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Abstract

We introduce a sequence of isolated curve singularities, the elliptic m-fold points, and an
associated sequence of stability conditions, generalizing the usual definition of Deligne–
Mumford stability. For every pair of integers 1 6m< n, we prove that the moduli
problem of n-pointed m-stable curves of arithmetic genus one is representable by a
proper irreducible Deligne–Mumford stackM1,n(m). We also consider weighted variants
of these stability conditions, and construct the corresponding moduli stacks M1,A(m).
In forthcoming work, we will prove that these stacks have projective coarse moduli
and use the resulting spaces to give a complete description of the log minimal model
program for M1,n.
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1. Introduction

1.1 Why genus one?

One of the most beautiful and influential theorems of modern algebraic geometry is the following
theorem of Deligne and Mumford [DM69].

Theorem. The moduli stack of stable curves of arithmetic genus g > 2 is a smooth, proper,
Deligne–Mumford stack over Spec(Z).

The essential geometric content of the theorem is the identification of a suitable class of
singular curves, namely Deligne–Mumford stable curves, with the property that every incomplete
one-parameter family of smooth curves has a unique ‘limit’ contained in this class. The definition
of a Deligne–Mumford stable curve comprises one local condition and one global condition.

Definition (Stable curve). A connected, reduced, complete curve C is stable if the following
hold.
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D. I. Smyth

(1) The curve C has only nodes as singularities (local condition).
(2) The curve C satisfies the following two equivalent conditions (global condition).

(a) H0(C, Ω∨C) = 0.
(b) ωC is ample.

While the class of stable curves gives a natural modular compactification of the space of
smooth curves, it is not unique in this respect. Using geometric invariant theory, Schubert
constructed a proper moduli space for pseudostable curves [Sch91].

Definition (Pseudostable curve). A connected, reduced, complete curve C is pseudostable if
the following hold.

(1) The curve C has only nodes and cusps as singularities (local condition).
(2) If E ⊂ C is any connected subcurve of arithmetic genus one, then |E ∩ C\E|> 2 (global

condition).
(3) The curve C satisfies the following two equivalent conditions (global condition).

(a) H0(C, Ω∨C) = 0.
(b) ωC is ample.

Notice that the definition of pseudostability involves a trade-off: the local condition has been
weakened to allows cusps, while the global condition has been strengthened to disallow elliptic
tails. It is easy to see how this trade-off comes about: as one ranges over all one-parameter
smoothings of a cuspidal curve C, the associated limits in Mg are precisely curves of the form
C̃ ∪ E, where C̃ is the normalization of C and E is an elliptic curve (of arbitrary j-invariant)
attached to C̃ at the point lying above the cusp. Thus, any separated moduli problem must
exclude either cusps or elliptic tails. In light of Schubert’s construction, it is natural to ask the
following problem.

Problem. Given a reasonable local condition, e.g. a deformation-open collection of isolated curve
singularities, is there a corresponding global condition which yields a proper moduli space?

Any investigation of the above problem should begin by asking: which are the simplest isolated
curve singularities? Let C be a reduced curve over an algebraically closed field k, p ∈ C a singular
point, and π : C̃→ C the normalization of C at p. We have two basic numerical invariants of the
singularity:

δ = dimk(π∗OC̃/OC),
m = |π−1(p)|.

The invariant δ may be interpreted as the number of conditions for a function to descend from C̃
to C, whilem is the number of branches. Of course, if a singularity hasm branches, there arem−1
obviously necessary conditions for a function f ∈ OC̃ to descend: f must have the same value
at each point in π−1(p). Thus, δ −m+ 1 is the number of conditions for a function to descend
beyond the obvious ones, and we take this as the most basic numerical invariant of a singularity.

Definition. The genus of an isolated singularity is g := δ −m+ 1.

We use the name ‘genus’ for the following reason: if C →∆ is a one-parameter smoothing
of an isolated curve singularity p ∈ C, then (after a finite base change) one may apply stable
reduction around p to obtain a proper birational morphism φ : Cs→C, where Cs→∆ is a flat
family of curves with nodal special fiber, and φ(Exc(φ)) = p. Then it is easy to see that the genus
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of the isolated curve singularity p ∈ C is precisely the arithmetic genus of the curve φ−1(p). Thus,
just as elliptic tails are replaced by cusps in Schubert’s moduli space of pseudostable curves, any
separated moduli problem allowing singularities of genus g must disallow certain subcurves of
genus g.

The simplest isolated curve singularities are those of genus zero. For each integer m> 2, there
is a unique singularity with m branches and genus zero, namely the union of the m coordinate
axes in Am. For our purposes, however, these singularities have one very unappealing feature:
for m> 3, they are not Gorenstein. This means that the dualizing sheaf of a curve containing
such singularities is not invertible. For this reason, we choose to focus upon the next simplest
singularities, namely those of genus one. It turns out that, for each integer m> 1, there is a
unique Gorenstein curve singularity with m branches and genus one (Proposition A.3). These
are defined below.

Definition (The elliptic m-fold point). We say that p is an elliptic m-fold point of C if

ÔC,p '


k[[x, y]]/(y2 − x3) m= 1 (ordinary cusp),
k[[x, y]]/(y2 − yx2) m= 2 (ordinary tacnode),
k[[x, y]]/(x2y − xy2) m= 3 (planar triple-point),
k[[x1, . . . , xm−1]]/Im m> 4 (m general lines through the origin in Am−1),

Im := (xhxi − xhxj : i, j, h ∈ {1, . . . , m− 1} distinct).

We will show that if C is a curve with a single elliptic m-fold point p, then, as one ranges over
all one-parameter smoothings of C, the associated limits in Mg are curves of the form C̃ ∪ E,
where C̃ is the normalization of C and E is any stable curve of arithmetic genus one attached to C̃
at the points lying above p. Following Schubert, one is now tempted to define a sequence of moduli
problems in which certain arithmetic genus one subcurves are replaced by elliptic m-fold points.

The idea seems plausible until one considers a one-parameter family of smooth genus g curves
specializing to a ring of g − 1 elliptic bridges. How can one modify the special fiber to obtain
a ‘tacnodal limit’ for this family? Assuming the total space of the family is smooth, one can
contract any non-intersecting subset of the elliptic bridges to obtain a tacnodal special fiber,
but clearly one cannot obtain in this way a canonical tacnodal limit. This example suggests
that a systematic handling of mildly non-separated moduli functors, either via the formalism of
geometric invariant theory or Artin stacks, will be necessary in order to proceed at this level
of generality. (See [HH08] for a geometric invariant theory construction involving tacnodal
curves.)

Happily, there is one non-trivial case in which this difficulty of multiple interacting elliptic
components does not appear, namely the case of n-pointed stable curves of arithmetic genus one.
This leads us to make the definition.

Definition (m-stability). Fix positive integers m< n. Let C be a connected, reduced, complete
curve of arithmetic genus one, let p1, . . . , pn ∈ C be n distinct smooth points, and let Σ⊂ C be
the divisor

∑
i pi. We say that (C, {pi}ni=1) is m-stable if the following hold.

(1) The curve C has only nodes and elliptic l-fold points, l 6m, as singularities.
(2) If E ⊂ C is any connected subcurve of arithmetic genus one, then

|E ∩ C\E|+ |E ∩ Σ|>m;

(3) The space of global sections H0(C, Ω∨C(−Σ)) = 0.
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Remark. Condition (3) says that (C, {pi}ni=1) has no infinitesimal automorphisms as a marked
curve. This condition is not simply that every smooth rational component has three distinguished
points. Furthermore, while

H0(C, Ω∨C(−Σ)) = 0 =⇒ ωC(Σ) is ample,

these conditions are not equivalent.

The definition of m-stability is compatible with the definition of A-stability introduced by
Hassett [Has03], in which sections of low weight are allowed to collide. More precisely, we have
the following definition.

Definition ((m,A)-stability). Fix positive integers m< n, and an n-tuple of rational weights
A= (a1, . . . , an) ∈ (0, 1]n. Let C be a connected, reduced, complete curve of arithmetic genus
one, let p1, . . . , pn ∈ C be smooth (not necessarily distinct) points of C, and let Σ denote the
support of the Q-divisor

∑
i aipi. We say that (C, {pi}ni=1) is (m,A)-stable if the following

hold.

(1) The curve C has only nodes and elliptic l-fold points, l 6m, as singularities.

(2) If E ⊂ C is any connected subcurve of arithmetic genus one, then

|E ∩ C\E|+ |E ∩ Σ|>m.

(3) The space of global sections H0(C, Ω∨C(−Σ)) = 0.

(4) If pi1 = · · ·= pik ∈ C coincide, then
∑k

j=1 aij 6 1.

(5) The Q-divisor ωC(Σiaipi) is ample.

The definition of an (m,A)-stable curve extends to a moduli functor in the usual way, and
we obtain (Theorem 3.8).

Main result. M1,A(m), the moduli stack of (m,A)-stable curves, is a proper irreducible Deligne–
Mumford stack over Spec Z[1/6].

Remark. The restriction to Spec Z[1/6] is due to the existence of ‘extra’ infinitesimal
automorphisms of cuspidal curves in characteristics two and three, a phenomenon which is
addressed in § 2.1.

A major impetus for studying alternate compactifications of moduli spaces of curves comes
from the program introduced by Hassett [Has05], where one seeks modular descriptions for
certain log canonical models of Mg,n. While special cases of this program have been worked out
using geometric invariant theory [HH08, HH09, HL07], our construction gives the first example
of an infinite sequence of singularities giving rise to alternate stability conditions. Our methods
are also quite different from [HH08, HH09, HL07] in that, rather than rely on geometric invariant
theory to dictate our choice of moduli problem, we undertake a sufficiently in-depth investigation
of the elliptic m-fold point to make moduli problems involving these singularities accessible via
standard stack-theoretic techniques.

In forthcoming work, we will study M1,A(m) in the framework of birational geometry. In
particular, we will develop techniques for doing intersection theory on M1,A(m) and construct
explicit ample divisors on the associated coarse moduli spaces M1,A(m). This will enable us to
give a complete description of the log minimal model program for M1,n, i.e. for all α ∈Q ∩ [0, 1]
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such that KM1,n
+ α∆ is big, we will show that

M1,n(α) := Proj
⊕
m�0

H0(M1,n, m(KM1,n
+ α∆))

is the normalization of the coarse moduli space of one of the moduli problems introduced in this
paper.

1.2 Outline of results
In § 2, we investigate local properties of the elliptic m-fold point which are necessary for the
construction of moduli. In § 2.1, we show that sections of Ω∨C around an elliptic m-fold point
p ∈ C are given by regular vector fields on the normalization which vanish and have identical
first derivatives at the points lying above p. This will allow us to translate the condition
H0(C, Ω∨C(−Σ)) = 0 into a concrete statement involving the number of distinguished points on
each irreducible component of C. In § 2.2, we show that ωC is invertible around an elliptic m-fold
point p, and is generated by a rational differential on C̃ with double poles along the points lying
above p. This implies that ωC (twisted by marked points) is ample on any m-stable curve so that
our moduli problem is canonically polarized. In § 2.3, we classify the collection of all ‘semistable
tails’ obtained by performing semistable reduction on the elliptic m-fold point. This classification
will be the key ingredient in verifying that the moduli space of m-stable curves is separated.

In § 3, we constructM1,A(m), the moduli space of (m,A)-stable curves as a Deligne–Mumford
stack over Spec Z[1/6]. In § 3.1, we prove some elementary topological facts about a reduced,
connected, Gorenstein curve C of arithmetic genus one. In § 3.2, we define the moduli problem
of (m,A)-stable curves and prove that it is bounded and deformation-open. Following standard
arguments, we obtain a moduli stackM1,A(m). In §§ 3.3 and 3.4, we verify the valuative criterion
for M1,A(m).

In Appendix A, we prove that the only isolated Gorenstein singularities that can occur
on a reduced curve of arithmetic genus one are nodes and elliptic l-fold points. The proof is
pure commutative algebra: we simply classify all one-dimensional complete local rings with
the appropriate numerical invariants. The result plays a crucial simplifying role throughout the
paper. Using this classification, for example, one does not need any ‘serious’ deformation theory
to see that only nodes and elliptic l-fold points, l 6m, can occur as deformations of the elliptic
m-fold point.

1.3 Notation
A curve is a reduced, connected, one-dimensional scheme of finite type over an algebraically
closed field. Starting in § 3, all curves will be assumed complete (this assumption is irrelevant in
§ 2, which is essentially a local study). An n-pointed curve is a curve C, together with n smooth
marked points p1, . . . , pn ∈ C (not necessarily distinct). If (C, {pi}ni=1) is an n-pointed curve, we
say that a point of C is distinguished if it is a marked point or a singular point. In addition, if
C̃ is the normalization of C, we say that a point of C̃ is distinguished if it lies above a marked
point or a singular point of C. An n-pointed curve is nodal if it has only nodes as singularities
and the marked points are distinct. An n-pointed curve is semistable (respectively stable) if it
is nodal and every rational component of C̃ has at least two (respectively three) distinguished
points.

The symbol ∆ will always denote the spectrum of a discrete valuation ring R with
algebraically closed residue field k and field of fractions K. When we speak of a finite base
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change ∆′→∆, we mean that ∆′ is the spectrum of a discrete valuation ring R′ ⊃R with field
of fractions K ′, where K ′ ⊃K is a finite separable extension. We use the notation

0 := Spec k→∆,
η := SpecK→∆,
η := SpecK→∆,

for the closed point, generic point, and geometric generic point respectively. Families over ∆ will
be denoted in script, while geometric fibers are denoted in regular font. For example, C0, Cη, Cη
and C ′0, C′η, C ′η denote the special fiber, generic fiber, and geometric generic fibers of C →∆ and
C′→∆ respectively. We will often omit the subscript ‘0’ for the special fiber, and simply write
C, C ′.

2. Geometry of the elliptic m-fold point

In this section, we work over a fixed algebraically closed field k. We consider a curve C with a
singular point p ∈ C, and let π : C̃→ C denote the normalization of C at p. The notation ÔC,p

will denote the completion of the local ring of C at p, and mp ⊂ ÔC,p the maximal ideal. In
addition, we let π−1(p) = {p1, . . . , pm} and set

ÔC̃,π−1(p) :=
m⊕
i=1

ÔC̃,pi
.

Note that a choice of uniformizers ti ∈mpi induces an identification

ÔC̃,π−1(p) ' k[[t1]]⊕ · · · ⊕ k[[tm]].

We will be concerned with the following sequence of singularities.

Definition 2.1 (The elliptic m-fold point). We say that p is an elliptic m-fold point of C if

ÔC,p '


k[[x, y]]/(y2 − x3) m= 1 (ordinary cusp),
k[[x, y]]/(y2 − yx2) m= 2 (ordinary tacnode),
k[[x, y]]/(x2y − xy2) m= 3 (planar triple-point),
k[[x1, . . . , xm−1]]/Im m> 4 (cone over m general points in Am−2),

Im := (xhxi − xhxj : i, j, h ∈ {1, . . . , m− 1} distinct).

One checks immediately that, for an appropriate choice of uniformizers, the map π∗ : ÔC,p ↪→
ÔC̃,π−1(p) is given by (

x
y

)
→

(
t21
t31

)
m= 1,(

x
y

)
→
(
t1 t2
t21 0

)
m= 2,

x1
...
...

xm−1

→

t1 0 . . . 0 tm

0 t2
. . .

... tm
...

. . . . . . 0
...

0 . . . 0 tm−1 tm

 m> 3.

(†)
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It will also be useful to have the following coordinate-free characterization of the elliptic m-fold
point.

Lemma 2.2. The singularity p ∈ C is an ellipticm-fold point ⇐⇒ π∗ : ÔC,p ↪→ ÔC̃,π−1(p) satisfies
the following.

(1) The subspace π∗(mp/m
2
p)⊂

⊕m
i=1 mpi/m

2
pi

is a codimension-one subspace.

(2) The subspace π∗(mp/m
2
p) +mpi/m

2
pi

for any i= 1, . . . , m.

(3) The subspace π∗(mp)⊇
⊕m

i=1 m
2
pi

.

Furthermore, if m> 3, then parts (1) and (2) automatically imply part (3).

It is useful to think of the lemma as describing when a function f on C̃ descends to C. Part
(3) says that if f vanishes to order at least two along p1, . . . , pm, then f descends to C. Part (1)
says that if f vanishes at p1, . . . , pm, then the derivatives of f at p1, . . . , pm must satisfy one
additional condition in order for f to descend. We leave the proof of Lemma 2.2 as an exercise
to the reader.

2.1 The tangent sheaf Ω∨
C

The tangent sheaves of C and C̃ are defined as

Ω∨C := HomOC
(ΩC , OC),

Ω∨
C̃

:= HomOC̃
(ΩC̃ , OC̃),

respectively. Let K(C̃) denote the constant sheaf of rational functions on C̃. Then we have a
natural inclusion

Ω∨C ↪→ π∗Ω∨C̃ ⊗K(C̃),

given by restricting a regular vector field on C to C\{p} ' C̃\{p1, . . . , pm}, and then extending
to a rational section of π∗Ω∨C̃ . If p is an ordinary node then this inclusion induces an isomorphism

Ω∨C ' π∗Ω∨C̃(−p1 − p2).

In other words, a regular vector field on C̃ descends to C if and only if it vanishes at the points
lying above the node.

In Proposition 2.3, we give a similar description of Ω∨C when p ∈ C is an elliptic m-fold point.
In this case, Ω∨C ⊂ π∗Ω∨C̃ is precisely the sheaf of regular vector fields on C̃ which vanish at
p1, . . . , pm, and have the same first derivative at p1, . . . , pm. This allows us to say when a curve
with an elliptic m-fold point has infinitesimal automorphisms, and in particular to conclude that
m-stable curves have none.

Proposition 2.3 (Tangent sheaf of the elliptic m-fold point). Suppose that one of the following
three conditions holds.

(1) The singularity p is a cusp and characteristic k 6= 2, 3.

(2) The singularity p is a tacnode and characteristic k 6= 2.

(3) The singularity p is an elliptic m-fold point and m> 3.

Consider the exact sequence

0→ π∗Ω∨C̃(−Σi2pi)→ π∗Ω∨C̃(−Σipi)→
m⊕
i=1

Ω∨
C̃

(−pi)|pi → 0.
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Since we have a canonical isomorphism
m⊕
i=1

Ω∨
C̃

(−pi)|pi '
m⊕
i=1

k,

there is a well-defined diagonal map

∆ : k ↪→
m⊕
i=1

Ω∨
C̃

(−pi)|pi ,

and Ω∨C ⊂ π∗Ω∨C̃ is the inverse image of ∆⊂
⊕m

i=1 Ω∨
C̃

(−pi)|pi . Equivalently, if we let

m⊕
i=1

fi(ti)
d

dti
with fi = ai0 + ai1ti + gi, gi ∈ (ti)2

be the local expansion of a section of Ω∨
C̃

around p1, . . . , pm, then Ω∨C ⊂ π∗Ω∨C̃ is the subsheaf
generated by those sections which satisfy

a10 = · · ·= am0 = 0,
a11 = · · ·= am1.

Proof. A section of Ω∨
C̃
⊗K(C̃) is contained in Ω∨C if and only if its image under the push forward

map
π∗ : π∗Hom(ΩC̃ , K(C̃))→Hom(ΩC , π∗K(C̃)),

lies in the subspace
Hom(ΩC , OC)⊂Hom(ΩC , π∗K(C̃)).

Thus, we must write out the push forward map in local coordinates. We may work formally
around p and use the coordinates introduced in (†).
(1) (The cusp) The section f(t1)(d/dt1) ∈ π∗Ω∨C̃ ⊗K(C̃) pushes forward to

π∗

(
f(t1)

d

dt1

)
= 2t1f(t1)

d

dx
+ 3t21f(t1)

d

dy
.

Since ÔC,p = k[[t21, t
3
1]]⊂ k[[t1]], we see that if characteristic k 6= 2, 3, then

2t1f(t1), 3t21f(t1) ∈ ÔC,p ⇐⇒ f(t1) ∈ (t1).

Thus,
Ω∨C = π∗Ω∨C̃(−p1).

(2) (The tacnode) The section f1(t1)(d/dt1)⊕ f2(t2)(d/dt2) ∈ π∗Ω∨C̃ ⊗K(C̃) pushes forward to

π∗

(
f1(t1)

d

dt1
⊕ f2(t2)

d

dt2

)
= (f1(t1)⊕ f2(t2))

d

dx
+ (2t1f1(t1)⊕ 0)

d

dy
.

If characteristic k 6= 2, then

(2t1f1(t1)⊕ 0) ∈ ÔC,p ⇐⇒ f1(t1) ∈ (t1).

Furthermore, once we know f1(t1) ∈ (t1), then

(f1(t1)⊕ f2(t2)) ∈ ÔC,p ⇐⇒ f1(t1)⊕ f2(t2) = a(t1 ⊕ t2) + (g1 ⊕ g2)

for some a ∈ k and (g1 ⊕ g2) ∈ (t21)⊕ (t22), which is precisely the conclusion of the
proposition.
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(3) (m> 3) The section
⊕m

i=1 fi(ti)(d/dti) ∈ π∗Ω∨C̃ ⊗K(C̃) pushes forward to

π∗

( m⊕
i=1

fi(ti)
d

dti

)
=
m−1∑
i=1

(fi(ti)⊕ fm(tm))
d

dxi
.

Note that the function (fi(ti)⊕ fm(tm)) vanishes identically on all branches except the ith
and mth. It follows that, for each i= 1, . . . , m− 1,

(fi(ti)⊕ fm(tm)) ∈ ÔC,p ⇐⇒ (fi(ti)⊕ fm(tm)) = a(ti ⊕ tm) + (g1 ⊕ g2),

for some a ∈ k and (gi ⊕ gm) ∈ (t2i )⊕ (t2m). Thus,
m⊕
i=1

fi(ti) = a(t1 ⊕ · · · ⊕ tm) + (g1(t1)⊕ · · · ⊕ gm(tm)),

for some a ∈ k and gi ∈ (t2i ). This completes the proof of the proposition. 2

Our only use for Proposition 2.3 is the following corollary, which translates the condition of
having no infinitesimal automorphisms into a condition on distinguished points.

Corollary 2.4. Suppose characteristic k 6= 2, 3. Let C be a complete n-pointed curve
(C, q1, . . . , qn), and let Σ denote the support of the divisor

∑
i qi. Suppose C has an elliptic

m-fold point p ∈ C, and that the normalization of C at p consists of m distinct connected
components:

C̃ = C̃1 ∪ · · · ∪ C̃m,
where each C̃i is a nodal curve of arithmetic genus zero. Then we have

H0(C, Ω∨C(−Σ)) = 0 ⇐⇒ conditions (1)–(3) hold.

(1) The components B̃1, . . . , B̃m each have at least two distinguished points, where B̃i ⊂ C̃i is
the unique irreducible component of C̃i lying above p.

(2) At least one of B̃1, . . . , B̃m has at least three distinguished points.

(3) Every other component of C̃ has at least three distinguished points.

Proof. First, let us check that these conditions are necessary. For (1), suppose that B̃i has only
one distinguished point. Then this distinguished point is necessarily pi, the point lying above p,
so B̃i = C̃i, and C̃i has a non-zero vector field which vanishes to order two at pi. One may extend
this section (by zero) to a section of Ω∨

C̃
(−Σ), and Proposition 2.3 implies that it descends to

give a non-zero section of Ω∨C(−Σ).
For (2), suppose that each B̃i has exactly two distinguished points, say pi and ri. Then the

restriction map
m⊕
i=1

Ω∨
B̃i

(−pi − ri)→
m⊕
i=1

Ω∨
B̃i

(−pi − ri)|pi → 0

is surjective on global sections. Thus we can find sections of Ω∨
B̃i

which vanish at pi and ri, and
whose first derivatives at p1, . . . , pm agree. We can extend these (by zero) to a section of Ω∨

C̃
(−Σ),

and Proposition 2.3 implies that this descends to give a non-vanishing section of Ω∨C(−Σ).
Finally, if any other component of C̃ has fewer than three distinguished points, then there

exists a vector field on that component which vanishes at all distinguished points. Since this
component necessarily meets the rest of C̃ nodally, such a section can be extended (by zero) to
a section of Ω∨

C̃
(−Σ) which descends to Ω∨C(−Σ).
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Now let us check that conditions (1)–(3) are sufficient. One easily checks that conditions (1)
and (3) imply

H0(C̃1, Ω∨C̃1
(−2p1 − Σ|C̃1

)) = · · ·=H0(C̃m, Ω∨C̃m
(−2pm − Σ|C̃m

)) = 0,

while conditions (2) and (3) imply that, for some i, we have

H0(C̃i, Ω∨C̃i
(−pi − Σ|C̃i

)) = 0.

This latter condition says that any section of Ω∨
C̃i

(−Σ|C̃i
) which vanishes at pi must vanish

identically. It follows, by Proposition 2.3, that any section of Ω∨
C̃

(−Σ) which descends to a
section of Ω∨C(−Σ) must vanish at p1, . . . , pm and have vanishing first derivative at p1, . . . , pm.
However, since

H0(C̃1, Ω∨C̃1
(−2p2 − Σ|C̃1

)) = · · ·=H0(C̃m, Ω∨C̃m
(−2pm − Σ|C̃m

)) = 0,

any section of Ω∨
C̃

satisfying these conditions is identically zero. 2

2.2 The dualizing sheaf ωC

In the following proposition, we describe the dualizing sheaf ωC locally around an elliptic m-fold
point. If p ∈ C is a singular point on a reduced curve, then, locally around p, ωC admits the
following explicit description. Let π : C̃→ C be the normalization of C at p and consider the sheaf
ΩC̃ ⊗K(C̃) of rational differentials on C̃. Let KC̃(∆)⊂ ΩC̃ ⊗K(C̃) be the subsheaf of rational
differentials ω satisfying the following condition: for every function f ∈ OC,p∑

pi∈π−1(p)

Respi((π
∗f) ω) = 0.

Then, locally around p, we have ωC = π∗KC(∆) [AK70, ch. 8, Proposition 1.16(ii)]. Using this
description, we can show the following proposition.

Proposition 2.5. If p ∈ C is an elliptic m-fold point, then the following hold.

(1) The sheaf ωC is invertible near p, i.e. the elliptic m-fold point is Gorenstein.

(2) There exists an isomorphism π∗ωC ' ωC̃(2p1 + · · ·+ 2pm).

Proof. We will prove the proposition when m> 3 and leave the details of m= 1, 2 to the reader.
By the previous discussion, sections of ωC near p are given by rational sections ω ∈ ωC̃ ⊗K(C̃)
satisfying

m∑
i=1

Respi((π
∗f) ω) = 0 for all f ∈ OC,p.

By Lemma 2.2(3), every function vanishing to order at least two along p1, . . . , pm descends
to C, so any differential ω which satisfies this condition can have at most double poles along
p1, . . . , pm. Now consider the polar part of ω around p1, . . . , pm, i.e. write

ω − ω′ =
(
a1
dt1
t21

+ b1
dt1
t1

)
⊕ · · · ⊕

(
am

dtm
t2m

+ bm
dtm
tm

)
with ai, bi ∈ k and ω′ ∈ ωC̃ . It suffices to check the residue condition for scalars and a basis of
mp/m

2
p. Taking f ∈ OC to be non-zero scalar, the residue condition gives

b1 + · · ·+ bm = 0.
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Working in the coordinates (†) introduced at the beginning of the section, we see that

{(t1, 0, . . . , 0, tm), (0, t2, 0, . . . , 0, tm), . . . , (0, . . . , 0, tm−1, tm)}

gives a basis for mp/m
2
p, so the residue condition forces

ai − am = 0 for i= 1, . . . , m− 1.

From this, one checks immediately that{(
dt1
t21

+ · · ·+ dtm−1

t2m−1

− dtm
t2m

)
,

(
dt1
t1
− dtm

tm

)
,

(
dt2
t2
− dtm

tm

)
, . . . ,

(
dttm−1

tm−1
− dtm

tm

)}
gives a basis of sections for ωC/π∗ωC̃ . It follows that multiplication by

dt1
t21

+ · · ·+ dtm−1

t2m−1

− dtm
t2m

gives an isomorphism
OC ' ωC ,

so ωC is invertible. Since a local generator for ωC pulls back to a differential with a double pole
along each of p1, . . . , pm, we also have

π∗ωC = ωC̃(2p1 + · · ·+ 2pm). 2

2.3 Semistable limits
Our aim in this section is to classify those ‘tails’ that occur when performing semistable reduction
to a one-parameter smoothing of the elliptic m-fold point. This will be the key ingredient in
the verification of the valuative criterion for M1,A(m). Throughout the section, C denotes a
connected curve (not necessarily complete), and for simplicity we will assume that C has a unique
singular point p.

Definition 2.6. A smoothing of (C, p) consists of a morphism π : C →∆, where ∆ is the
spectrum of a discrete valuation ring with residue field k, and a distinguished closed point
p ∈ C satisfying the following.

(1) The morphism π is quasiprojective and flat of relative dimension one.
(2) The morphism π is smooth on U := C\p.
(3) The special fiber of π is isomorphic to (C, p).

Definition 2.7. If C/∆ is a smoothing of (C, p), a semistable limit of C/∆ consists of a finite
base change ∆′→∆, and a diagram

Cs
φ //

πs
  AAAAAAAA C ×∆ ∆′

zzvvvvvvvvv

∆′

satisfying the following.

(1) The morphism πs is quasiprojective and flat of relative dimension one.
(2) The morphism φ is proper, birational, and φ(Exc(φ)) = p.
(3) The total space Cs is regular, and the special fiber Cs is nodal.
(4) The exceptional locus Exc(φ) contains no (−1)-curves.
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The exceptional curve of the semistable limit is the pair (E, Σ) where

E := φ−1(p),
Σ := {E ∩ Cs\E}.

We think of Σ as a reduced effective Weil divisor on E. Note that (E, Σ) is necessarily semistable,
i.e. nodal and each rational component of Ẽ has two distinguished points.

Definition 2.8. We say that a pointed curve (E, {pi}mi=1) is a semistable tail of (C, p) if it
arises as the exceptional curve of a semistable limit of a smoothing of (C, p).

In Proposition 2.12, we classify the semistable tails of the elliptic m-fold point. In order to
state the result, we need a few easy facts about the dual graph of a nodal curve of arithmetic
genus one. (These remarks will be generalized to arbitrary Gorenstein curves of arithmetic genus
one in § 3.2.) First, observe that if E is any complete, connected, nodal curve of arithmetic
genus one, E contains a connected, arithmetic genus one subcurve Z ⊂ E with no disconnecting
nodes. (If E has a disconnecting node q, then the normalization of E at q will comprise two
connected components, one of which has arithmetic genus one. Proceed by induction on the
number of disconnecting nodes.) There are two possibilities for Z: either it is irreducible or a
ring of smooth genus zero curves. By genus considerations, the connected components of E\Z will
each have arithmetic genus zero and will meet Z in a unique point. We record these observations
in the following definition.

Definition 2.9. If E is a connected, complete, nodal curve of arithmetic genus one, there exists
a decomposition

E := Z ∪R1 ∪ · · · ∪Rm,
where Z is either irreducible or a ring of P1 entities, and each Ri has arithmetic genus zero and
meets Z in exactly one point. We call Z the minimal elliptic subcurve of E.

Next, we must introduce notation to talk about the distance between various irreducible
components of E.

Definition 2.10. If F1, F2 ⊂ E are subcurves of E, we define l(F1, F2) to be the minimum
length of any path in the dual graph of E that connects an irreducible component of F1 to an
irreducible component of F2. If p ∈ E is any smooth point, then there is a unique irreducible
component Fp ⊂ E containing p, and we abuse notation by writing write l(p,−) instead of
l(Fp,−).

Definition 2.11. If (E, {pi}mi=1) is a semistable curve of arithmetic genus one, we say that
(E, {pi}mi=1) is balanced if

l(Z, p1) = l(Z, p2) = · · ·= l(Z, pm),

where Z ⊂ E is the minimal elliptic subcurve of E.

Now we can state the main result of this section.

Proposition 2.12 (Semistable tails of the elliptic m-fold point). Suppose p ∈ C is an elliptic
m-fold point, and (E, {pi}mi=1) is a semistable curve of arithmetic genus one. Then (E, {pi}mi=1)
is a semistable tail of (C, p) if and only if (E, {pi}mi=1) is balanced.

The intuition behind Proposition 2.12 is that (E, {pi}mi=1) is a semistable tail for an elliptic
m-fold point if and only if there exists a line bundle L := ωCss/∆(D), with SuppD ⊂ E
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and ωC/∆(D)|E ' OE on some semistable curve Css/∆ containing E in the special fiber. Clearly,
if we are given a semistable limit φ : Css→C, where C is a smoothing of an elliptic m-fold point,
then φ∗ωC/∆ must be a line bundle with the stated properties. On the other hand, if there exists
a line bundle with these properties on a semistable curve Css→∆, then the birational map
Css→C induced by a high multiple of L exhibits E as a semistable tail of the elliptic m-fold
point φ(E) ∈ C.

To prove Proposition 2.12, we need the following lemma. In conjunction with the classification
of singularities in Appendix A, it tells us that whenever we contract an elliptic curve E in the
special fiber of a one-parameter family using a line bundle of the form ωC/∆(D) with SuppD ⊂ E,
then the resulting special fiber has an elliptic m-fold point.

Lemma 2.13 (Contraction lemma). Let π : C →∆ be projective and flat of relative dimension
one, with connected, reduced geometric fibers. Let L be a line bundle on C with positive degree
on each irreducible component of the generic fiber and non-negative degree on each irreducible
component of the special fiber C. Set

E = {Irreducible components F ⊂ C|deg L |F = 0},

and assume that the following hold.

(1) The subcurve E is connected of arithmetic genus one.

(2) There is an isomorphism L |E ' OE .

(3) Each point p ∈ C\E ∩ E is a node of C.

(4) Each point p ∈ C\E ∩ E is a regular point of C.

Then L is π-semiample and there exists a diagram

C
φ //

π

��8888888888 C′

π′

�����������
:= Proj

(⊕
m>0

π∗L
m

)

∆

where φ is proper, birational, and Exc(φ) = E. Furthermore, we have the following.

(1) The morphism π′ is flat and projective, with connected reduced special fiber.

(2) The restriction φ|
C\E : C\E→ C ′ is the normalization of C ′ at p := φ(E).

(3) The number of branches and the δ-invariant of the isolated curve singularity p ∈ C ′ are
given by

m = |C\E ∩ E|,
δ = pa(E) +m− 1.

If, in addition, we assume that ωC/∆ is invertible and that

L ' ωC/∆(D + Σ),

where D is a Cartier divisor supported on E, and Σ is a Cartier divisor disjoint from E, then
the following holds.

(4) The sheaf ωC′/∆ is invertible. Equivalently, p ∈ C ′ is a Gorenstein curve singularity.
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Proof. To prove that L is π-semiample, we must show that the natural map

π∗π∗L
m→Lm

is surjective for m� 0. Since L is ample on the general fiber of π, it suffices to prove that for
each point x ∈ C there exists a section

sx ∈ π∗Lm|0 ⊂H0(C, Lm)

which is non-zero at x. Our assumptions imply that E is a Cartier divisor on C, so we have an
exact sequence

0→Lm(−E)→Lm→ OE → 0.
Pushing forward, we obtain

0→ π∗L
m(−E)→ π∗L

m→ π∗OE →R1π∗L
m(−E),

and we claim that R1π∗Lm(−E) = 0 for m� 0. Since Lm(−E) is flat over ∆, it is enough
to prove that this line bundle has vanishing H1 on fibers for m� 0. Since L is ample on the
generic fiber, we only need to consider the special fiber, where we have an exact sequence

0→Lm(−E)|C ⊗ IE/C →Lm(−E)|C → OE(−E)→ 0.

We have H1(E, OE(−E)) = 0, since E2 < 0 and E has arithmetic genus one. On the other hand,
since Lm(−E)|C ⊗ IE/C is supported on C\E, we have

H1(C,Lm(−E)|C ⊗ IE/C) =H1(C\E, (Lm(−E)|C ⊗ IE/C)|
C\E) = 0

for m� 0, since L |
C\E is ample. Thus, H1(C,Lm(−E)|C) = 0. This vanishing has two

consequences: first, we have a surjection

π∗L
m|0→ π∗OE |0 ' k,

so there exists a section s ∈ π∗Lm|0 which is constant and non-zero along E. Second, we have

π∗L
m(−E)|0 =H0(C,Lm(−E)|C)⊂ π∗Lm|0,

which implies the existence of non-vanishing sections at any point of C\E.
Since L is π-semiample, we obtain a proper, birational contraction φ : C → C′ with Exc(φ) =

E and φ∗OC = OC′ . Since C satisfies Serre’s condition S2, C′ does as well. The special fiber C ′ is a
Cartier divisor in C′, and is therefore S1. Equivalently, C ′ has no embedded points. No component
of C ′ can be generically non-reduced because it is the birational image of some component of
C\E. Thus, C ′ is reduced. The curve C ′ is connected because it is the continuous image of C,
which is connected. Finally, ∆ is a discrete valuation ring and each component of C′ dominates
∆, so the flatness of π′ is automatic. This proves conclusion (1).

Conclusion (2) is immediate from the observation that C\E is smooth along the points
E ∩ C\E and maps isomorphically to C ′ elsewhere. Since the number of branches of the singular
point p ∈ C ′ is, by definition, the number of points lying above p in the normalization, we have

m= |C\E ∩ E|.

To obtain δ = pa(E) +m− 1, note that

δ = χ(C, O
C\E)− χ(C ′, OC′)

= χ(C, O
C\E)− χ(C, OC)

= −χ(C, I
C\E).
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The first equality is just the definition of δ since C\E is the normalization of C ′ at p. The second
equality follows from the fact that C and C ′ occur in flat families with the same generic fiber,
and the third equality is just the additivity of Euler characteristic on exact sequences. Since
I
C\E is supported on E, we have

χ(C, I
C\E) = χ(E, I

C\E |E) = χ(E, OE(−E ∩ C\E)) = 1−m− pa(E).

This completes the proof of conclusion (3).
Finally, to prove conclusion (4), note that we have a line bundle OC′(1) such that

φ∗OC′(1)' ωC/∆(D + Σ).

Since Σ is a Cartier divisor on C disjoint from Exc(φ), its image is a Cartier divisor on C′, and
we have

φ∗(OC′(1)(−Σ))' ωC/∆(D).

Since D is supported on Exc(φ), we have

OC′(1)(−Σ)|C′\p ' ωC′/∆|C′\p.

Since ωC′/∆ and OC′(1)(−Σ) are both S2-sheaves on a S2-surface and they are isomorphic in
codimension one, we conclude

OC′(1)(−Σ)' ωC′/∆,
i.e. the dualizing sheaf ωC′/∆ is actually a line bundle. Since the formation of the dualizing sheaf
commutes with base change, ωC = ωC′/∆|C is invertible. Equivalently, p ∈ C ′ is a Gorenstein
singularity. 2

Now we are ready to prove Proposition 2.12.

Proof. (E, p1, . . . , pm) balanced implies (E, p1, . . . , pm) is a semistable tail. We must show that if
(E, {pi}mi=1) is a balanced semistable curve, then it arises as a semistable tail for some smoothing
of the elliptic m-fold point. To construct this smoothing, start by taking (C̃, {pi}mi=1) to be any
complete smooth m-pointed curve of genus at least two, and attach C̃ and E along {p1, . . . , pm}
to form a nodal curve

Cs = C̃ ∪ E.
Now let Cs/∆ be any smoothing of Cs with smooth total space. We will exhibit a birational
morphism Cs→C collapsing E to an elliptic m-fold point p ∈ C. To do this, we must build a line
bundle on Cs which is trivial on E, but has positive degree on C̃. We define

L := ωCs/∆(D),

where

D =
∑
F⊂E

(l + 1− l(F, Z))F,

with l := l(p1, Z) = · · ·= l(pm, Z). The multiplicities of D are illustrated in Figure 1. Suppose
we can show the following.

(A) The line bundle L has positive degree on the general fiber of π.

(B) The restriction L |C̃ has positive degree on C̃.

(C) The restriction L |F ' OF for all irreducible components F ⊂ E.
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R1

R2

Z

1
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1
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~

Figure 1. A balanced curve E, with minimal elliptic subcurve Z, appearing in the special fiber of
a semistable family. We have labeled the multiplicities of a Cartier divisor D such that ωC/∆(D)
is trivial on every component of E.

Then L satisfies the hypotheses of Lemma 2.13, so a suitably high multiple of L defines a
morphism φ : Cs→C contracting E to a single point p. Furthermore, the lemma implies that
p ∈ C is a Gorenstein singularity with m branches and δ-invariant m. By Proposition A.3, there
is a unique such singularity: p must be an elliptic m-fold point. It follows that C/∆ is a smoothing
of the elliptic m-fold point, and hence that (E, {pi}mi=1) is a semistable tail as desired.

Since the genus of C̃ is at least two, conditions (A) and (B) are automatic. For condition (C),
we write

E = Z ∪R1 ∪ · · · ∪Rm
as in Definition 2.9, and consider the cases F ⊂Ri and F ⊂ Z separately. Suppose first that
F ⊂Ri for some i, and let G1, . . . , Gk be the irreducible components of E adjacent to F . Since
the dual graph of Ri is a tree meeting Z in a single point, we may order the {Gi} so that

l(G1, Z) = l(F, Z)− 1,
l(Gi, Z) = l(F, Z) + 1, 2 6 i6 k.

Since F is rational and the total space Cs is regular, we have

deg ωCs/∆|F = −k − 2,
F · F = −k,
Gi · F = 1, 1 6 i6 k.

Now, since F, G1, . . . , Gk are the only components of D meeting F , we have

deg ωCs/∆(D)|F = deg ωCs/∆|F + (l + 1− l(F, Z))(F · F )
+ (l + 2− l(F, Z))(G1 · F ) + (l − l(F, Z))((G2 + · · ·+Gk) · F )

= (−k − 2) + (l + 1− l(F, Z))(−k) + (l + 2− l(F, Z)) + (l − l(F, Z))(k − 1)
= 0.

Since F is rational, this implies ωCs/∆(D)|F ' OF .

It remains to show that ωCs/∆(D)|Z ' OZ . First, note that ωZ = OZ (since Z is irreducible of
arithmetic genus one, or a ring of smooth genus zero curves). If G1, . . . , Gk are the components
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of E adjacent to Z, then l(Gi, Z) = 1, so we have

ωCs/∆(D)|Z ' ωCs/∆((l + 1)Z + lG1 + · · ·+ lGk)|Z
' ωZ ⊗ OCs(lZ + lG1 + · · ·+ lGk)|Z
' OZ . 2

Proof. (E, {pi}mi=1) a semistable tail implies (E, {pi}mi=1) balanced. Suppose (E, {pi}mi=1) is a
semistable tail of the elliptic m-fold point. Then we have a smoothing C/∆, a semistable limit
Cs/∆, and a birational morphism φ : Cs→C with exceptional curve E. (Replacing C/∆ by
C ×∆ ∆′/∆′, we may assume that the semistable limit is defined over the same base as the
smoothing.) Set

C̃ := Cs\E,
and note that the restriction of φ to C̃ is precisely the normalization of C.

Since C →∆ and Cs→∆ are Gorenstein morphisms, they are equipped with relative dualizing
sheaves and we may consider the discrepancy of φ, i.e. we have

φ∗ωC/∆ = ωCs/∆(D),

where D is a Cartier divisor supported on E. We may write

D =
∑
F⊂E

d(F )F,

and we claim that the coefficients d(F ) must satisfy the following conditions.

(A) If F meets C̃, then d(F ) = 1.

(B) If F, G are adjacent and l(F, Z) = l(G, Z)− 1, then d(F ) = d(G) + 1.

Condition (A) is easy to see: we have

ωCs/∆(D)|C̃ ' (φ∗ωC/∆)|C̃ ' φ|
∗
C̃

(ωC/∆|C)' φ|∗
C̃
ωC .

Furthermore, since φ|C̃ is just the normalization of C, Proposition 2.5 implies that

φ|∗
C̃
ωC ' ωC̃(2p1 + · · ·+ 2pm).

Putting these two equations together, we get ωCs/∆(D)|C̃ ' ωC̃(2p1 + · · ·+ 2pm). Since
ωCs/∆|C̃ ' ωC̃(p1 + · · ·+ pm), D must contain each component that meets C̃ with multiplicity
one. This proves (A).

Condition (B) comes from the observation that

ωCs/∆(D)|G ' OG

for each irreducible component G⊂ E, since E is contracted by φ. Indeed, suppose condition
(B) fails for a pair of adjacent components F, G with l(F, Z) = l(G, Z)− 1. Let H1, . . . , Hk be
the remaining components of E adjacent to G and note that

l(Hi, Z) = l(G, Z) + 1, 1 6 i6 k.

By choosing the pair F, G with l(F, Z) maximal, we may assume (B) holds for each of the pairs
G, Hi. Thus,

d(Hi, Z) = d(G, Z)− 1, 1 6 i6 k.
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Since ωCs/∆(D)|G ' OG, we obtain

0 = deg ωCs/∆(D)|G
= deg ωCs/∆|G + d(F )(F ·G) + d(G)(G ·G) + (d(G)− 1)(H1 · F + · · ·+Hk · F )
= −2 + (k + 1) + d(F ) + d(G)(−k − 1) + (d(G)− 1)k,
= d(F )− d(G)− 1,

which gives d(F ) = d(G) + 1 as desired.
Now we will show that conditions (A) and (B) imply that (E, p1, . . . , pm) is balanced. Suppose

first that Z is irreducible. Pick a point pi ∈ E ∩ C̃, and consider a minimum-length path from
the irreducible component containing pi to Z. Then l(−, Z) decreases by one as we move along
each consecutive component, so conditions (A) and (B) imply that

d(Z) = l(pi, Z).

Since this holds for each point pi ∈ E ∩ Cs\E, we have

d(Z) = l(p1, Z) = · · ·= l(pm, Z),

so (E, {pi}mi=1) is balanced.
If Z is a ring of smooth genus zero curves, and Zi ⊂ Z is any irreducible component, then

the same argument shows that

d(Zi) = l(pj , Z),

for any point pj ∈ E ∩ C̃ which lies on a connected component of C\Z meeting Zi. Since every
connected component of C\Z meets some irreducible component of Z, (E, p1, . . . , pk) will be
balanced if we can show that d(Zi) = d(Zj) for all irreducible components Zi, Zj ⊂ Z. Since Z is
a ring, it suffices to show that for each triple of consecutive components Z1, Z2, Z3, we have

2d(Z2) = d(Z1) + d(Z3).

To see this, let H1, . . . , Hk be the components of R adjacent to Z2. By condition (B) we have
d(Hi) = d(Z2)− 1 for each Hi. Using ωC/∆(D)|Z2 ' OZ2 , we obtain

0 = deg ωC/∆(D)|Z2

= deg ωC/∆|Z2 + d(Z1)(Z1 · Z2) + d(Z3)(Z3 · Z2) + d(Z2)(Z2 · Z2)
+ (d(Z2)− 1)(H1 · Z2 + · · ·+Hk · Z2)

= k + d(Z1) + d(Z3) + d(Z2)(−k − 2) + (d(Z2)− 1)k,
= d(Z1) + d(Z3)− 2d(Z2)

which gives 2d(Z2) = d(Z1) + d(Z3) as desired. 2

3. Construction of M1,A(m)

In this section, we turn from local results concerning the elliptic m-fold point to global
considerations of moduli.

3.1 Fundamental decomposition of a genus one curve
The reason that we can formulate a separated moduli problem for pointed curves of genus one,
but not for higher genus, boils down to the following observation.
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Lemma 3.1 (Fundamental decomposition). Let C be a Gorenstein curve of arithmetic genus
one. Then C contains a unique subcurve Z ⊂ C satisfying the following.

(1) The subcurve Z is connected;

(2) The subcurve Z has arithmetic genus one;

(3) The subcurve Z has no disconnecting nodes.

We call Z the minimal elliptic subcurve of C. We write

C = Z ∪R1 ∪ · · · ∪Rk,

where R1, . . . , Rk are the connected components of C\Z, and call this the fundamental
decomposition of C. Each Ri is a nodal curve of arithmetic genus zero meeting Z in a single
point, and Z ∩Ri is a node of C.

Proof. First, we show that Z ⊂ C exists. If C itself has no disconnecting nodes, take Z = C. If
C has a disconnecting node p, then the normalization of Z at p will comprise two connected
components, one of which has arithmetic genus one. Proceed by induction on the number of
disconnecting nodes.

Now let R1, . . . , Rk be the connected components of C\Z. By genus considerations, each Ri
meets Z in a single point pi :=Ri ∩ Z. We claim that p1, . . . , pk are distinct nodes of Z. By
genus considerations, each pi ∈ C must be a genus zero singularity, so Corollary A.4 implies pi
is a node. Since a node only has two branches, Ri, Rj , and Z cannot meet at a single node, so
the points p1, . . . , pk are distinct. Finally, each Ri must be Gorenstein of arithmetic genus zero
so Proposition A.2 implies that Ri is nodal.

It remains to show that Z is unique. By symmetry, it is enough to show that if Z ′ satisfies
conditions (1)–(3) then Z ′ ⊂ Z. If this fails then Z ′ ∩Ri 6= ∅ for some i. Since pa(Z ′) = 1, Z ′

cannot be contained in Ri, so Z ′ meets Z. Then, however, since Z ′ is connected, Z ′ contains the
disconnecting node Ri ∩ Z, a contradiction. 2

Corollary 3.2. Let C be a Gorenstein curve of arithmetic genus one with minimal elliptic
subcurve Z. If E ⊂ C is any connected arithmetic genus one subcurve of C, then Z ⊂ E.

Proof. The minimal elliptic subcurve of E is necessarily the minimal elliptic subcurve of C,
namely Z. Thus, Z ⊂ E. 2

The following lemma gives an exact characterization of the ‘minimal elliptic subcurves’
appearing in Lemma 3.1.

Lemma 3.3. Suppose Z is a Gorenstein curve of arithmetic genus one and has no disconnecting
nodes. Then either Z is one of the following:

(1) a smooth elliptic curve;

(2) an irreducible rational nodal curve;

(3) a ring of smooth genus zero curves; or it satisfies the following.

(4) The curve Z has an elliptic m-fold point p and the normalization of Z at p consists of m
distinct smooth rational curves.

Furthermore, in all four cases, ωZ ' OZ .

Proof. If Z is nodal, it is clear that possibilities (1)–(3) are the only possibilities, and that for
these, ωZ ' OZ .
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Now suppose Z has a non-nodal singular point p. Then, by Corollary A.4, p is an elliptic
m-fold point for some integer m and the normalization of Z at p consists of m distinct connected
nodal curves of arithmetic genus zero. But a nodal curve of arithmetic genus zero with no
disconnecting nodes must be smooth, so possibility (4) holds.

To prove ωZ ' OZ , we will write down a nowhere vanishing global section of ωZ . Let
Z̃1, . . . , Z̃m be the connected components of Z̃ and pi ∈ Z̃i the point lying over p. We may choose
local coordinates ti at pi so that the map Z̃→ Z is given by the expression (†) in Definition 2.1.
Since each Z̃i ' P1, the rational differential

dt1
t21
∈H0(Z̃i, ωZ̃i

(2pi))

gives a global section of ωZ̃i
(2pi), regular and non-vanishing away from pi. The proof of

Proposition 2.5 shows that
dt1
t21

+ · · · dtm−1

t2m−1

− dtm
t2m
∈H0(ωZ̃(2p1 + · · · 2pm))

descends to a section of ωZ which generates ωZ locally around p. Thus, it generates ωZ globally. 2

In order to define and work with the moduli problem of m-stable curves, it is useful to have
the following terminology.

Definition 3.4 (Level). Let (C, {pi}ni=1) be an n-pointed curve of arithmetic genus one, let
Z ⊂ C be the minimal elliptic subcurve of C, and let Σ⊂ C denote the support of the divisor∑

i pi. The level of (C, {pi}ni=1) is defined to be the integer

|Z ∩ C\Z|+ |Z ∩ Σ|.
Lemma 3.5. Suppose (C, {pi}ni=1) is an n-pointed curve of arithmetic genus one and suppose
every smooth rational component of C has at least two distinguished points. Let Z ⊂ C be the
minimal elliptic subcurve, and Σ⊂ C the support of the divisor

∑
i pi. If E is any connected

subcurve of arithmetic genus one, then

|E ∩ C\E|+ |E ∩ Σ|> |Z ∩ C\Z|+ |Z ∩ Σ|.

Proof. Let C = Z ∪R1 ∪ · · · ∪Rk be the fundamental decomposition of C, and order the Ri
so that E contains R1, . . . , Rj , but does not contain Rj+1, . . . , Rk. The assumption that each
smooth rational component has at least two distinguished points implies that each of R1, . . . , Rj
contains at least one marked point so

|E ∩ Σ|> |Z ∩ Σ|+ j.

On the other hand, since E does not contain Rj+1, . . . , Rk, we must have

|E ∩ C\E|> |Z ∩ C\Z| − j.

Thus,
|E ∩ C\E|+ |E ∩ Σ|> |Z ∩ C\Z|+ |Z ∩ Σ|. 2

Corollary 3.6. Let (C, {pi}ni=1) be an n-pointed curve of arithmetic genus one, and suppose
that every smooth rational component has at least two distinguished points. Then (C, {pi}ni=1)
has level greater than m if and only if

|E ∩ C\E|+ |E ∩ Σ|>m

for every connected arithmetic genus one subcurve E ⊂ C.
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3.2 Definition of the moduli problem

We are ready to define the moduli problem of (m,A)-stable curves.

Definition 3.7 ((m,A)-stability). Fix positive integers m< n, and a vector of rational weights
A= (a1, . . . , an) ∈ (0, 1]n. Let (C, {pi}ni=1) be an n-pointed curve of arithmetic genus one, and
let Σ⊂ C denote the support of the divisor

∑
i pi. We say that C is (m,A)-stable if the following

hold.

(1) The singularities of C are nodes or elliptic l-fold points, l 6m.

(2) The level of (C, {pi}ni=1) is >m. Equivalently, by Corollary 3.6,

|E ∩ C\E|+ |E ∩ Σ|>m

for every connected arithmetic genus one subcurve E ⊂ C.

(3) The space H0(C, Ω∨C(−Σ)) = 0. Equivalently, by Corollary 2.4, we have the following.

(a) If C is nodal, then every rational component of C̃ has at least three distinguished points.
(b) If C has a (unique) elliptic m-fold point p, and B̃1, . . . , B̃m denote the components of

the normalization whose images contain p, then the following hold.

(b1) B̃1, . . . , B̃m each have at least two distinguished points.

(b2) At least one of B̃1, . . . , B̃m has each have at least three distinguished points.

(b3) Every other component of C̃ has at least three distinguished points.

(4) If pi1 = · · ·= pik ∈ C coincide, then
∑k

j=1 aij 6 1.

(5) The Q-divisor ωC(Σiaipi) is ample.

Remark. When A= (1, . . . , 1), then we say simply that (C, {pi}ni=1) is m-stable. In this case,
condition (4) merely asserts that the marked points are distinct, and condition (5) follows
automatically from condition (3). Indeed, conditions (b1) and (b3) above, combined with
Proposition 2.5, imply that ωC(Σipi) has positive degree on every component of C.

The definition of an (m,A)-stable curve extends to a moduli functor in the usual way, and
the main theorem of this paper is the following.

Theorem 3.8. M1,A(m) is a proper irreducible Deligne–Mumford stack over Spec Z[1/6].

We will prove that the moduli problem of (m,A)-stable curves is bounded and deformation-
open in Lemmas 3.9 and 3.10, and we verify the valuative criterion in §§ 3.3 and 3.4. Everything
else follows by standard arguments which we outline below.

Proof. To say that M1,A(m) is an algebraic stack of finite type over Spec Z[1/6] means the
following [LM00, Definition 4.1].

(1) The diagonal ∆ :M1,A(m)→M1,A(m)×M1,A(m) is representable, quasicompact, and of
finite type.

(2) There exists an irreducible scheme U , of finite type over Spec Z[1/6], with a smooth,
surjective morphism U →M1,A(m).

Since m-stable curves are canonically polarized, the Isom-functor for any pair of m-stable curves
over S is representable by a quasiprojective scheme over S, which gives result (1).
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For result (2), fix an integer N > n+ max{2m, 4} as in the boundedness statement of
Lemma 3.9, and assume that N is sufficiently divisible so that each Nai ∈ Z. Set

d=N(Σiai),
r =N(Σiai)− 1.

If (C, {pi}ni=1) is any m-stable curve, Riemann–Roch implies

d= deg ωC(Σipi)⊗N ,
r = dimH0(C, ωC(Σipi)⊗N )− 1,

so Lemma 3.9 implies that every N -canonically polarized m-stable curve appears in the Hilbert
scheme of curves of degree d and arithmetic genus one in Pr := PrZ[1/6]. Let H denote this
Hilbert scheme and consider the locally closed subscheme

Z = {(C, {pi}ni=1)⊂H × (Pr)n | p1, . . . , pn are smooth points of C}.

By Lemma 3.10, there exists an open subscheme of Z defined by

V = {(C, {pi}ni=1)⊂H × (Pr)n | (C, {pi}ni=1) is m-stable}.

Using the representability of the Picard scheme as in [MFK94, Proposition 5.1], there exists
a locally closed subscheme U ⊂ V , such that

U = {(C, {pi}ni=1)⊂ V | ωC(Σiaipi)⊗N ' OC(1)}.

Now the classifying map U →M1,n(m) is smooth and surjective.
To show that M1,A(m) is Deligne–Mumford over Spec Z[1/6], it suffices to show that if k is

an algebraically closed field and characteristic k 6= 2, 3, then the group scheme Autk(C, {pi}ni=1)
is unramified over k. There is a natural identification of k[ε]/(ε2)-points of Autk(C, {pi}ni=1) with
global sections of Ω∨C(−Σ) [Has03, § 3.3], so this follows from condition (3) in the definition of
an (m,A)-stable curve.

Finally, to show that M1,A(m) is irreducible, it is sufficient to show that M1,n ⊂M1,A(m)
is dense, i.e. that every m-stable curve is smoothable. Since a curve is smoothable if and
only if each of its singularities is smoothable [Kol96, II.6.3], and the only singularities on an
m-stable curve are elliptic l-fold points and nodes, it suffices to see that the elliptic l-fold point
is smoothable. This is an old result going back to Pinkham [Pin74, Example 11.13], but we may
also note that we have constructed explicit smoothings of the elliptic l-fold point in our proof of
Proposition 2.12. 2

Lemma 3.9 (Boundedness). If (C, {pi}ni=1) is any (m,A)-stable curve, then the line bundle

LN := ωC(Σiaipi)⊗N

is very ample on C for any N > n+ max{2m, 4} and sufficiently divisible.

Proof. Throughout this argument, we will assume that N is chosen sufficiently divisible so that
ωC(Σiaipi)⊗N is integral. With this caveat, it is enough to show thatN > n+ max{2m, 4} implies
the following.

(1) The space H1(C, LN ⊗ Ip) = 0 for any point p ∈ C.

(2) The space H1(C, LN ⊗ IpIq) = 0 for any pair of points p, q ∈ C.
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Condition (1) says that the complete linear seriesH0(C, LN ) is basepoint-free, while condition (2)
says that it separates points (p 6= q) and tangent vectors (p= q). Clearly condition (2) implies
condition (1). Using Serre duality, it is enough to show that

H0(C, ωC ⊗ L−N ⊗ (IpIq)∨) = 0.

Let π : C̃→ C be the normalization of C at p and q, with p1, . . . pk the points of C̃ lying above
p, and q1, . . . , ql the points lying above q. Define

D :=
m∑
i=1

2pi +
l∑

j=1

2qi

as a Cartier divisor on C̃, and note that deg D 6 max{4, 2m} (since any singular point of C has
at most max{2, m} branches). By Lemma 2.2,

π∗OC̃(−D)⊂ IpIq,

and the quotient is torsion, supported at {p} ∪ {q}. Thus, we obtain injections

Hom(IpIq, OC) ↪→Hom(π∗OC̃(−D), OC) ↪→ π∗Hom(OC̃(−D), OC̃).

Tensoring by ωC ⊗ L−N , we obtain

(IpIq)∨ ⊗ (ωC ⊗ L−N ) ↪→ π∗OC̃(D)⊗ (ωC ⊗ L−N ),

so that

H0(C̃, OC̃(D)⊗ π∗(ωC ⊗ L−N )) = 0 =⇒ H0(C, ωC ⊗ L−N ⊗ (IpIq)∨) = 0.

We claim that N > n+ max{4, 2m} forces the line bundle OC̃(D)⊗ π∗(ωC ⊗ L−N ) to have
negative degree on each component (and hence no sections). Since π∗L has degree at least
one on every component of C̃, and deg D 6 max{4, 2m}, it is enough to show that π∗ωC has
degree at most n on any irreducible component F ⊂ C̃. To see this, simply observe

degF π
∗ωC 6 degF π

∗ωC(Σipi) 6 n,

where the last inequality follows from the fact that π∗ωC(Σipi) has total degree n and non-
negative degree on each component. 2

Lemma 3.10 (Deformation-openness). Let S be a Noetherian scheme and let (φ : C →
S, σ1, . . . , σn) be a flat, projective morphism of relative dimension one with n sections σ1, . . . , σn.
The set

T = {s ∈ S | (Cs, σ1(s), . . . , σn(s)) is m-stable}
is Zariski-open in S.

Proof. We may assume that the fibers of φ are reduced, connected, and of arithmetic genus one,
since these are all open conditions. We may also assume that the geometric fibers are Gorenstein
(the locus in S over which the geometric fibers are Gorenstein is the same as the locus over
which the relative dualizing sheaf ωC/S is invertible, hence open). Finally, the conditions that
the sections lie in the smooth locus of φ, that σi1 , . . . , σik collide only if

∑k
j=1 aij 6 1, and that

ωC/S(Σiai) is relatively ample are obviously open. It only remains to check conditions (1)–(3) of
Definition 3.7.

For condition (1), suppose that s ∈ S is a geometric point and that the fiber Cs has an elliptic
m-fold point p. We must show there exists an open neighborhood of s over which the fibers of C
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have only elliptic l-fold points, l 6m, and nodes. Suppose first that m> 3. Since the dimension
of the Zariski tangent space of the elliptic m-fold point is m when m> 3, we have

dimk(x) mx/m
2
x 6m for every x ∈ Cs,

where mx refers to the maximal ideal of x in the local ring of the fiber. Thus, there is an open
neighborhood of the fiber C ⊂ V ⊂X such that

dimk(x) mx/m
2
x 6m for every x ∈ V.

Since π is proper, we may take V to be of the form π−1(U) for some open set U ⊂ S. Now, for
any s ∈ U , the fiber is a Gorenstein curve of arithmetic genus one whose Zariski tangent space
dimension is everywhere no greater than m. By Proposition A.3, the only singularities appearing
on fibers over U are elliptic l-fold points, l 6m, and nodes.

It remains to consider the case m= 2 or m= 3, i.e p ∈ Cs is cusp or tacnode. For this, we
need a bit of deformation theory [Ser06, § 3.1]. Recall that the cusp and tacnode, being local
complete intersections, admit versal deformations given by:

SpecA[x, y, a, b]/(y2 = x3 + ax+ b)→ SpecA[a, b],
SpecA[x, y, a, b, c]/(y2 = x4 + ax2 + bx+ c)→ SpecA[a, b, c],

where A= k(s) if characteristic k(s) = 0 or the unique complete local ring with residue field k(s)
and maximal ideal pA if characteristic k(s) = p. If p ∈ C is a cusp (respectively tacnode), there
is an etale neighborhood (U, 0)→ (S, s), and a map

U → SpecA[a, b] (SpecA[a, b, c]),

such that, etale-locally around p ∈ C, C ×S U is pulled back from the versal family. Since the
only singularities appearing in fibers of the versal deformation of the cusp (respectively tacnode)
are nodes (respectively nodes and cusps), we are done.

For condition (2), we must show that the locus in S over which the fibers have level greater
than m is open in S. Since S is Noetherian, it suffices to show that this locus is constructible
and stable under generalization. It is clearly constructible, since we may stratify T into locally
closed subsets corresponding to the topological type of the fiber and observe that the level of a
fiber depends only on the topological type. To see that it is stable under generalization, we may
assume that S is the spectrum of a discrete valuation ring with closed point 0 ∈ S and generic
point η ∈ S. We must show that if (C0, σ1(0), . . . , σn(0)) has level greater than m, then so does
(Cη, σ1(η), . . . , σn(η)).

Let Eη be a connected arithmetic genus one subcurve of the geometric generic fiber Cη. The
limit of Eη in the special fiber is a connected arithmetic genus one subcurve E0 ⊂ C0 satisfying

|Eη ∩ Cη\Eη|= |E0 ∩ C0\E0|,
|Eη ∩ Ση|= |E0 ∩ Σ0|.

Since (C0, σ1(0), . . . , σn(0)) has level greater than m, we have

|Eη ∩ Cη\Eη|+ |Eη ∩ Σ|= |E ∩ C\E|+ |E ∩ Σ|>m.

Thus, (Cη, σ1(η), . . . , σn(η)) has level greater than m, as desired.
For condition (3), using the natural identification between k[ε]/ε2-points of Autk(C, {pi}ni=1)

and global sections of Ω∨C(−Σ) [Has03, § 3.3], it suffices to show that the locus U ⊂ S over
which the group scheme AutS(C, σ1, . . . , σn)→ S is unramified is open in S. However, this is

900

https://doi.org/10.1112/S0010437X10005014 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X10005014


Modular compactifications

a general fact about group schemes: Suppose that π :G→ S is any finite type group scheme
over a Noetherian base with identity section e : S→G, and suppose that π is unramified over
a point s ∈ S. Since the condition of being unramified is open on the domain, there is an open
neighborhood e(s) ∈W ⊂G such that π|W is unramified. Setting U := e−1(W )⊂ S, we may use
translations to cover π−1(U) by open sets over which π is unramified. 2

3.3 Valuative criterion for M1,n(m)

To show thatM1,A(m) is proper, it suffices to verify the valuative criterion for discrete valuation
rings with algebraically closed residue fields, whose generic point maps into the open dense
substack M1,n [LM00, Remark 7.12.4]. Thus, the required statement is the following.

Theorem 3.11 (Valuative criterion for properness of M1,A(m)). Let ∆ be the spectrum of a
discrete valuation ring with an algebraically closed residue field, and let η ∈∆ be the generic
point.

(1) (Existence of (m,A)-stable limits). If (C, σ1, . . . , σn)|η is a smooth n-pointed curve of
arithmetic genus one over η, there exists a finite base change ∆′→∆, and an (m,A)-stable
curve (C′→∆′, σ′1, . . . , σ

′
n), such that

(C′, σ′1, . . . , σ′n)|η′ ' (C, σ1, . . . , σn)|η ×η η′.

(2) (Uniqueness of (m,A)-stable limits). Suppose that (C →∆, σ1, . . . , σn) and (C′→
∆, σ′1, . . . , σ

′
n) are (m,A)-stable curves with smooth generic fiber. Then any isomorphism

over the generic fiber

(C, σ1, . . . , σn)|η ' (C′, σ′1, . . . , σ′n)|η
extends to an isomorphism over ∆:

(C, σ1, . . . , σn)' (C′, σ′1, . . . , σ′n).

In this section, we will prove existence and uniqueness of m-stable limits, i.e. we will restrict
ourselves to the special case A= (1, . . . , 1). This will allow us to exhibit the main ideas of the
proof with a minimum of notational obfuscation. In § 3.4, we will show that the existence and
uniqueness of (m,A)-stable limits can be deduced from the corresponding statement for m-stable
limits, in the same way that the existence and uniqueness of A-stable limits are deduced from
the corresponding statement for Deligne–Mumford stable limits.

3.3.1 Existence of m-stable limits. Given a one-parameter family of smooth curves over η,
we construct the m-stable limit in three steps: first, we extend this family to a semistable curve
with smooth total space. Second, we blow up marked points on the minimal elliptic subcurve of
the special fiber, and then contract the strict transform of the minimal elliptic subcurve using
Lemma 2.13. Repeating this process, one eventually reaches a stage where the minimal elliptic
subcurve Z satisfies

|Z ∩ C\Z|+ |{pi | pi ∈ Z}|>m.

At this point, we ‘stabilize’, i.e. blow-down all smooth P1 which meet the rest of the fiber in two
nodes and have no marked points, or meet the rest of the fiber in a single node and have one
marked point. The entire process is pictured in Figure 2.

Step 1. Pass to a semistable limit with smooth total space.
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Figure 2. The process of blow-up/contraction/stabilization in order to extract the m-stable
limit for each m= 1, 2, 3. Every irreducible component pictured above is rational. The left-
diagonal maps are simple blow-ups along the marked points of the minimal elliptic subcurve,
and exceptional divisors of these blow-ups are colored grey. The right-diagonal maps contract the
minimal elliptic subcurve of the special fiber, and exceptional components of these contractions
are dotted. The vertical maps are stabilization morphisms, blowing down all semistable
components of the special fiber.

By the semistable reduction theorem [DM69, Corollary 2.7], there exists a finite base change
∆′→∆, and a semistable curve (Css→∆′, σ′1, . . . , σ

′
n)|η such that

(Css, σ′1, . . . , σ′n)|η′ ' (C, σ1, . . . , σn)×η η′.

After taking a minimal resolution of singularities, we may assume that the total space of Css
is regular. For notational simplicity, we will continue to denote our base by ∆, and the given
sections by σ1, . . . , σn.

Step 2. Alternate between blowing up marked points contained on the minimal elliptic subcurve
and contracting the minimal elliptic subcurve.

Starting from C0 := Css, we construct a sequence C0, C1, . . . , Ct of flat proper families over ∆
satisfying the following.

(i) The special fiber Ci ⊂ Ci is a Gorenstein curve of arithmetic genus one.
(ii) The total space Ci is regular at every node of Ci.
(iii) The strict transforms of σ1, . . . , σn on Ci are contained in the smooth locus of πi, so we

may consider the special fiber as an n-pointed curve (Ci, p1, . . . , pn).
(iv) Every component of Ci has at least two distinguished points.
(v) For i> 1, Ci has an elliptic li−1-fold point p, where li denotes the level of the special fiber

Ci (Definition 3.4).
(vi) For i> 1, we have li > li−1. Furthermore, li = li−1 if and only if each irreducible component

of Zi has exactly two distinguished points, where Zi is the minimal elliptic subcurve of Ci.
(vii) The curve Ct has no disconnecting nodes.
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These families fit into the following diagram of birational morphisms over ∆.

B0

q1

  @@@@@@@@
p1

zzvvvvvvvvvv
B1

p1

��~~~~~~~~
· · · · · · · · · Bt−2

qt−2

""FFFFFFFF
Bt−1

qt−1

!!CCCCCCCC
pt−1

||xxxxxxxx

Css := C0
//_______ C1

//___ · · · · · · · · · //____ Ct−1
//________ Ct

Indeed, given Ci satisfying conditions (i)–(vi), we construct Ci+1 as follows. The special fiber
Ci ⊂ Ci is Gorenstein by condition (i), so it possesses a minimal elliptic subcurve Zi ⊂ Ci, and we
define pi : Bi→Ci to be the simple blow-up of Ci at the finite set of smooth points {pj | pj ∈ Zi}.
We define qi : Bi→Ci+1 to be the contraction of Z̃i, the strict transform of Zi in Bi (qi is uniquely
characterized by the properties that Exc(qi) = Z̃i and qi∗OBi = OCi+1).

To prove that qi exists, consider the line bundle

L := ωBi/∆(Z̃i + σ1 + · · ·+ σn).

Note that Zi ⊂ Ci is Cartier by condition (ii), so Z̃i ⊂ Bi is Cartier. Furthermore, σ1, . . . , σn are
Cartier divisors on Bi by condition (iii). Adjunction and Lemma 3.3 give

L |Z̃i
' ωZ̃i

' OZ̃i
.

Let Bi ⊂ Bi be the special fiber. By condition (iv), L has non-negative degree on every irreducible
component of Bi not contained in Z̃i, and the subcurve E ⊂ Ci on which L has degree zero is
precisely

E = Z̃i ∪ F,
where F is the union of irreducible components of Bi which are disjoint from Z̃i and have
exactly two distinguished points. Now Lemma 2.13 applies to the line bundle L , so Z̃i ∪ F is a
contractible subcurve of the special fiber. Since Z̃i is disjoint from F , we may certainly contract
Z̃i on its own; this shows that qi : Bi→Ci+1 exists.

Now we must show that Ci+1 satisfies conditions (i)–(vi), and that after finitely many steps
we achieve condition (vii).

(i) Locally around q(Z̃i), Ci+1 is isomorphic to the contraction given by a high power of L ,
so Lemma 2.13 implies that Ci+1 is Gorenstein.

(ii) Since Ci is regular around every node of the special fiber, so is Bi. Since q(Z̃i) ∈ Ci+1 is not
a node, the same is true for Ci+1.

(iii) Condition (iii) follows immediately from the fact that none of the sections σ1, . . . , σn of Bi
pass through Z̃i.

(iv) Since every component of Ci has at least two distinguished points, and every exceptional
divisor of pi has two distinguished points, every component of Bi has at least two
distinguished points. Since qi maps distinguished points to distinguished points, every
component of Ci+1 has at least two distinguished points.

(v) Write out the fundamental decomposition of Ci:

Ci = Zi ∪R1 ∪ · · · ∪Rk.

Then we can decompose the special fiber Bi as

Bi = Z̃i ∪ R̃1 ∪ · · · ∪ R̃k ∪ F1 ∪ · · · ∪ Fj ,

where Z̃i, R̃i are the strict transforms of the corresponding subcurves in Ci, and F1, . . . , Fj
are the exceptional curves of the blow-up. Note that li = j + k. Lemma 2.13 implies
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that q(Z̃i) ∈ Ci+1 is a Gorenstein singularity with li branches and δ = li. By Proposition A.3,
there is a unique such singularity: the elliptic li-fold point.

(vi) With notation as above, let Gi ⊂ R̃i be the unique irreducible component meeting Z̃i for
each i= 1, . . . , k. When Z̃i is contracted, the minimal elliptic subcurve of Ci+1 consists of
the smooth rational components

q(G1) ∪ · · · ∪ q(Gk) ∪ q(F1) ∪ · · · ∪ q(Fj),

meeting along an elliptic li-fold point, i.e. one component of each subcurve R̃i is absorbed
into the minimal elliptic subcurve. It is easy to see that the level li+1 is just the number
of distinguished points of q(G1), . . . , q(Gk), q(F1), . . . , q(Fj) minus j + k. Indeed, each
component q(G1), . . . , q(Fj) has a distinguished point where it meets the elliptic li-fold
point and these do not contribute to li+1, while the remaining distinguished points are
either disconnecting nodes or marked points and these each contribute one to li+1. Since
q maps distinguished points of G1, . . . , Gk, F1, . . . , Fj bijectively to distinguished points
of q(G1), . . . , q(Gk), q(F1), . . . , q(Fj), and since each G1, . . . , Gk, F1, . . . , Fj has at least
two distinguished points, we have li+1 > li. Furthermore, equality holds if and only if each
G1, . . . , Gk, F1, . . . , Fj has exactly two distinguished points.

(vii) In the previous paragraph, we saw that if

Ci = Zi ∪R1 ∪ · · · ∪Rk,

then one irreducible component from each subcurve Ri is absorbed into the minimal elliptic
subcurve Ei+1 ⊂ Ci+1. It follows that the number of irreducible components of Ci+1\Ei+1

is less than the number of irreducible components of Ci\Ei. Thus, after finitely many steps,
we have Ct = Et, i.e. Ct has no disconnecting nodes.

Step 3. Stabilize to obtain an m-stable limit.

By condition (vii), Ct has no disconnecting nodes so lt = n. Since m< n, we may set

e := min{j | lj >m}.

Let φ : Ce→C be the ‘stabilization’ contraction uniquely determined by the properties that
φ∗OCe = OC , and

Exc(φ) =
{ ⋃
F⊂Ce

F

∣∣∣∣ F * Ze and F has exactly two distinguished points
}
.

Since each component F ⊂ Ce satisfying the above condition is a smooth rational curve meeting
the rest of the special fiber in one or two nodes, and the total space Ce is regular around F , the
existence of φi follows by standard results on the contractibility of rational cycles [Lip69,
Theorem 27.1]. Furthermore, the images of the sections σ1, . . . , σn on Ce lie in the smooth
locus of C, so we may consider the special fiber (C, {pi}ni=1) as an n-pointed curve. To show that
(C, {pi}ni=1) is m-stable, we must verify conditions (1)–(3) of Definition 3.7.

(1) C has only nodes and elliptic-l fold points, l 6m, as singularities. By conditions (i) and (v)
above, Ce has only nodes and an elliptic le−1-fold point as singularities, where le−1 <m by
our choice of e. The same is true of C, since the only singularities produced by contracting
semistable chains of rational curves are nodes.
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(2) C has level greater than m. The level of Ce is greater than m by our choice of e, so it suffices
to see that the level of C is the same as the level of Ce. Let

Ce = Ze ∪R1 ∪ · · · ∪Rk,

be the fundamental decomposition of Ce. Order the Ri so that R1, . . . , Rj consist entirely
of components with two distinguished points, while Rj+1, . . . , Rk each contain a component
with at least three distinguished points. Then φ contracts each of R1, . . . , Rj to a point, so
that the fundamental decomposition of C is

C = φ(Ze) ∪ φ(Rj+1) ∪ · · · ∪ φ(Rk).

Thus,
|C\φ(Ze)|= |Ce\Ze| − j.

On the other hand, since each R1, . . . , Rj must be a chain of P1 whose final component
carries a marked point, φ(R1), . . . , φ(Rj) will be marked points on the minimal elliptic
subcurve φ(Ze), i.e. we have

|{pi | pi ∈ φ(Ze)}|= |{pi | pi ∈ Ze}|+ j.

Thus, |C\φ(Ze)|+ |{pi | pi ∈ φ(Ze)}|= |Ce\Ze|+ |{pi | pi ∈ Ze}| as desired.
(3) (C, {pi}ni=1) satisfies the stability condition. Since φ contracts every component of R1 ∪ · · · ∪

Rk with two distinguished points, every component of φ(R1) ∪ · · · ∪ φ(Rk) has at least three
distinguished points. It remains to check the stability condition for irreducible components
of φ(Ze).
We may assume that e> 1, so Ze consists of le−1 smooth rational branches meeting in
an elliptic le−1-fold point. Since no component of Ze is contained in Exc(φ), Ze maps
isomorphically onto φ(Ze) and condition (iv) implies that every component of φ(Ze) has
at least two distinguished points. Finally, if every component of φ(Ze) had exactly two
distinguished points, the same would be true of Ze and condition (vi) would imply that
li = li−1. This contradicts our choice of e; we conclude that some component of φ(Ze) has
at least three distinguished points.

3.3.2 Uniqueness of m-stable limits. In order to prove that an isomorphism

(C, σ1, . . . , σn)|η ' (C′, σ′1, . . . , σ′n)|η
extends to an isomorphism over ∆, it suffices to check that the rational map C 99K C′ extends to
an isomorphism after a finite base change. Thus, we may assume that there exists a flat proper
nodal curve (Css→∆, τ1, . . . , τn) with regular total space and a diagram

(Css, τ1, . . . , τn)
φ′

))RRRRRRRRRRRRRR
φ

uullllllllllllll

(C, σ1, . . . , σn) (C′, σ′1, . . . , σ′n)

where φ and φ′ are proper birational morphisms over ∆. In fact, we may further assume that
(Css→∆, τ1, . . . , τn) is Deligne–Mumford semistable. Indeed, any unmarked (−1)-curve in the
special fiber Css must be contracted by both φ and φ′ since neither C nor C ′ contain unmarked
smooth rational components meeting the rest of the curve in a single point. Thus, φ and φ′

both factor through the minimal model of Css, obtained by successively blowing down unmarked
(−1)-curves.
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The strategy of the proof is to show that Exc(φ) = Exc(φ′). Since C and C′ are normal, this
immediately implies C ' C′.

Reduction 1. We may assume that C and C ′ each contain a non-nodal singular point.

Proof. If C and C ′ are both nodal, then they are Deligne–Mumford stable, so C ' C′ by the usual
stable reduction theorem. Next, suppose that C ′ is nodal, but that C contains an elliptic l-fold
point p for some l 6m. Set

E := φ−1(p)⊂ Css,
and note that pa(E) = 1 and |E ∩ Css\E|= l 6m. It follows that φ′(E)⊂ C ′ is an unmarked
connected arithmetic genus one subcurve meeting C ′\φ′(E′) in no more than m points, which
contradicts the m-stability of C ′. Thus, we may assume that C and C ′ each have a non-nodal
singular point. 2

Now we may assume that C has an elliptic j-fold point p, and C ′ has an elliptic k-fold p′,
where j, k 6m. We set

E := φ−1(p)⊂ Css,
E′ := φ−1(p′)⊂ Css,

and we claim that E = E′. By Proposition 2.12, (E, {qi}ki=1) and (E′, {q′i}ki=1) are balanced,
where

{q1, . . . , qj} := {E ∩ Css\E},
{q′1, . . . , q′k} := {E′ ∩ Css\E′}.

Let Z ⊂ Css be the minimal elliptic subcurve of Css. By Corollary 3.2, we have Z ⊂ E and
Z ⊂ E′. Proposition 2.12 implies there exist integers l and l′ such that

l := l(Z, q1) = · · ·= l(Z, qj),
l′ := l(Z, q′1) = · · ·= l(Z, q′k).

Put differently, this says that E comprises all components in Css whose length from Z is less
than l, while E′ comprises all irreducible components in Css whose length from Z is less than l′.
If l = l′, then we have E = E′ and we are done. Otherwise, we may assume that l < l′, and we
have a strict containment E ⊂ E′. Then, however, since E′ meets Css\E′ in no more than m
points, φ(E′)⊂ C is a connected arithmetic genus one subcurve meeting C\φ(E′) in no more
than m points. This contradicts the m-stability of C. Thus, we have E = E′.

Finally, we claim that E and E′ determine Exc(φ) and Exc(φ′) in the following sense:

Exc(φ) := E ∪ {F | F ∩ E = ∅ and F has two distinguished points},
Exc(φ′) := E′ ∪ {F | F ∩ E′ = ∅ and F has two distinguished points}.

This will imply Exc(φ) = Exc(φ′) and hence C ' C′ as desired. Let us argue the first equality
(the argument for the second is identical).

It is clear that no irreducible component of Css which meets E can be contracted by φ. Such
a component would be contracted to the point p and hence contained in E := φ−1(p). It remains
to see that an irreducible component F ⊂ Css with F ∩ E = ∅ is contracted if and only if F has
exactly two distinguished points. If F has at least three distinguished points, then it cannot be
contracted without introducing a singular point with more than three branches, a section passing
through a node, or two sections colliding, any one of which contradicts the m-stability of C.
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On the other hand, if F has two distinguished points, then F must be contracted or else φ(F )⊂ C
is an irreducible component lying outside the minimal elliptic subcurve and containing only two
distinguished points. This completes the proof of the uniqueness of m-stable limits.

3.4 Valuative criterion for M1,A(m)
In this section, we complete the proof of Theorem 3.11 by handling the case when A 6= (1, . . . , 1).
The key idea, following Hassett [Has03, Proposition 3.7], is that we can construct the (m,A)-
stable limit from the m-stable limit by running a relative minimal model program with respect
to ωC/∆(Σiaiσi).

3.4.1 Existence of limits. Given a family of smooth n-pointed curves over the generic point
of the spectrum of a discrete valuation ring ∆, we may (after a finite base change) complete
this family to an m-stable curve (π : C →∆, σ1, . . . , σn). To obtain the (m,A)-stable limit, we
construct a sequence of birational contractions

C := C0→C1→ · · · → CN ,

where each special fiber Ci satisfies conditions (1)–(4) of Definition 3.7, and such that
ωCN/∆(Σiaiσi) is relatively ample. Thus, CN →∆ is the desired (m,A)-stable limit.

To construct this sequence, we proceed by induction on i. If ωCi/∆(Σiaiσi) is ample, we are
done. If not, then ωCi/∆(Σiaiσi) has non-positive degree on some component of the special fiber,
and we claim that this component must be a smooth rational curve meeting the rest of the
fiber in a single node. To see this, note that condition (3) of Definition 3.7 implies that every
component F ⊂ Ci satisfies one of the following.

(I) The component F has arithmetic genus one and at least one distinguished point.
(II) The component F is a smooth rational component meeting an elliptic l-fold point and has

at least one additional distinguished point.
(III) The component F is a smooth rational component meeting the rest of the fiber in at least

two nodes and has at least one additional distinguished point.
(IV) The component F is a smooth rational component meeting the rest of the fiber in one

node.

On components of types (I)–(III), the restriction of the dualizing sheaf ωC/∆|F has non-negative
degree. Since the weights {ai} are positive, each distinguished point contributes a positive amount
to the degree, and we conclude that ωCi/∆(Σiaiσi) has positive degree on all such components.
Thus, if ωCi/∆(Σiaiσi) fails to be ample, it has non-positive degree on a component of type (IV).
If F ⊂ Ci is such a component, standard results on the contractibility of rational cycles imply
the existence of a projective birational contraction φ : Ci→Ci+1 contracting F to a smooth point
[Lip69, Theorem 27.1]. We leave it to the reader to check that Ci+1 still satisfies conditions
(1)–(4) of Definition 3.7.

Since there are only finitely many components in the special fiber of C, and the total degree
of ωC/∆(Σiaiσi) is positive, we must achieve ampleness of ωCi/∆(Σiaiσi) after finitely many
repetitions of this procedure.

3.4.2 Uniqueness of limits. To prove uniqueness of (m,A)-stable limits, it suffices (by
uniqueness of m-stable limits) to show the following: given an (m,A)-stable curve (π′ : C′→
∆, σ1, . . . , σn) with a smooth generic fiber, there exists an m-stable curve (π : C →∆, σ1, . . . , σn)
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and a birational morphism C → C′ such that

C′ = Proj
⊕
m>0

π∗(ωC/∆(Σiaiσi)m),

where the sum is taken over m sufficiently divisible so that ωC/∆(Σiaiσi)m is integral.
To obtain C → C′, simply apply stable reduction locally around the points of C ′ where marked

points coincide. This gives a diagram of birational morphisms

Css
φ1

!!BBBBBBBB
φ2

~~}}}}}}}}

C
φ // C′

satisfying the following.

(1) The morphism φ1 is a composition of blow-ups along smooth points of the special fiber.
(2) The image φ1(Exc(φ1)) ∈ C ′ is the locus where two or more marked points coincide.
(3) The morphism φ2 is the contraction of all unmarked (−2)-curves in Exc(φ1).
(4) The strict transforms of σ1, . . . , σn on C are disjoint.
(5) The line bundle ωC/∆(Σiσi) is φ-ample.

We claim that (C →∆, σ1, . . . , σn) is an m-stable curve. By construction, the sections σ1, . . . , σn
are distinct, and ωC/∆(Σiσi) is relatively ample, so it suffices to check conditions (1)–(3) of
Definition 3.7. For condition (1), since C ′ has only nodes and elliptic l-fold points, the same is
true of C. For condition (2), we will show that the level of C is the same as the level of C ′.
To see this, let Z ⊂ C be the minimal elliptic subcurve of C, and we write the fundamental
decomposition

C = Z ∪R1 ∪ · · · ∪Rk.
We may order the Ri so that R1, . . . , Rj are contracted to a point by φ, while Rj+1, . . . , Rk are
not. Then

C ′ = φ(Z) ∪ φ(Rj+1) ∪ · · · ∪ φ(Rk)
is the fundamental decomposition of C ′, so we have

|φ(Z) ∩ C ′\φ(Z)|= |Z ∩ C\Z| − j.
On the other hand, since each rational chain Ri must support at least one marked point, the
points φ(R1), . . . , φ(Rj) are now marked distinguished points on φ(Z). Thus,

|φ(Z) ∩ Σ′|= |Z ∩ Σ|+ j.

In sum, we get,
|φ(Z) ∩ C ′\φ(Z)|+ |Σ′ ∩ φ(Z)|= |Z ∩ C\Z|+ |Σ ∩ Z|,

as desired. Finally, condition (3) is immediate from the fact that each irreducible component of
Exc(φ) has at least three distinguished points.

To see that C′ = Proj
⊕

m>0 π∗(ωC/∆(Σiaiσi)m), we only need to check that

ωCss/∆(Σiaiσi)− φ∗1 ωC′/∆(Σiaiσi) > 0,
ωCss/∆(Σiaiσi)− φ∗2 ωC/∆(Σiaiσi) > 0.

Indeed, this implies that

π′∗(ωC′/∆(Σiaiσi)m) = πss∗ (ωCss/∆(Σiaiσi)m) = π∗(ωC/∆(Σiaiσi)m)

908

https://doi.org/10.1112/S0010437X10005014 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X10005014


Modular compactifications

for all m� 0 sufficiently divisible. Since ωC′(
∑

i aiσi) is an ample Q-divisor, this gives

C′ = Proj
⊕
m>0

π′∗(ωC′/∆(Σiaiσi)m)

= Proj
⊕
m>0

πss∗ (ωCss/∆(Σiaiσi)m)

= Proj
⊕
m>0

π∗(ωC/∆(Σiaiσi)m).

Since pi1 , . . . , pik ∈ C ′ coincide only if
∑k

j=1 aij 6 1, φ1 is composed of blow-ups at smooth points
where the total multiplicity of

∑
i aiσi is less than or equal to one, which gives

ωCss/∆(Σiaiσi)− (φ1)∗ωC′/∆(Σiaiσi) > 0.

On the other hand, since φ2 is simply a contraction of unmarked (−2)-curves, we have

ωCss/∆(Σiaiσi)− (φ2)∗ωC/∆(Σiaiσi) = 0.

This completes the proof of Theorem 3.8, and hence of the main result, Theorem 3.11.
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Appendix A. Gorenstein curve singularities of genus one

Let C be a curve over an algebraically closed field k, p ∈ C a singular point, and π : C̃→ C be
the normalization of C at p. We have the following basic numerical invariants.

Definition A.1. Define

δ(p) := dimk π∗OC̃,p/OC,p,

m(p) := |π−1(p)|,
g(p) := δ(p)−m(p) + 1.

We call g(p) the genus of the singularity. Note that if C is complete and has arithmetic
genus g, then g(p) 6 g. The purpose of this appendix is to classify (up to analytic isomorphism)
Gorenstein singularities of genus zero and one. The main results are as follows.

Proposition A.2. If p ∈ C has m branches and genus zero, then

ÔC,p ' k[[x1, . . . , xm]]/I,

where

I := (xixj : 1 6 i < j 6m).

Furthermore, p is Gorenstein if and only if m= 2 (i.e. when p is an ordinary node).
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Proposition A.3. If p ∈ C is Gorenstein with m branches and genus one, then p is an elliptic
m-fold point, i.e.

ÔC,p '


k[[x, y]]/(y2 − x3) m= 1,
k[[x, y]]/y(y − x2) m= 2,
k[[x, y]]/xy(y − x) m= 3,
k[[x1, . . . , xm−1]]/Im m> 4,

where Im is the ideal generated by all quadrics of the form

xh(xi − xj) with i, j, h ∈ {1, . . . , m− 1} distinct.

Remark. There are many non-isomorphic non-Gorenstein singularities of genus one with fixed
number branches. Furthermore, in higher genera, there are many non-isomorphic Gorenstein
singularities with fixed number branches.

Combining these two propositions, we conclude the following corollary.

Corollary A.4. If C is a Gorenstein curve with pa(C) = 1, and p ∈ C is a singular point, then
p is either an ordinary node or an elliptic m-fold point for some integer m.

In order to prove the propositions, it will be useful to switch to ring-theoretic notation. Set

R := ÔC,p,

R̃ := R̃/P1 ⊕ · · · ⊕ R̃/Pk(p),

where P1, . . . , Pm are the minimal primes of R, and R̃/Pi denotes the integral closure of R/Pi.
Note that

R̃' k[[t1]]⊕ · · · ⊕ k[[tm]],

since each R̃/Pi is a complete, regular local ring of dimension one over k. Let mR be the maximal
ideal of R, and let mR̃ be the ideal (t1)⊕ · · · ⊕ (tm). Since R is reduced, we have an embedding

R ↪→ R̃,

mR = (mR̃ ∩R).

In these terms, the conductor ideal of the singularity is given by

Ip := AnnR(R̃/R),

and R is Gorenstein if and only if [AK70, Proposition 1.16(iv)]

dimk(R/Ip) = dimk(R̃/R).

Note that the R-module R̃/R has a natural grading given by powers of mR̃; we define

(R̃/R)i =mi
R̃
/((mi

R̃
∩R) +mi+1

R̃
).

Now we have the following trivial observations:

(1) δ(p) =
∑

i>0 dimk(R̃/R)i;

(2) g(p) =
∑

i>1 dimk(R̃/R)i;

(3) (R̃/R)i = (R̃/R)j = 0 =⇒ (R̃/R)i+j = 0 for any i, j > 1.
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Having dispensed with these preliminaries, the proofs of Propositions A.2 and A.3 are
straightforward, albeit somewhat tedious. The basic idea is to find a basis for mR/m

2
R in terms

of the local coordinates t1, . . . , tm.

Proof of Proposition A.2. If g(p) = 0, then (R̃/R)i = 0 for all i > 0, so mR =mR̃. Thus, we may
define a local homomorphism of complete local rings

k[[x1, . . . , xm]]→ R⊂ k[[t1]]⊕ · · · ⊕ k[[tm]]
xi → (0, . . . , 0, ti, 0, . . . 0).

This homomorphism is surjective since it is surjective on tangent spaces, and the kernel is
precisely the ideal

Im = (xixj , i < j).
To see that R is Gorenstein if and only if m= 2, note that the conductor ideal is

Ip =mR.

Thus, the Gorenstein condition

dimk(R̃/R) = dimk(R/Ip)

is satisfied if and only if dimk(R̃/R) = 1, i.e. when m= 2. 2

Proof of Proposition A.3. Since g(p) = 1, observations (2) and (3) imply that

dimk(R̃/R)1 = 1,
dimk(R̃/R)i = 0 for all i> 1.

Put differently, this says that
mR ⊃m2

R̃
,

while
mR/m

2
R̃
⊂mR̃/m

2
R̃

is a codimension-one subspace. By Gaussian elimination, we may choose elements f1, . . . , fm−1 ∈
mR such that 

f1
...
...

fm−1

≡

t1 0 . . . 0 a1tm−1

0 t2
. . .

... a2tm−1
...

. . . . . . 0
...

0 . . . 0 tm−2 am−1tm−1

 mod m2
R̃

for some a1, . . . , am−1 ∈ k.

Claim. If R is Gorenstein, we may take a1, . . . , am−1 = 1.

Proof of Claim. First, let us show that R Gorenstein implies Ip =m2
R̃

. Since mR ⊃m2
R̃

, we
certainly have Ip ⊃m2

R̃
. Thus,

dim(R/Ip) 6 dim(R/m2
R̃

) =m.

On the other hand, we have dim(R̃/R) =m, so the Gorenstein equality dim(R/Ip) = dim(R̃/R)
implies dim(R/Ip) = dimR/m2

R̃
, i.e. Ip =m2

R̃
.

In particular, we have f1, . . . , fm−1 /∈ Ip. Now if ai = 0 then

fig ∈ (fi) +m2
R̃
⊂R for all g ∈ R̃,
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i.e. f ∈ Ip. We conclude that ai ∈ k∗ for each i= 1, . . . , m. Making a change of coordinates
t′i = aiti, we may assume that each ai = 1. 2

At this point, the proof breaks into three cases.

(I) (m> 3). We claim that f1, . . . , fm−1 give a basis for mR/m
2
R. Clearly, it is enough to show

that m2
R =m2

R̃
. Since m2

R ⊃m4
R̃

, it is enough to show that

m2
R/m

4
R̃
↪→m2

R̃
/m4

R̃

is surjective. Using the matrix expressions for the {fi}, one easily verifies that
f2

1 , . . . , f
2
m−1, f1f2 map to a basis of m2

R̃
/m3

R̃
, and f3

1 , . . . , f
3
m−1, f

2
1 f2 map to a basis of

m3
R̃
/m4

R̃
.

Since f1, . . . , fm−1 give a basis of mR/m
2
R, we have a surjective homomorphism

k[[x1, . . . , xm−1]]→ R⊂ k[[t1]]⊕ · · · ⊕ k[[tm]]
xi → (0, . . . , 0, ti, 0, . . . 0, tm−1),

and the kernel is precisely I = (xh(xi − xj) with i, j, h ∈ {1, . . . , m− 1} distinct).

(II) (m= 2). By the preceding analysis, there exists f1 ∈mR such that

f1 ≡ (t1 t2) mod m2
R.

Since mR ⊃m2
R̃

, we may choose f2 ∈mR such that f2
1 , f2 map to a basis of m2

R̃
/m3

R̃
. After

Gaussian elimination, we may assume that(
f2

1

f2

)
≡

(
t21 t22
t21 0

)
mod m3

R̃
.

We claim that f1 and f2 form a basis for mR/m
2
R. Since f1, f2, f

2
1 form a basis for mR/m

3
R̃

,
it suffices to show that m2

R ∩m3
R̃

=m3
R̃

. Since m2
R ⊃m4

R̃
, it is enough to show that

(m2
R ∩m3

R̃
)/m4

R̃
↪→m3

R̃
/m4

R̃

is surjective. From the matrix expression for the {fi}, one easily sees that f3
1 and f1f2 give

a basis of m3
R̃
/m4

R̃
.

Since f1, f2 give a basis of mR/m
2
R, we have a surjective homomorphism of complete local

rings

k[[x, y]]→ R⊂ k[[t1]]⊕ k[[t2]]
x→ (t1, t2),
y → (t21, 0),

with kernel y(y − x2).

(III) (m= 1). Since mR/m
2
R̃
⊂mR̃/m

2
R̃

is codimension-one, we have mR =m2
R̃

. Thus, we may
pick f1, f2 ∈mR so that (

f1

f2

)
≡

(
t21
t31

)
mod m4

R̃
.
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Since m2
R =m4

R̃
, f1 and f2 give a basis for mR/m

2
R. Thus, the homomorphism

k[[x, y]]→ R⊂ k[[t1]],
x→ (t21),
y → (t31),

is surjective, with kernel y2 − x3. 2
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