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Abstract

Let 1 < p < oo and 1/p + \/q = 1 . If <j> e Lq , we denote by T^ the functional denned on
the Hardy space Hp by

•$(/) = J"f(e">We")d6/2x.

A function / in Hp , which satisfies T%{f) = \\T$\\ and | |/ | |p < 1 , is called an extremal
function. Also, <j> is called an extremal kernel when \\<j>\\q = \\T£\\ . In this paper, using the
results in the case of p = 1 , we study extremal kernels and extremal functions for p > 1 .
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1. Introduction

Let U be the open unit disc in the complex plane and d U the boundary of
U. A function / which is analytic in U is said to belong to the class Hp

(0 < p < oo) if

11/11, = Km | ^ j ^ \f{reie)\" ddj < oo.

The class of bounded analytic functions is denoted by H°° and H/H^ =

limr_>1
 maxo<0<2;r \f(re'8)\ • Each / e Hp has a radial limit f(e'e) almost

This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Edu-
cation, Japan.
© 1992 Australian Mathematical Society 0263-6115/92 $A2.00 + 0.00

103

https://doi.org/10.1017/S1446788700032882 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700032882


104 Takahiko Nakazi [2]

everywhere. If h e Hp has the form

h(z) = exp I [ e-n±^- log \h(e")\ dt/2n + ia 1 (z e U)
[J — Z )

1)
for some real a, then h is called an outer function. We call Q e H°° an
inner function if \Q{el6)\ = 1 a.e. on dU. Let h be a nonzero function
in H . Then h is an outer function if and only if u is constant whenever
uh e Hl for some u e L°° with u > 0 a.e.

DEFINITION. Let g be a nonzero function in Hl. We say g is a strong
outer function if it has the following property: if ug e Hx for some Lebesgue
measurable u with u > 0 a.e., then u is constant.

For keL9, put

Then ||7£|| = \\k + zHq\\ where l/p+l/q = 1. Also </> is an extremal
kernel if and only if \\</>\\q = ||</> + z i / 9 | | . When q < oo and 1/p + 1/? = 1,
if k G Lq there exists a unique extremal kernel <j> in k + zHq and a unique
extremal function / in Hp such that

(1) f(ew)<P(eW)>Oa.e.e

and

(2) | / V ' V = \\4>\\?\<Keie)\" a.e. 0

(cf. [2, pages 132-133]). When q = oo and p = 1, if k e L°° there exists
an extremal kernel 4> in k + zH°°, but there may not exist any extremal
functions in Hl. Moreover, if an extremal function exists then the extremal
kernel is unique. In general, there may exist many extremal functions. In
this paper Sk denotes the set of extremal functions of Hx . If Sk is weak-*
compact in Hl, then Sk consists of functions / in H1 which have the
following form:

(3) f=yf[(z-aJ)(l-ajz)g,
7=1

where y is positive constant, |a.| < 1 (1 < j < n) and g is a strong outer
function and the extremal function (j> has the form

(4) 0 = z"M.
8

This has been shown by the author [4, Theorem 2]. In this paper, using this
description of Sk , we describe extremal kernels and extremal functions for
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1 < p < oo and l/p + l/q = I. Hence extremal functions for 1 < p < oo
have similar forms to those for p — 1. Previously these have been described
in the case of rational kernels in different forms and by a different method
(cf. [3]).

2 General kernels

The following simple theorem, which gives a relation between extremal
problems of Hl and Hp (1 < p < oo), is essential in this paper.

THEOREM 1. For each p (1 < p < oo) and for each function

with k f zH9, if <j> is a unique extremal kernel in k + zHq and f is a
unique extremal function of Tp then

4> = <j>oh, f=U\\-9QhqlP
\\

and

where h is an outer function with \<p\ — \h\, and Q is the inner part of f.
Conversely, if c/> and f have the forms above, then (j> is an extremal kernel
and f is an extremal function of T% .

PROOF. If 4> is an extremal kernel, then by (2) in the introduction, log \<t>\
is integrable and hence there exists an outer function h with \<j)\ = \h\. By
(2), / = \\<j>\\~qlPQhqlP, where Q is the inner part of / . Put </>Q = </>/h.
Then by (1) in the introduction

The L -norm of

wnV'Qti1"*' = n\rq
is U\\q. Hence

= n\rq
9/pQh9

C G * V O ) I I I = l a n d \\<t>\\~gQhq4>o > 0 a.e.

By [2, page 133], \\H~qQhq belongs to S^ and <f>0 = Q\h\qh~9 .

When p = 2, <f> is an extremal kernel for H if and only if $> belongs to
H . This trivial result is also a corollary of the following.

https://doi.org/10.1017/S1446788700032882 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700032882


106 Takahiko Nakazi [4]

COROLLARY 1. Let </> be a function in Lq with <j) £ zHq, 1 < q < oo
and l/p+l/q — 1. Then <f> is a unique extremal kernel of T^ if and only if

where Q is an inner function and h is an outer function in Hq .

PROOF. If 0 is a unique extremal kernel then by Theorem 1 , 0 = <j>oh

and 0O = Q\h\qh~q. Hence the 'only i f part follows. Conversely, if 0 =

Q\h\qh~q/p then |0 | - \h\. Put / = \\4>\\~"Qh9lP . Then 0 / > 0 a.e. on dU

and U\\:qQhq € S . if 0ft =

COROLLARY 2. Let g = Bh be a nonzero function in Hq (1 < q < oo),
where B is an inner function and h is an outer function. Then \\g~ + zHq\\ =
\\g~\\ ifandonlyifBh2~q/\h\2~q is an inner function.

PROOF. If \\~g + zHq\\ — \\g~\\ then g is a unique extremal kernel and
\g\ = \h\ by the definition of g. By Corollary 1, ~Bh = Q\h\qh~q/p and
hence B\h\2h~2 = Q\h\qh~q . This implies the 'only if part. The 'if part is
also clear by Corollary 1.

COROLLARY 3. (i) If g and g~* are in H°° and nonconstant, then for
any q with \<q<oo,andq^2, ||g + zH9\\ ^ \\g\\q .

(ii) If g is an inner function, then for any q with 1 < q < oo, \\~g+zHq\\ -

HIV
(iii) Suppose 2 < q < oo. If g e Hq is a nonconstant outer function, then

\\g-+zHq\\*\\-g\\q.
(iv) If I < q < 2, then there exists an outer function g in Hq such that

l

(v) If 2 < q < oo, then there exists a nonzero function g such that g is
not an inner function in Hq and \\~g~ + zHq\\ = \[g\\q .

PROOF, (i) If g and g~l are i H°°, then for any q with 1 < q <
oo, g € Hq and g2~q/\g\2~q is not an inner function if q ^ 2 . For, if
g2~q/\g\2~q — Q is inner, then gq~2Q is a nonnegative function in H°°
and hence it is a nonzero constant. Thus g is a constant. This contradiction
and Corollary 2 imply (i). Part (ii) is clear from Corollary 2.

(iii) When 2 < q < oo, if g is outer then gq~2 e Hq/q-2 c Hl. If
\\g~ + zHq\\ = \\g~\\9, then by Corollary 2 there exists an inner function Q
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such that
g2~q \g\"~2

Q • \g\2-q gq-2 •

Hence Qgq~2 is a non-negative function in Hl and hence Qgq~2 is outer
(see [4, Proposition 5]). Thus Q and g are constants. This contradiction
implies (iii).

(iv) When 1< q < 2, put g = {-(z - 1)2}1/2"9 . Then g2~Q/\g\2~9 = z .
Now part (iv) follows from Corollary 2.

(v) Put B - z2 , Q = z and g - { - ( z - l ) 2 } 1 / ? - 2 . Then Bg2-q/\g\2-q =
Q and g e Hq if q > 2.

3. Special kernels

Let C denote the space of continuous functions on d U and set A =
H°° n C. Then / / ' = {C/zA)*. If 0O e C , then S^ is weak-* compact (cf.
[4, page 225]). If k e Lq is a good function, then the <j)0 in Theorem 1 may
satisfy the condition that S, is weak-* compact.

THEOREM 2. Let 1 < p < oo am/ l/p + l/q = 1. Suppose <fr — <f>oh is
a unique extremal kernel of T% and S^ is weak-* compact, where h is an
outer function in Hq with \<j>\ = \h\. If f is an extremal function of Tp, ,
then

and

8 7=1 lj=s+\

{
j=s+l

where |a.| < 1 if 1 < j < s, | a ; | = 1 ifs+l<j<n and g is a strong
outer function.

PROOF. By hypothesis S. is weak-* compact. Hence by (3) in the intro-
duction and Theorem 2, we have

7=1
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where y is a positive constant, \aj\ < 1 (1 < j < n) and gx is a strong
outer function, and Q is the inner part of / . Put g = ygx. Then g is
also a strong outer function and l^lg"1 = \gx \gx~

l and we can write the right
hand as the following:

Qh9 = f[(z - aj)(l -ajz)g
7 = 1

w h e r e \aj\ < 1 i f 1 < j < s a n d | a . | = 1 i f s + l < j < n . H e n c e

and h^UWlflil-ajz)2 f[(z-aj)(l-ajz)g.
j=\ i j=\ j=s+l

i
theorem.
By (4) in the introduction, <j>0 = ~z"\g\g~l. Now Theorem 1 implies the

COROLLARY 4. Let 1 < p < oo and l/p + \/q = 1. If k = k2/kx e L9

with k £ zHq and kj is a nonzero function H°° for j — 1 ,2 , then the

extremal kernel <p of T£ has the form

<l> = Ql Q2h2lhx = <t>oh, 4>0 = G, Q2 and h = h,Jh,

where k{ = Qxhx, kx<\> — Q2h2, Q. is inner and hj is outer. If Qx is a

finite Blaschke product then Q2 is also a finite Blaschke product and degree

of Q2 < degree of Qx. Suppose {Pj}"j=l are the zeros of Qx, {<XjYj=l are

the zeros of Q2 and t < n. If f is a unique extremal kernel of T%, then

1/9

7=1

and

j=t+\

azfp-il[(z-aJ)(\-ajz
j=t+\ \j=s+\

- 5 - z ) « , H^-VP

where \a | < 1 ift+l<j<s, \a | = 1 ifs+l<j<n and y is a positive
constant.
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PROOF. The first part is clear. For the second part, since <j>Q = Q{Q2 and
S^ is non-empty by Theorem 2, Q2 is a finite Blaschke product of degree

at most degree Ql. We will prove only the third part. Since <f>0 = QlQ2

is a continuous function, S, is weak-* compact and hence we can apply
Theorem 2 to the corollary. Since

putting S1 = the unit sphere of Hx, we obtain that

-aj)(l-ajZ)gleSl: \a.\ < 1
j=t+\

tft+l<j<s and l̂ -l = 1 if s + I

and

< j < n\

j=l KL-PjZ) j=t+l

This can be proved from the fact that

and
f n n

__ i • — 2 1

if t + 1 < j < s and \0j\ = 1 if 5 + 1 < j < n \ .

j=t+i

where *, = n;"=(+1 ^ •
Thus Theorem 2 implies the corollary if the concrete forms of (f>0 and g

are used.

A. J. Macintyre and W. W. Rogosinski [3] described completely the ex-
tremal functions and the kernels in the case of rational kernels, by a different
method. Their result follows from Corollary 4. When a kernel k is analytic
on dU, the extremal kernel [5, page 141] and the extremal function [1] had
been described.

If a kernel k is analytic on d U, then the extremal kernel <f> of k is
of the form 4> = Q G where Q is a trigonometric polynomial and G is
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holomorphic on dU (cf. [5, page 141]). It is not difficult to see that S, is
weak-* compact. Hence we can apply Theorem 2 to </>. This describes an
extremal kernel and an extremal function a little differently from [5] and [1].
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