . We claim that R' ®R (R/f(s)}?) = 0 . We compute
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g(%]g@—]s ® (r+f(s)R)

ir)g(Hs @ rto)n)

s ® (r+f(s)R)

9&]3 ® f(s) (»+f(s)R) = 0 .

Hence by faithful flatness, R = f(s)R 3 so 1 = f(s)r for some r in
R . The desired map S—lA > R can now be constructed.
There exist two other examples where we can identify the fibrations.

EXAMPLE 1. Let T be an arbitrary category with topology defined by

the universally effective epimorphisms; that is, {Ui > U} is a covering

in T iff for all objects X of T,
~ o0
hom, (U, X) — H ({Ui + U}, homT(—, x))

is an isomorphism. Then since the definition forces every representable

functor to be a sheaf, by Fact 2 above, every morphism is a fibration.

EXAMPLE 2. Let R be a commutative ring. If S is an R-algebra
and M an S-module, Quillen [5] defines a cohomology theory D*(S/R, M)
based on a Grothendieck topology on the category of S-algebras where a
covering is a single S-algebra epimorphism with nilpotent kernel. Since
all our notions are dualized, p : B + E 1is a fibration iff for every

commutative square the dotted arrow exists;

A~—~—B

x
nilpotent N
kernel

\\
A'—— E

In the terminology of Grothendieck [2] we conclude the fibrations are

precisely the formally unramified morphisms.

Appendix
We provide here a detailed proof of Proposition 4 ("Exponentiation").

Proof. We must check the following square is cartesian;
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Foy — )

[{u - EK] TTBK(

u.
for an arbitrary covering {Ui —L U} . Letting (-, -) denote
homT(—, -) , this square becomes

nat (K(-)x(-,0)»E(-)}) ——  nat(k(-)x(-,0)~B(-))

#°({v,20} , #-mat (k(-)x(-,x)8(- ))»T‘r(nat( ) (=50,)+8(-))

So consider some % : K(-) x (-, U) >~ B(-) and a compatible collection

{ti : K(—)X(—, Ui) + E(-)} of natural transformations such that

(*) p°ti = hO(lX(ui)*)

We want a natural transformation ¢ : K{(-) x (-, U) =+ E(-) such that

(1) pot = h
and
(2) to(1x(u;),) = t; .

Let X be an object of T and consider (s, f) in XK(X) x (X, U)

have a cartesian square in 7 ,

>
X
<
<

7 7

U

|

By the fibre-product axiom for Grothendieck topologies we have

{x x v, > X} is a covering of X . Since p : E > B 1is a fibration

U

have the following cartesian square;
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E(X) —_ B(X)

(3) | |

#°({x x, u; > 1}, E) ->-|_7:TB(X x, U)
Consider h(X)(s, f) in B(X) and ¢, (x x, U] (ke (s), g;} in

E(X *y Ui) . We claim

(%) (e} ((x) (s, £)) = p(x x, U,) (¢, (x %, U,) (Ke (s), g,)
and
(s) t, (X %, U;) (Key(s), g;) is in 2 ({x xy Uy > X1, B} .

Proof of (4). By naturality of h and (¥),

(e} (n(x) (s, 1))

n(x Xy v,) (Keixe;s)(s, f)
h(x *u Ui)(lx(ui)*)(Kei(s), gi)

plx x, u)e, (x x, U) (Ke,(e), g

).

1

Proof of (5). This requires verifying
E(p)) (6, (x %, v,) (ke (o) g;)) = E(0p,) (£, (x %, Uj) (ke ;(s), g.))

where we have maps

X xU Uz
1xp
Z =X XU Ui XU Uj Ui XU Uj .
lXp2
X .
X U UJ

Using the compatibility of the ti's we know the following diagram

commutes
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K(z)x(z, U,)

1x(p,) 4 t;(2)
(6) K(2)x(z, U, x, Uj) E(Z) .
lx(pg)* tj(z)

k(z)x(z, UJ.)

By naturality of ti N

t,(2) (K (1p, ) x (1xp, ) * (ke () g,))
t;(2) (K(e o (1xp,)) (8) 5 g;o (1p,))

£,(2) (K(e,° (1%p,)) (8) , p00) -

E'(lxpl) (t,,; (X XU U.,;) (Kei(s) B 97,)]

By considering K(eio (lxle(s), q) in Kk(2) x (z, Uixuj) appearing in
diagram (6) we can continue our computation;

b 42) (Koo (52,)) (0). 7,0(,))
tj(Z) (K(lsz)X(Ing) *) (Kej(s) ’ gj)

B(0py) (55 (1 =, 7)) (Ko (o), 4))

by the naturality of tJ. . This completes the proof of (5).

Now by our cartesian square (3), there exists a unique =z in E(X)

such that
(7 p(x)(z) = r(X)(s, f)

and

(8) (Bey)(2) = ¢, (x x, U;) (Key(s), g.) -

We then define ¢(X)(s, f) = 2z . First we claim that
(9) t : K(-) x (-, U) ~ E(-)
is a natural transformation.

Proof of (9). Let F : Y >~ X be a morphism in 7T and consider the

diagram
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KFxp* EF

m)xlx, ) X p(x)

K(Y)x(Y, U) E(Y) .

£(Y)
We must show that (EF)(t(X)(S, f)) = t(Y)((KF)(S), ffj .

By our definition of ¢ +this requires showing

(10) p(1) ((F) (£(x) (s, 1)) = 1Y) (KF(s), £F)
and
(11) [Eef] (zr) (¢(x)(s, 1)) = ¢, (10;) [Kef(KF(s)), gﬁ]
where the maps mentioned appear in the following cube:
g
¥y Uz — U
9; 1
X XU Ui Ui u;
Y
e, U,
7 7
e, Y fF — U
X 7 — U

Proof of (10).

p(Y)(&F) (£(X) (s, £)) = (BF)p(X) (t(X)(s, f)) by naturality of p
= (BF) (h(x)(s, £)) by definition of
= h(Y)(Kexe*)(s, f) by naturality on %
= h(Y) (Ke(s), fF) .

o

Proof of (11).

[Eef](EF) (¢(x)(s, 1)) [Fe,i-'] (tx) (s, 1))

=F
= E(e; (P, ) (5(0)(s, )

by cube. Now using our definition of ¢ and the naturality of ti s
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B (e, ) (¢, (00) (e (o), 4,))

¢, (¥ x, U;) (K(Fxlui)x(pnui)*(Kei(s), g;))

= E(FXlUi) (Ee,) (£(x0)(s, 1))

Y Y
t, (¥ x, U) [Kei (x7(s)}, gi]
This completes the proof of (11) and, hence, (9). We now assert that ¢
satisfies our original two requirements, (1) and (2).
Proof of (1). This follows immediately from (7).

Proof of (2). This statement translates into

t,(X) (s, £) = t(X) (s, uof) ,

where & is in K(X) and f is in (X, Ui] . By definition of ¢ this

requires showing that

(12) p(X) (t,(X)(s, £)) = B(X) (s, u;of)
and
(13) (22;) (¢,(0) (s, 1) = t,(P) (Ke,(e), 7;) -

Proof of (12). This follows immediately from (*).

Proof of (13). The maps mentioned in (13) come from the following

cartesian square,

By the naturality of ti s
(14)  (Ee;) (¢;(0) (s, 1)) = t,(P) (KzixZ;)(s, ) = t,(P)(Ke,(s), foe;) .

Consider the following dotted arrow #h ,
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cY

U,o——U.
J 7

v

l "
1

U;

7

U
U
1

In diagram (6), let Z =4 , Z =P and consider (Kzé(s), h) in

k(P) x (P, U; *y qj) . This gives the equality

t;(P) (Ke;(s), foe;) = t,(P)(Ke (s), g;) -

Together with computation (14), this completes the proof of (13) and thus,

Proposition L.
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