
Can. J. Math.Vol. 45 (5), 1993 pp. 1104-1120 

SENSITIVITY AND CONTROLLABILITY OF SYSTEMS 
GOVERNED BY INTEGRAL EQUATIONS 

VIA PROXIMAL ANALYSIS 

A. YEZZA 

ABSTRACT. In this paper, we are concerned with the basic problem defined in [9]. 
Formulas for dV(0) and d°° V(0), respectively the generalized and asymptotic gradient 
of the value function at zero, corresponding to an L -additive perturbation of dynamics 
are given. Under the normality condition, dV(0) turns out to be a compact subset of L2, 
formed entirely of arcs, and V is locally finite and Lipschitz at 0. Moreover, estimations 
of the generalized directional derivative and Dini's derivative of V at 0 are derived. 
Supplementary conditions imply that Dini's derivative of V at 0 exists, and V is actually 
strictly differentiate at this point. 

1. Introduction. 
1.1 Proximal Analysis. Let X be a real Banach space whose norm is denoted || • || and 
C a closed subset of X. The space X is denoted respectively H or IRn whenever it is a 
Hilbert space or finite-dimensional. When X — H or W1, we denote its inner product 
by (•,•), which gives the norm || • ||. We define the distance function from C, dc(-) by 
dc(x) := inf{||c —JC|| : c G C}. 

Proximal analysis started with the notion of perpendiculars introduced by Clarke in 
the finite-dimensional case [4], which has given rise to a formula for the generalized 
gradient of the distance function from C, ddc(-). The fact that the normal cone of C, 
Nc(-) is the w*-closed convex cone generated by ddc(m), involves an important object 
which is called proximal normal vector. 

In fact, when X = H, a vector £ G X is said to be perpendicular to C at x E C, and 
we write £ _L C at x, if £ = x1 — x, where x is the unique nearest point from C to x'. The 
fact that £ _L C at x or equivalently dc(x + 0 = IICll is equivalent to the inequality 

( £ , C - J C ) < ( 1 / 2 ) | | C - J C | | 2 VcG C. 

This inequality can be interpreted as the assertion that the point x G C minimizes over C 
the functional: — (£, c) + (1 /2)||c — x\\2 and in practice, this assertion leads to the study 
of a certain optimization problem, which characterizes the perpendiculars. 

When X is not necessarily a Hilbert space, we define the perpendicularity as follows: 
a functional £* G X* is said to be perpendicular to C at x, and we write £* _L C at x, if 
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there exists y G X* \C such that: 

dciy) = \\y-x\\, (e,y-x) = \\y-x\\\ and ||£*|| - \\y-x\\. 

That is £*/\\y — x\\ supports the unit ball of X at (y — x)/\\y — JC||. We can easily check 
that this general perpendicularity is identical to that for X = H\ it suffices to note the 
identity: 

U-(y-x)\\2 = U\\2
 + \\y-x\\2-2(i,y-x) for C e / / . 

The generalized gradient of the distance function dc(-) at x, ddc(x) is defined in terms 
of perpendiculars to C at x by: 

(1.3) ddc{x) = m{0}\Aw* Aim-rr^ : & ± Cat JC, with ^ —> 0 andx,->xin c ) 
I '" llçill* J 

where wMim denotes the weak star limit, which coincides with the weak limit if X = H 
and with the strong limit if X = Rn, in which case the closure in (1.3) is superfluous, 
and || • ||* denotes the dual norm corresponding to || • ||. Another alternative approach 
to calculate ddc(x) in the finite-dimensional case is given in [4]. It has been extended to 
infinite-dimensional case by Borwein-Giles f 1]. 

The normal cone of C at x, Nc(x) is defined by: 
(1.4) 

Nc(x) :=c\\\J Xddc(x)\ 
lA>0 J 

= cô< w*- lim A* • M \. : A/ > 0, ̂  ± C at xt withxi —> x in C and ^•—^ 0 >, 
I '" I I Ç i l l * J 

where cl denotes the w*-closures and co~ denotes the w*-closed convex hull. To this nor­
mal cone, we associate another cone denoted Nc(x), which is called the upper semicon-
tinuous normal cone to C and which is defined by: 

Nc(x) := {lim£i : & G Nc(x() and*/ —>xin C}. 
i 

Under mild regularity conditions on C, Nc(-) and Nc(') coincide. 
An element £* G X* is said to be a proximal normal functional to C at x, if it is a scalar 

positive multiple of a perpendicular functional to C at x\ that is: 

there exist y 6 X/C, and A > 0 such that: £* = A£* with dc(y) = \\y - x\\, 
U\\\ = hmd(Cvy-x) = \\y-xl 

Note that when X — H, this last definition is equivalent to, say, that an element £ G X 
(because X* = X) is a proximal normal vector to C at x if there exists a > 0 such that 

(1.5) (^c-x) <a\\c-x\\2 Vc^C, 

or equivalentlydc(£/2<7 + x) = (l/2cr)||£||, and we find (1.1) by taking a = 1/2. We 
denote by PNcC*) the set of all proximal normal vectors to C at x, which is a convex cone 
containing always 0 when X = H. 
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The best thing that proximals provide is the proximal normal formula: 

(1.6) Nc(x) = co{w*- lim& : & G PNcto),*; —> x in C}, 

which was first proved by Clarke [4] in the finite-dimensional case and extended by 
Borwein-Strojwas [2] in the infinite-dimensional setting, for X being any reflexive 
Banach space. For the particular case X = H, Loewen [6] has given a simple proof based 
essentially on geometrical properties in Hilbert space; in this case w*-lim is replaced by 
vv-lim. 

1.2 Clarke's derivative, Dini's derivative and strict derivative. Let/: X —• R U {+00} 
be a lower semicontinuous (1. s. c.) function and i G X a point at which/ is finite. Then 
the epigraph of/, epi / := {(*, À) : f(x) < A} is a closed subset of X x R, and (x,f(x)) G 
epi / . We define the generalized gradient and generalized asymptotic gradient of/ at JC, 
respectively df(x) and 3°°/(x) as follows: 

(1.7) 3/ to := {£ G X* : ( £ - 1 ) G NQpif(xJ(x))} 

(1.8) d°°/to := {£ G X* : (£0) G W e p i /(*,/ to)}, 

Then 3/ to is a w*-closed convex subset of X* and 3°°/to is a w*-closed convex cone of 
X* always containing 0. Thus, elements of 3/ to and d°°f(x) are captured by elements of 
Nep\f(x,f(x)) via ( 1.7) and ( 1.8) and those of the latter are captured by normal proximals 
to epi / via ( 1.6) in a way that characterization and nature of 3/ to and d°°f(x) depend on 
PNepi/(jc,/to). This diagram appears clearly in the proof of Theorem 4.1 in the sequel. 

Recall that the support function of a nonempty subset C of X is the function GQ'- X* —> 
RU {00} defined by: 

ac(Q := sup{(C*) :xEC}. 

A function/: X —• R is said to be locally Lipschitz at x if it is Lipschitz in a neigh­
bourhood of x, that is there exists an open set U in X containing x and for some positive 
constant K 

\f(y)-f(z)\<K\\y-z\\ Vy,z£U. 

Likewise,/ is locally Lipschitz on an open subset A of X, if it is locally Lipschitz at each 
point of A. When/ is locally Lipschitz at x, we prove that 3/to is exactly the set whose 
support function \sf°(x; •), given by: 

(1.9) /°(JC; v) = lim s u p ^ + tV) ~f(y\ for all v G X. 
y-^x t 

The latter is known as Clarke's (or generalized) directional derivative of/ at x. In this 
case 3/ to is bounded and then it is w* -compact. 

The function/ is said to be regular at x if its usual right directional derivative//(jc; •) 
exists and coincides with/°(x; •)• 
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The four Dini's derivatives off at x are defined as follows: 

<+, v r f(x + tv)-f(x) 
j (x; v) := limsup , 

no * 

f+(x;v) := hminf , 
t[0 t 

f~(x\ v) := -/+(*; -v), and 

/_(*; v) := -f(x\ -v), for all v G l 

We say that/ has a right Dini's derivative at x, which is denoted//(JC; •), if/+(*; •) and 
/+(*; •) exist and coincide. The left Dini's derivative f[(x\ •)» if it exists, is defined in a 
similar way. 

Recall that a Lipschitz function/: X —> IR is said to be strictly differentiable at x (in 
Clarke's terminology) with strict derivative D^f(x) G X*, provided that for each v G X, 
we have: 

hm = (D/(*),v). 
U0 

A practical characterization of strict differentiability of/ at x is given by the condition 
that the generalized gradient of/ at x, df(x) is reduced to a singleton (see [4], Proposi­
tion 2.2.4). 

1.3 Relaxed controls. Let Q denote a compact nonempty subset of Rm and L1 (T, C(Q)) 
be the Banach space formed by classes of functions/: 7 x Q —> IR, (/, w) »—»/(*, «), such 
that/(-, w) is measurable,/^, •) is continuous, and max{[/(/, M)| : w £ £2} is in L*(r, IR). 
The norm in this space is taken as ||/|| := JT max{\f(t, u)\ : u G 12} dz\ 

Let $(£2) denote the Borelian cr-algebra generated by £1 Define the vector space: 

rpm(Q) := {/x : (5(12) —> IR is a probability Radon measure}. 

We define a relaxed control as a mapping z/: 7 —> prm(£2) which associates to each t G 7, 
a probability Radon measure z/(0 in prm(£2), such that for al l / G 71 (7, C(Q)), the map­
ping 11—> Jaf(t, u) dv{t)(u) is (Lebesgue) measurable. Note that every ordinary control 
u(t) can be identified with a relaxed control, namely the Dirac measure 6U(t) concentrated 
at u(t) for each t G 7. Each relaxed control v can be regarded as a linear functional on 
L1 (7, C(Q)) defined by 

(^ / ) = ^00 := / / f(t,u)di/(t)(u)dt for all / G L ^ , ^ ) ) . 

We denote by %, the set of classes (modulo Lebesgue measure) of all such relaxed con­
trols. If a function/: T x Q -+ Rn, (t, u) »—> /(/ , u) is in L1 (7, C(Q)), then we denote 
by/(7, z/(0) the integral JQ/(J, u)di/(t)(u), in such a way that (v,f) = hf(tMt))dt for 

Two natural topologies can be defined on %^. The first one is the dual norm topology 
defined by \\f\\ = sup{|^(f)| : |l/"|| < 1} = esssup{|i/(0|(Œ) : t € T}, where \v{t)\ is the 
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total variation of v(t). The second is the w*-topology whose convergence is defined by: 
Vi -> i/(w*) iff (i/f,/) -» (i/,/) for a l l / G L1 (r, C(Q)). It is demonstrated in f 10] that 
%, is convex, and that with this topology, ^ is compact and sequentially compact and is 
the closure of U (the class of ordinary controls). For more details concerning this part, 
we invite the reader to consult [10]. 

2. The problem and its perturbation. Let T denote the interval [0,1]. We are 
given functions/: T —• R, F: T x W1 x Rm —> R, V>: 7 -* Rn, </>: T x T x Rn x Rm —> Rn, 
two subsets Q, and C of Rn and IRm respectively, and a tube £2i in T x R", which is by 
definition a subset of T x W1 of the form 

{(t,x) G T x Rn : |JC - w(r)| < e(0}, 

where vv(-) and £(•) are continuous functions with e(-) positive. 
For each a(-) G L2(7,Rn), we denote by P(a) the a-perturbed original problem, which 

consists in minimizing the cost functional 

(2.1) J(x, u) :=f(x(l)) + J F(t,x(t), w(0) dt, 

over all state/control pairs (JC, w) satisfying the constraints 

(2 2) I *® = ^ + ^C* ' r ' ^^ ' M ^) + Jo ^{U s,x(s), u(s)) ds + a(t) (t G T), 

u(t) G Q (a.e.)-r, JC(1) G C and (t,x(tj) G Qi for each t G T. 

The state JC of P(a) is an absolutely continuous function from T to lRn and its control u is a 
measurable function from T to IRm. In particular, P(0) is the unperturbed original problem. 
We denote by P(a) (a ^ 0) and P(0) respectively the relaxed a-perturbed problem and 
the relaxed unperturbed problem, in the sense of [9, Section 4]. More precisely, P(a) is 
defined as follows: 

P(a): J(x, v) : = /(JC(1)) + J F(t,x(t)y vit)) dt —> min, 

under the constraints: 

x(t) = ij)(t) + </>(f, t,x(t), i/(r)) + Jo <^(/' S,JC(», K^)) ^ , 
*(0) = ^(0), 

v G ^ , JC(1) G C and (f,x(t)) G Ôi for each t in 7. 

We denote by Ya the set of solutions of P(a) and we set in particular ?o = Y. We de­
note by AC2(r, lRn) the Hilbert space of functions x'.T—^W1 such that x is absolutely 
continuous and has derivative JC in L2(7, IRn). The inner product in this space is given by: 
(jc,y) = (x(0),y(0))^ + (x,y)L2. With the associated norm, AC2(7, Rn) is isometric to 

L2(r,r) x r. 
The following assumptions remain in force along this paper: 

(HI) / i s locally Lipschitz. 
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(H2) F is measurable in t, continuously differentiable in x, and continuous in w; <j> is 
measurable in s, continuously differentiable in x and /, continuous in (/,x, u), and 
<t>t is continuously differentiable in x. 

(H3) For each compact subset r of Rn x Rm, there exists a function K(-) G L2(7, R) 
such that for (a.e.)-s, \f(t,s,x,u)\+\(l)t(t,s,x,u)\+\<l>xt(t,s,x,u)\ <K(s),V(t,x,u) G 
T x T; for (a.e.K |F(/,JC,M)| |F*(f,;c, w)| < #(r), V(JC,M) G T. 

(H4) <0e A C 2 ( r , r ) . 
(H5) C is closed and Q is compact. 

(H6) The set of all admissibles state/control pairs for P(0) is nonempty and all solutions 
of P(0) remain in Q\ ; that is: (t,x(t)) G Q\ for each t G T, for all x in Y. 

In the sequel of this paper, the symbol "—»" will denote the uniform convergence on 
T. Existence for P(a) is an immediate consequence of the lemma below, provided that 
Ad(P(a)), the set of admissibles pairs state/control forP(a), is nonempty. 

LEMMA 2.1. Let (jt/, vt) G Ad(P(a/)Y where (a/) /s « sequence in L2(T, IR") converg­
ing strongly to a. Then there exists a subsequence of{(xt, i//)}, which we do not relabel 
andx G AC2(7, Rw), i/ G ̂  ^c/z f/wf 

JC/ —-» x, ±i —•> ±(w — L2), i// —> z/(w*), 7(x/, i//) —-> J(x, i/), and (x, v) G Ad (P(ar)). 

PROOF. The proof is similar to that of [9, Lemma 4.1, where at — 0 for each /], and 
thus is omitted. • 

Define the set of admissible states for the problem P(a) by: 

Ads(P(aj) := [x : T—> Rn absolutely continuous^ G ^ 

such that (x, v) G Ad(P(a))}. 

For x G Ad^(P(a)) and À G {0,1}, we define the A-multiplier set corresponding to x, 
denoted M^(x) as the set of all p G AC2 (T, Rn) satisfying the following conditions for a 
certain v G %;. 

(i) -pit) = p(t) {<j>x (t, U xit\ vit)) +Jg <j>xt (t, s, xisl vis)) ds} ~XFX (r, xit\ vit)) (a.e.), 

(ii) -pi\)e\df(xil))+Nc(x(l)), 

(ii) max{p(0-{</>(M,*W,/i(0)+^ : ^ ^ } 
is attained (a.e.)-f in ji = v. 

The A-multiplier set M^(Ya) corresponding to the problem P(a) is defined as 
\J{M^(x) : x G Ya}. For a = 0, it is simply denoted by M\f). The sets MX{Y) and 
M°(Y) are respectively called the normal multiplier set and the abnormal multiplier set. 
Note that 0 is always in the cone M°aiY). In [9], it is shown that [M°(?)\{0}]UM1 (f) ^ 0. 
This condition rephrases Theorem 7.4 of [9]. 
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3. Value function. To each problem P(a), we associate its value, namely the quan­
tity V(a) := inf{/0, v) : (x,v) G Ad(P(or))}, with the convention that V(a) = +00 
if Ad(P(a)) = 0, In this way, we have defined a function V: L2(T, r ) - ^ I ! U {+00}, 
a 1—> V(a), which is called the value function corresponding to the perturbation of the 
last section. The behaviour of V near the point a — 0 has a direct reflection on the prob­
lem P(a). The very finiteness of V near 0 corresponds to an important property, namely 
the local controllability of the system, in the sense that the set Ad(P(a)) is nonempty 
for a in a neighbourhood of 0. The local Lipschitz property of V near 0 measures the 
sensitivity rate of the problem value vis-à-vis small perturbations in dynamics (for these 
two properties, see Theorem 4.2). It is not always the case that the value function is dif­
ferentiate at 0, except under some conditions (for this, see Corollaries 4.3,4.4 and 4.5). 
However, the generalized gradient of V at 0,3 V(0), contains information about differen­
tial properties of V at 0. A formula for 3V(0) in terms of the multiplier sets M°(Y) and 
MX(Y) is derived in Theorem 4.1. 

The following lemma asserts that for a too small, hypothesis (H6) remains true for 
the a-perturbed relaxed problem P(a). 

LEMMA 3.1. There exists 6 > 0 such that if \\a\\L2 < 6 and V(a) < V(0) + Ô, then 
each solution ofP(a) remains in Çl\. 

PROOF. If the lemma is false, then we can construct a sequence (af) converging to 
0 in L2(T, (Rn), with V(a,-) < V(0) + 1// for all / > 1, and a corresponding sequence 
(xt,i/i) G Ad(P(a,-)), with xt G Û\ \ £l\ for all / > 1. Then the use of Lemma 2.1, 
leads to the existence of (x, v) G Ad(P(0)), with V{at) = J(x{, vt) —> J(x, v) (> V(0)) 
for a certain subsequence of (i) which we don't relabel. Thus V(0) = J(x, 1/), and by 
hypothesis (H6), x must remain in the tube Qi. According to Lemma 2.1, x is a uniform 
limit of (JC/), therefore x G Û\ \ £l\. Hence a contradiction. • 

This lemma combined with Lemma 2.1 and the fact that Ya ^ 0, once Ad(P(a)) ^ 0 
(which is a consequence of Lemma 2.1), give rise to the following lemma whose proof 
arguments can be found in [5, p. 538]. 

LEMMA 3.2. The value function V is (strongly) 1. s. c. near zero. m 

4. Main result. The principal result of this paper is the following theorem, where 
relations between the generalized and asymptotic gradients of V at 0, dV(0) and dV°°(0) 
and the normal and abnormal multiplier sets Ml(Y), M°(Y) are established. 

THEOREM 4.1. Under the hypotheses (HI), (H2), (H3), (H4), (H5) and (H6), we 
have the two formulas: 

(1) dV(0) = œ{[-M\Y)] H 3V(0) + l-M°(Y)] D 3°°V(0)}; 
(2) a°°v(0) = cô{[-M°(y)] na°°v(0)}, 

where the operation co~ is taken in L2 with the strong topology. m 

In the remainder, we suppose that the problem P(0) is normal i.e., M°(Y) = {0}. 
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THEOREM 4.2. The value function is locally finite and Lipschitz at 0. Consequently, 
dV(0) ^ 0 and for each a G èBLi, Ya ^ 0. In addition, if P(0) is free endpoint, i.e., 
C = Rn, then values ofP(a) and P(a) are equal for each a G SBL2. m 

Conditions on the set of solutions Y and on the normal multiplier set Ml(Y), imply 
important consequences, which are expressed in the following corollaries: 

COROLLARY 4.3. We have the formulas: 

3 V(0) = cô{[-Ml(Y)] H 3 V(0)}, 

3°°V(0) = {0}. 

In addition, dV(0) is a compact subset ofL2(T, Rn), formed entirely by arcs. m 

COROLLARY 4.4. For each (5 G L2(T, Rn), we have the following estimations: 
(i) V°(0;/?) < supxe? suppeM]{x)(p,f3)L2, 

(ii) V+(0;f3) < infxe?suppeMHx)(-p,P)L2, 
(Hi) V+(Q;/3) > infxGymfpeMHx)(-p,/3)L2, 
(iv) V-(O;0) > supxeyinfp£W(x)(-p,0)L2, 
(v) V~(0;/?) < supx€?suppeMHx)(-p,p)L2. 

In particular, if for each i G Y, M1 (x) is reduced to a singleton {px}, then Vf
r(0; •), V[(0; •) 

exist, and are given by: 

V'r(0;f3) = mf{(-p\f3):xeY}, 

V[(P;P) = sup{(-p\(3) : x G Y} for each (5 G L2(T,Rn). 

In addition, —V is regular at 0. • 

COROLLARY 4.5. If in addition to the hypotheses of the previous corollary, we sup­
pose that Y = {x}, then by setting Mx(x) = {/?}, V is strictly differentiate at 0 and 
its strict derivative is given by DsV(0) — —p. Consequently, for a G L2 too small, 
V(a)^V(0)-(p,a)L2. m 

5. Proof of results. Recall that the symbol "—-»" denotes the uniform convergence 
on T and we define the topology of the product space L2 x Rn by the inner product: 

([a,x], [a',x']) := (a, a')L2 + (*,-OR», 

for [a,x], [a',*'] G L2 x Rn, and the associated norm. 

5.1 Proof of Theorem 4.1. First of all, we prove the following lemma: 

LEMMA 5.1. Let [(5, —A] G PNepiyO,7) with A > 0 and let (JC,I/) be a solution of 
P(a). Then (3 G AC2(7, Rn) and satisfies (3 G ~Mx

a(x). 

PROOF. The fact [(3, —A] G PNepiy(a,7) signifies the existence of a > 0 such that 
for all [a', 7'] G epi V 

(5.1) - f (3(t)-a(t)dt+\l<- f f3(t)-af(t)dt+\Y+(j f \af(t)-a(t)\2dt+a(l-Y)2. 
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FIRST CASE: V(a) = l ( = J(x,vj). For an arbitrary y in AC2(T,Rn) with y(0) = 
0(0), y( l )GC, and y remaining in Qi, and for any /i G ̂ ; let a'(-) G L2(7, Rw) be given 
by: 

a'(f) = y(t) - {p(t) - </>(r, t,y(t), /x(f)) - jf </>,(/,s,x(s), 1/(5)) <fc. 

Therefore (y, /i) G Ad(P(a')), and consequently [a7,!7] G epi V. Replacing [a',7'] and 
[a, 7] by their values in (5.1), we obtain 
(5.2) 

A/(JC,I/) + /" /3(f) • l-x(t) + (j){t,t,x(t),i/(t)) + f (f)t(t,s,x(s)i/(s)) ds\ dt 

<\J(y,Li) + a(j(y,ii)-J(x,iy))2 

+ 1 ^ 1/3(0 • { - K O + <t>{uUy(t),M(0) + fQ <l>t(us,y(sl /x(s)) « ds 

+ a y(t) - x(t) - </>(f, t,y(t), n(tj) - JQ <j>t(t, s,y(s\ n(s)) 

+ (j)(t, t,x(t), i/(0) + J <j>t(u s,x(s), 1/(5)) ( 

ds 

Then (y, /x) = (x, v) minimizes the RHS of this inequality over all possible (y, /1). Con­
sider a second state m(-) = AC2(7, R) solution of m(f) = F(t,y(t),ji{t)} (a.e.) and 
m(0) = 0, with y and fi chosen as above. We can consider y as a second control v() 
in L2(T, Rn). Define the functional: 

F: T x AC2(7, Rn)x^x L2(T, Rn) —• R 

(r,y(-),/i(-),v(-))^F(r,y(-),M-),v(.)) 

such that 

F(r,y(-), M(0, v(0) := /3(0 • j-v(t) + </>(f, Uy(t), MO) + / J <i>t{u s,y(s), /i(s)) ds 

+ a |v(O-0(u,y(O,MO) - /0 <l>t(t,s,y(s\ij,(sj)ds-x(t) 

rt |2 

+ 0(7, f, JC(0, i/(0) + / <t>t{u s,x(s), v(s)) ds\ 

+ \F(t,x(t),i/(tj), 

and the function/: Rn x R —• R, (y, m) t-*/(y, m) := A/(y) + a\f{y) + m- J(x, v)f, and 
set for t in T: 

mo(t) \= / F ( S , X ( S ) , Î / ( S ) ) ds. 

From all this data, we deduce that the state/control pair (y, m; /1, v) = (x, mo; 1/, Je) is a 
solution of the following problem: 

(P) J(y,m;^,v):=/(y(l),m(l)) + J0
1F(^y(0,MO,v(-))^-^_min 

y(t) — v(t) (a.e.), y(0) = -0(0)» y(\) £ C a nd J remains in Q\, 
m(t) = F(t,y(t), /x(0) (a.e.), m(0) = 0, (//, v) G ̂  x L2(7, HT). 
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This problem is very similar to the basic problem P(0), and the technique of [9, 
Proof of Theorem 7.4] can be applied to yield ape AC2(7, R"), A0 G {0,1}, and 
£ G A3/(JC(1)), with 1 = A0 + A°|£| + |p(0)| and such that the following hold: 

(5.3) 
-p(t) = -\°l3(t){(l>x(v,x(t)Mt))+£^ 

-\°\F(t,x(t),i/(tJ) (a.e.), 

(5.4) -p(l)-X°^eNc(x(l)y 

(5.5) 

max |/K0 • v(0 - X°P(t) • (-v(f) + (/>(r\ r,x(0, /x«) 

+ f (f>t(t,s,x(s),n(s))ds\ -\°\F(t,x(tln(t)) : iie^veL2(T,Rn)\ 

is attained (a.e.) for /i = z/ and v = i;. 

From this last conclusion, we deduce that p{t) — —X°/3(t) (a.e.), and, since p is continu­
ous,/? = —A°/3, and satisfies 
(5.6) 

max 1/7(0 • |(/)(r,r,x(0,/i(0) + / <£,(',•?,*(•*)>Mfa)) dsj 

- AA°F(f, JC, (0, M(0) : /x G ̂  is attained (a.e) for /x = z/. 

We claim that A0 must be equal to 1. If not, then |p(0)| = 1 and therefore p ^ 0, but 
/? = — X°/3 — 0. Hence a contradiction. In conclusion, f3 G —Mx(x), where x G ?a . 

SECOND CASE: J(X, V) — V(a) < 7. In this case, if we put in (5.1) a7 = a and we 
consider the l' which are near 7, we conclude that A = 0 necessarily. Armed with this 
information, the proof given in the first case can be adapted to the present situation (it 
suffices to ignore all terms containing A) in order to show that ~/3 G M%(x) for a certain 
x in Ya. At this point, the proof of the lemma is achieved. • 

The next lemma asserts that the A-multiplier set related to P(a) has a sequential com­
pactness property. 

LEMMA 5.2. Let (at) C L2{T, Rn) such that V(cti) < oo and a, —-> 0 in L2. Let 
(Xi,vi) G Ad(P(aiyj and let pi G M^{xi), where {(pi, A/)} is a bounded sequence in 
C(T, W1) x R with Ai > 0. Then, there exists a subsequence of{(xj,z//)}, which we don't 
relabel such that X( —» x, V[ —> i/(w*) with (x, v) G Ad(P(0)j. There exists also a 
subsequence of{(pi,Xi)} converging uniformly to (p,X), where p G Mx(x). lf(x,i,vï) G 
Ya, then we can claim that (x, i/) G Y andp G Mx(x). 

PROOF. By virtue of Lemma 2.1, we can assume the existence of x G AC2(7, Rn), 
v G %, such that for a certain subsequence of {(JC/, z//)}, which we don't relabel, JC,- —H- X, 
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vt —-> z/(w*), and (x, i/) G Ad(P(0)). Since (A;) is bounded, we can assert without loss of 
generality the existence of A > 0 such that A,- —> A. Let M be a constant such that A/ < M 
for all i. Then, from the inequality \pi(i)\ < K(t)(\pi(t)\ + M), where K(-) G L2(T, R), 
we can see that the sequence (pt) is absolutely equicontinuous and (pi) is bounded in 
L2(7, W1). Consequently, there exists a subsequence of (pt) which we don't relabel and 
p G AC2(7, IRn) such that /?; —» /?, />; —> /? (w — L2). From the inclusion/?/ G M^Qc/), 
and by taking the limit as i —• +00 and using the preliminary lemma of [9] and the fact 
that the multifunction Nc(') is closed, we can see that p G M^(x). m 

LEMMA 5.3. Let [ft -A] = w - lim/[ft, -A/] m L2 x R, vWiere [ft Al ^ 0, A, > 0 

and [ft, -A/] G PNepiv(^,7/) with (ahlt) -> (O, V(0)) in L2 x R. Then (3 G AC2(7, R") 
and satisfies 

(i) p/\ G -Ml(x)ndV(0) ifX > 0, 
(ÏÎ; P G -M°(JC) H 3°° V(0) if A = 0, for a certain x G Y. 

PROOF. Applying Lemma 5.1, we conclude that —ft G M^.(*i) for a certain JC,- G ?«,.. 
Let /?, := ft. Then we can show by using the boundedness of (ft) in L2 that {/?,(0)} is 
bounded. Applying Gronwall's lemma to the inequality 

\Pi(t)\ < |Pi(0)| + /" A(s) • (\pi(s)\ + M) ds for some constant M > A,-(V/), 

which is a consequence of the adjoint equation. Note that the previous lemma is applica­
ble to the sequence {(/?;, A/)}. Therefore j3 G — Mx(x) for some x G F, which is equivalent 
to /?/À G -M l(JC) for A > 0. The fact that (3/\ G 3V(0) if A > 0 and (3 G -3°°V(0) 
if A = 0, follows immediately from proximal normal formula (1.6) with C = epi V and 
from ( 1.7) and (1.8) respectively. • 

Now, by the proximal formula ( 1.6) for C = epi V and from the last lemma, we 
conclude the inclusion Ar

epiv(0, ^(0)) C cô{N U N°°}, where cô denotes the closed 
convex hull inL2, 

N:= {<*(£,-1) : a > 0,£ G -MX(Y) n3V(0)} and 

N°° := {(£,0) : £ G - A A n n S 0 0 ^ ) } . 

In fact, the previous inclusion is an equality. This is due to the inclusion N U N°° C 
Nepi v(0, V(0)), which results from the définitions of 31/(0) and 3°° V(0) (see (1.7), (1.8)). 
At this point, a direct application of [6, Proposition 4.2] gives the formula (1) of Theo­
rem 4.1. 

In order to prove the second formula (2) of Theorem 4.1, it suffices to show the in­
clusion 3°°V(0) C cô~{— M°(Y) H 3°°V(0)}. For this, we use the same technique as that 
of [7, pp. 83-84]. Let £ G 3°°V(0). Then according to proximal formula (1.6), it follows 
that for e > 0 small enough, we can construct a sequence {[ft, —A/]} and an element 
[q, s] G L2(T, Rn) x W1 such that 

[£O] = £ 0 ; [ ^ - A f ] + [?,*], 
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where 0/ > 0, E/e/t 0/ = 1 and \\q\\Li + \s\ < e, and for each / G I£ /3,/A,- G -M1 (Y) n 
3 V(0) if A, > 0, # € -M°(F) H d°°V(0) if A,- = 0 (see last lemma). 

Define the index set A£ := {/ E /e : A/ > 0}. Then we can write 

s = £ 0,-A, - £ 0, A* and £ = ? + £ 0,-ft + £ 0,-ft. 
/ eA e i"GAf iGl£\A£ 

If Ae = 0, then from the last line, the fact that # G ~M°(Y) n 3°°V(0) and the convexity 
of this last set, itfollows immediately that £ G cô~{— M^Fjr^^VXO)}, since £ is chosen 
arbitrarily positive. Now if AE ^ 0, we can suppose without any loss of generality that 
the set of finite sequences {(/?// A/) : i G Ae}e>o C — Ml(Y) is uniformly bounded in L2 

relative to £. That is; there exists a constant M > 0 such that 

& := E 0/# = E OiXiiPi/Xd G 5M5L2. 
/GA5 /GAf 

Thus, we can write 

£ G 4 + ^M% + co{-M°(F) H 3°°V(0)}, 

with ||^||^2 < e and |s| < £. The result then follows by taking the limit E —•+ 0 in this last 
inclusion. 

5.2 Proof of Theorem 4.2. Define for a G L2(7, Rn) the set 

K := {x G AC2(r, r ) : 3i/ G ̂  such that (JC, i/) G Ad (£(<*))} 

In particular we denote Ao simply by A. Let M°(Aa) denote the abnormal multiplier set 
associated to Aa; i.e., M°(Aa) = \J{M°(x) : JC G A^}. We will first show the implication: 

(5.7) M°(A) = {0} => V is finite near 0. 

To this end, we define the set W := {a G L2(7, IT) : Ad(P(a)) ^ 0}. Then W ^ 0 once 
Ad(P(0)) ^ 0, i.e., 0 G W; moreover, W is closed by virture of Lemma 2.1. Therefore, 
showing (5.7) is equivalent to show 

(5. 8) M°(A) = {0} =» 0 G int(W). 

Suppose that 0 £ int(W). Then 0 G Fr(W) (boundary of F) and by [3, Theorem 5.1], 
which asserts in particular that the set {a G L2 : PNw(or) ^ {0}} is dense in Fr(W) we 
can construct a sequence (a,) C L2 such that 

(5.9) PNw(a/) ^ {0} for all /, and at -> 0 in L2. 

Fix a in W and let /? ^ 0 in PNvK**)- Then there exists a > 0 such that 

(5. 10) (/3,7 - a) < a\\a - l\\2
L2 V7 G W. 

Let (JCO, ^o) G Ad(P(a)) (fixed). Treating the inequality (5.10) with the same arguments 
as those applied to the inequality (5.1) in Lemma 5.1 leads to the following conclusion: 
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CONCLUSION 1. 0 ± (3 G PNw(a) =>-f3 e M°(Aa), 

As a second step in the proof of (5.8) or equivalently (5.7), we combine (5.9) and this 
conclusion in order to construct sequences (ft) C AC2(7, W1 ), {(xh i/i)} such that ft ^ 0, 
—ft G M°(xi), fa, i//) G Ad(P(a/)) for each / and a, —» 0 in L2. We can suppose without 
loss of generality that ||ft||Sup = 1 for all /, and then a direct application of Lemma 5.2, 
leads to the existence of (5 ^ 0 with —/? G M°(x) for a certain i G A . Consequently: 

CONCLUSION 2. 0 ^ int(W) => M°(A) ^ {0}, hence (5.8) and therefore (5.7). 

Now, if the problem P(0) is free endpoint, then we have automatically M°(A) = {0}. 
Consequently, such problems have a locally finite value function; that is, there exists 
S > 0 such that for all a in 8BLi, V(a) < oo. 

In this second part, we will show under the hypothesis C = Rn that V is locally 
Lipschitz on SBLi. Let a,/î G <5Z?L2, then in view of the fact that fa ^ 0 as well as 
V(a) < oo; there exist (x,v) and (y,/i), respectively solutions of P(a) and P(/3), /.£. 
V(a) = J(x,v) and V(/3) = /(y,/x). We will estimate \J(x,v) - J(y,/i)| by ||a - /3||Lz 
up to a multiplicative factor depending on 6. But before, let us examine the quantity 
\x(t)-y(t)\ for fin 7\ 

\x(t)-y(t)\ < I \<l>(t,s,x(s),i/(sj) -</>(t,s9y(s),i/(sj)\ds 

+ f \<j>(t,s,y(s),v(s) - ii(sj)\ds+ f \a(s) — (3(s)\ ds 

< [ sup UM, s, Xx(s) + (1 - X)y(s), 1/(5))I • \x(s) - y(s)\ ds 
J0 o<\<\ 

+ fo2K(s)ds+\\a-l3\\L2 

<^M\x(s)-y(s)\ds + 2\\K\\L2 + \\a-f3\\L2, 

(where the existence of the constant M is due to the fact that the set of all admissible arcs 
for P(0) is uniformly bounded and <j> is continuously differentiable in x). 

By applying the Gronwall's lemma to this inequality, we obtain 

(5.11) | | x -y | | s u p <(2 | | ^ | | L 2 + ||a-/3||L2).exp(M). 

Now we have 

\J(x, v) - J(y,M)| < \f(x(\)) -f(y(\))\ + jT1 \F(t,x(t), HO) - F(t,y(t), v(f))\dt 

+ j^\F(uy{t\v(t)-v(t))\dt 

<Kv\x(\)-y(\)\ 

+ f sup \Fx(u Xx(t) - (1 - A)y(0, i/(0)| • k(0 - y«)\ dt 
7 0 0<A<1 

+ / 2K(t) dt (Ko is the Lipschitz constant for/) 

< KQ\\X — y||sup +MI||JC — y||sup +2||AT||L2 (M\ is a constant) 
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Taking (5.11) in into account, we obtain 

\J(x,v) -J(y^)\ < exp(M) • (K0 +Mj) • (2||tf||L2 + \\a - p\\L2) + 2\\K\\L2 

From this inequality, we can see easily that it is possible to find a constant I = 1(6) such 
that the LHS is < £||a - j5\\Li for all a, /3 G 5 % . Thus, V is locally Lipschitz at 0. 

In order to prove the same result in the presence of the endpoint constraint and when 
P(0) is normal, we can reduce F(0) to a problem which is free endpoint and has the same 
set of solutions and the same value function as P(0). In fact, there exists a constant K 
such that P(0) is equivalent to the problem P\(0) of minimizing the functional I(x, v) \ — 
J(x,v)+Kdc{x(\)) over the state/control pairs (x, v) verifying the dynamics of P(0) with 
x(0) = ^(0) and x remaining in Û\. The problem P\(0) is automatically normal, and 
the previous result is applicable to this one to assert that V\ = V is locally finite and 
Lipschitz at 0 (see [8] for a proof). 

Examine now the rest of the assertions: the assertion that Ya ^ 0 for each a in 6BL2 
is an immediate consequence of Lemma 2.1 and the conclusion that V(a) < oo for a 
in 6Bi2, and the fact that P(a) and P(a) have the same value for a in 6BLi when P(0) 
is free endpoint, can be shown using the same arguments as those of the proof of [9, 
Theorem 5.1]. • 

5.3 Proof of Corollary 4.3. In order to prove the corollary, we need the following 
lemma whose proof arguments may be found in [5, Lemma 6] and where we have to 
use Lemma 2.1 of this paper instead of Lemma 4 of [5]. 

LEMMA 5.4. There exist K(-) G L2(T, R) and a constant M such that for all p G 
M\Y). 

\p(t)\ < K(t) • (\p(t)\ + 1) (a.e.) and \p(\)\ < M. 

Consequently, normality ofP(0) implies that Ml(Y) is bounded in C(T, W1). u 

Now the proof of the corollary is the same as the proof given in [5, after the proof of 
Lemma 6]. • 

5.4 Proof of Corollaries 4.4 and 4.5. For proof, we refer the reader to [5, Corollaries 1, 
2 and 3]. • 

6. Example. We consider in this example a projectile launched from rest at time 
t = 0 with a constant thrust r > g, employed along and making a steering variable angle 
u(t) with the horizontal. Here g denotes the gravitational acceleration. The equations of 
motion are: 

[*i(0 = SoXi(s)ds, 
I x2(t) = JoX4(s)ds, 

J *3(0 = JoTCOSM(j)dk, 
1 x4(t) = JQ{T sin u(s) - g} ds, 
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where (x\ 9x2) and (x3,x4) are respectively the position vector and the velocity vector of 
the projectile. If in addition, we suppose that interior factors to the projectile act on it by 
the vector: 

(J n(t-s)x3(s)ds9J r2(t - s) x4(s) ds\ 

where r\9r2 are C1 real functions satisfying n(0) = 0 = r2(0), then the third and the 
fourth equations become: 

*3(0 = / {T cos u(s) + r\(t — s)x3(s)}ds, x4(t) = / {TSinu(s) — g + r2(t — s)x4(s)}ds. 

We suppose that fuel runs out at t — T, so that thereafter the projectile is subject only to 
gravity until it lands (i.e., until x2 — 0 occurs). The problem is to maximize total hori­
zontal range, which is equal to JCI (T) plus the horizontal distance traveled after fuel runs 
out. This is equivalent to minimizing the negative of the range, which can be calculated 
and is given by: 

/ = - x , ( D - (x3(T)lg){x4(T) + [x4(T)2 + 2gx2(T)]xl2}. 

We recognize this problem as a special case of the basic problem P(0) of Section 2, with 
the data/, F = 0, tp = 09(f)(t9s9x9u) = [x3,*4,rcos u+r\(t—s)x3,r sinw—g+r2(t—s)x4]9 

C = R\ and Q = [0, TT/2] (say). 
Our main goal is to prove that the optimal control can be constant only in the case 

where r\ = r2. Let (x9 u) be an ordinary solution of the problem. Since we are in presence 
of a free endpoint problem, by [9, Theorem 5.1] (JC, U) is also a solution of the relaxed 
problem and then by [9, Theorem 7.4], we conclude that there exists/? = (p\,pi,P3,P4) £ 
AC2(7, R4) such that: 

(a) px = 09p2 = 0, -p3(t) - p\(t)+p3(t) Jo rx(t-s)ds9 -p4(t) = /?2(0+Jo h(t~s)ds\ 
(b) Pl(T) = 1, p2(T) = x3(T)/m, p3(T) = (x3(T) + m)/g, p4(T) = 

(x3(T)/gm)(x4(T) + m), where m = [x4(T)2 + 2gx2(T)]]/2; 

(c) For (a.e.)-r in [0, T],p3(t) cos v(t)+p4(t) sinz/(f) < /73(f) cos u(t)+p4(t) sinu(t) for 
all v G %,, which is valid also for v replaced by any point v in Q. 

From (a), (b) we conclude that/7] = l,p2 = x3(T)/m9 and that/73,/74 are solutions of 
the linear differential equations: p3 + r\p3 — — 1, p4 + r2p4 = —p2 with p3(T) and p4(T) 
respectively given. The condition (c) implies that u is characterized by: tg(u) = p\jp3. 
This quotient is constant iff its derivative is zero, or equivalently iff (r2 — r\ )p4p3 = 
P4 — P2P3 or p4/p3 = p2 + (r\ — r2)p4. This last equality can be written in the form: 

(#) \n(t) ~ n(t)]F(n)(t)F(r2)(t) = F(r2)(t) - F(n)(t\ where 

F(r)(t) := expf- J* r(s)ds) • \p3(T)exp(f r(s)ds) + j expM* r(r)dr\ ds\. 

Note that for each choice of r as before and for all t in [0, 7], F(r)(t) > 0. We conclude 
from (#) that when u is constant, then r\ = r2 iff F(r\)(t) = F(r2)(t) Vf G [0, T]. From 
this, we conclude that u is constant only if r\ = r2. 
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From now on, we take r\(t) = r2(t) — —at, where a is a given positive constant. The 
state (x\,x2,x3,x/\) is given by: 

Xâtit) — (a/ y/â)smy/ât, 

x3(t) = i/3/y/â) sin y/ât, 

xi(t) = (cx/a)(l — cos \fai), 

xi(t) = (J3/a)(l-cosyftt), 

where a = r sin u — g, (3 = r cos u. 

From this and the expressions of tg(u) and m, we conclude that (u, m) is the solution of 
the system: 

m2 = (a2/y/â)sm2y/âT + 2(ga/a)(l-cosy/âT), 

tg(u)=(psm(y/ÏT))/y/ÏT. 

In order to find results of [5, Example E], it suffices to take the limit in the particular case 
n (0 = 7*2(0 = —ot as a tends to 0. 

Suppose now that the dynamics of the problem is perturbed by a vector 
(ai, «2,0:3,0:4). The perturbation disappears in the beginning of the second phase of 
motion (i.e., after fuel runs out). First let us consider only perturbation in velocity, that 
is (a3, a4) = (0,0), o?i(0 = 0 = a2(t) for t > T, and 

x\ = X3 + a j ( 0 , 

X2 = X4 + 0:2(0. 

Corollary 4.5 asserts that the value function V has derivative equal to —/?(•) and to first 
order approximation we have 

V(a) = V(0) - J a{(t) dt - (x3(T)/m) J a2(t) dt. 

From this, we deduce that in order to have a maximal range of the perturbed projectile, 
it suffices that there exists a positive constant k such that a2 = k(x?>(T)/m}oc\. 

If the perturbation is in the thrust, i.e., a3 = 0 = 0:4, then we find 

V(a) * V(0) - £p3(t)[a3(t)+p2a4(t)] dt. 

If we ask for the perturbation well chosen so as to make the range maximal under the 
constraint that || 0:3^2 + l l^ll^ ^ ^ where 6 is a given small number, then by virtue 
of the last formula, this is equivalent to maximize J[o,T]P3a3 + S[o,T)P2P3 subject to the 
given constraint. By looking at this as a mathematical programming problem, we find 
that there must exist a constant k > 0 such that a3 = kp3 and 0:4 = kp2p3, that is 0:3 and 
«4 are in the proportion 1 : p2. 
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