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A PURITY CRITERION FOR PAIRS OF LINEAR 
TRANSFORMATIONS 

URI F IXMAN AND FRANK A. ZORZITTO 

Introduction. In connection with the study of perturbation methods for 
differential eigenvalue problems, Aronszajn put forth a theory of systems 
(AT, Y; A, B) consisting of a pair of linear transformations A, B:X —* Y (see 
[1]; cf. also [2]). Here X and Y are complex vector spaces, possibly of infinite 
dimension. The algebraic aspects of this theory, where no restrictions of 
topological nature are imposed, where developed in [3] and [5]. We hasten to 
point out that the category of C2-systems (definition in § 1) in which this 
algebraic investigation takes place is equivalent to the category of all right 
modules over the ring of matrices of the form 

~P 0 a i l 
0 P a<i , ai, <*2, P, y complex numbers. 

_0 0 7 J 
Moreover, this category contains, not canonically, subcategories equivalent to 
the category of modules over the principal ideal domain of complex poly­
nomials in one variable. We make no essential use of these equivalences. The 
language of systems (in the technical sense of § 1) is preferred because many 
concepts, not all dealt with here, are suggested by the context of pairs of linear 
transformations. However, the above equivalences explain why, as in the 
theory of abelian groups, a central role is played by the concept of a pure 
subsystem. (The terms "spectral", "quasi-spectral" and "quasi-spectrally 
irreducible" were used in the above references instead of * 'direct summand", 
4 'pure" and "purely simple" respectively.) 

Relying on the reader's familiarity with purity in other contexts, we postpone 
its definition and just observe that this concept derives its importance from 
the following facts. Being a pure subsystem is a less demanding condition than 
being a direct summand. Yet for some kinds of subsystems purity implies 
being a direct summand; which facilitates the task of decomposing systems. 
The family of pure subsystems of a given system is inductive, and there are 
fewer isomorphism types of purely simple systems than there are of directly 
indecomposable ones. This enables one to regard the former as natural "building 
blocks" in terms of which isomorphism invariants for general systems can be 
defined. 
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For these reasons much of the algebraic s tudy of systems is concerned with 
giving simple sufficient (and where possible necessary and sufficient) conditions 
for a given subsystem to be pure. In the case of abelian groups it is immediate 
t h a t if H is a subgroup of G such tha t G/H is torsion-free, then H is pure in G. 
Our main result (Theorem 1 below) is the analog of this s ta tement for systems, 
where however some restriction must be imposed on the subsystem corres­
ponding to H and the proof is more involved. This result generalizes Theorem 
5.6 of [5]. T h e need for i t arose in an investigation of weighted shift operators 
in Hilber t space (see [6] and a paper under preparat ion by Zorzi t to) . I t will 
doubtless have other applications. 

In sections 2 and 3 we offer two distinct proofs of Theorem 1. T h e first 
generalizes the method of [5], while the second is based on a theorem of 
Zorzit to s ta t ing t h a t pur i ty is equivalent to the dual concept of co-purity [6 ; 7] . 
This equivalence granted, the second proof is the simpler one. However, the 
first yields more information on the s t ructure of torsion-free systems (Theorem 
2) , which is of interest mainly for purely simple torsion-free systems of rank 
higher than 1 (cf. [5, 5.7]). Finally, we show by means of examples in § 4 
t h a t no simple generalization of Theorem 1 to more than two transformations 
is to be expected. 

1. Def in i t ions a n d s t a t e m e n t of m a i n re su l t . Although we are concerned 
here mainly with pairs of linear transformations, to be able to formulate 
Theorem A below in its full generality and to discuss counterexamples, we 
make the definitions for systems of N linear transformations, where N is any 
positive integer. 

Denote by C ^ the iV-dimensional complex vector space of iV-tuples of 
complex numbers . An (algebraic) CN-system (X, Y) is a pair of complex 
vector spaces X and Y together with a system operation which is a C-bilinear 
m a p 

(e, x) H-̂  ex 

of C ^ X X into Y. If {ej)Nj=i is the canonical basis of C^, the system operation 
determines and is determined by the iV-tuple of linear transformations 

Ajix i—» eft, j = 1, . . . , N 

of X into Y. As explained in detail in [3], i t is technically more convenient to 
have the same space C ^ acting in every C^-system, than to take as our objects 
directly the N-tuples of linear transformations A\, . . . , AN:X —» F . A homo-
morphism of a C ̂ -system (5, T) into a C^-system (X, Y) is a pair (<£, \p) of 
linear transformations <£:S —» X and \p: T —» Y such t ha t 

e<t>s = \pes 

for all e Ç C^, s£ S. Homomorphisms are composed componentwise giving 
rise to an abelian category (equivalent to a category of modules, in s traight-
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forward generalization of the case N = 2 noted in the introduction). Two 
systems in this category are isomorphic if and only if the corresponding 
iV-tuples of linear transformations are equivalent in the classical sense. A 
C^-system (S, T) is a subsystem of the C^-system (X, Y) in case 5 and T are 
subspaces of X and F respectively, and the pair of inclusions is a homomorph-
ism of (S, T) into (X, F), or, equivalently es £ T for all 5 £ S, e £ C'Y. The 
quotient (X, Y)/(S, T) is the C^-system given by the pair of spaces (X/S, Y/T) 
and the system operation (e, x + S) i—> ex + T for all x G X, e Ç C^. A sub­
system (5, T) of (X, F) is a direct summand of (X, F) in case there exists a 
subsystem (U, Z) of (X, F) such that X = S + Z7, S H [ / = 0, F = T + Z 
and m Z = 0. We then call (U, Z) a supplement of (5, T) in (X, F) and 
write (X, F) = (5, T) -]- (U, Z). A non-zero C^-system with no non-trivial 
direct summands is said to be indecomposable. A C^-system (X, F) is said to be 
finite-dimensional in case X and F are finite-dimensional. 

A subsystem (S, T) of (X, F) is said to be pure in (X, F) provided for every 
intermediate subsystem (J7, Z) , (51, T) C. (U, Z) C (X, F) , such that 
(Z7, Z)/(S, T) is finite-dimensional, (5, T) is a direct summand of (Z7, Z) . 
Dually, (5, T) is said to be copure in (X, F) provided, for every subsystem 
(U, Z) of (5, T) such that (S, T)/(U, Z) is finite-dimensional, we have that 
(5, r)/(Z7, Z) is a direct summand of (X, F)/(£/ , Z) . 

These two concepts are equivalent. That a pure subsystem is copure is an 
easy consequence of the fact that a finite-dimensional pure subsystem is a direct 
summand. (See [3] for the case N = 2. The same proof works for general N.) 
Using topological considerations, the second named author has proved the 
following theorem [6; 7]. 

THEOREM A. If (S, T) is a copure subsystem of a QN-system (X, F) , then 
(5, T) is pure in (X, F). 

A C^-system (X, F) is said to be torsion-free^ in case all the linear trans­
formations x \-+ ex, 0 7e e (i CN are injective. In the case N = 2 the finite-
dimensional torsion-free systems can be described as follows. Let (X, F) be 
a C2-system, (a, b) a basis of C2 and py q rational integers with p — 1 ^ q. 
We denote by Cp'q(a, b;X, F) the set of all pairs of sequences ((xk)l=p, (y^ltl), 
with xk G X, yk Ç F, which satisfy the conditions 

axjc = yk, bxk = yk+i for p ^ k ^ q. 

(If p — 1 = g, the first sequence is empty.) Such a pair of sequences is called 

f in spite of the connection to eigenvalues we prefer this term to "eigenvalue-free" used in 
[3] mainly because it is linguistically more convenient in combination with other terms. Its use 
is justified by the facts that a torsion-free module over C[X] can be construed as a torsion-free 
C2-system, and that for general N the torsion-free systems actually form a torsion-free class 
(see e.g. [4]). We modify similarly the derived terms. 
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a chain with domain sequence (xk)
q
v and range sequence (yk)$+1. A chain can be 

represented diagramatically thus: 

a/ \h a/ \b a/ \b 

yP yP+i yp+2" y« y<+i 

Cp'q(a, b; X, Y) is endowed with the structure of a complex vector space by 
defining the operations componentwise for the domain and range sequences. 
A C2-system (X, Y) is said to be of type IIIW, m = 1, 2, . . . , in case for some 
basis (a, b) of C2 there exists a chain in C1,m_1(a, b; X, Y) whose first and 
second component sequences are bases of X and Y respectively. (We follow 
here the notations of [3]. The notations are somewhat different in our other 
references.) It is shown in [3, Lemma 2.5] that this definition is independent of 
choice of basis (a, b), so that III™ denotes a definite isomorphism type. More­
over, it follows from the results 2.6, 2.2, 4.3 and 9.3 (a) of [3] that: 

THEOREM B. C2-systems of the types IIP are indecomposable. Every torsion-free 
finite-dimensional C2-system is a direct sum of a finite number of subsystems of the 
types IIIm. 

We can now formulate our main result. 

THEOREM 1. Let (S, T) be a subsystem of a C2]-system (X, F). Suppose that 
(S, T) has no direct summand of any of the types IIP, m = 1 , 2 , . . . , and that 
(X, Y)/(S, T) is torsion-free. Then (S, T) is pure in (X, F). 

The isomorphism types of finite-dimensional indecomposable C2-systems 
which are not torsion-free were denoted in [3] by the symbols Im and IIèw (è is 
the point of the projective complex line P1(G) generated by 0 ^ e Ç C2). We 
refer to [3] for descriptions of these types by means of chains (not needed here) 
and for a simple proof of the theorem, essentially due to Kronecker, that every 
finite-dimensional G2-system is a direct sum of subsystems of the above types [3, 
Theorem 4.3]. We shall use however the following part of [3, Proposition 6.9].ft 

THEOREM C. Let (S,T) be a subsystem of the C2-system (X, F). If (X, F ) / (5 , T) 
is of type IIP and (S, T) is of one of the types Im, I If1 (m any positive integer) or 
of type IIIm with n S m + 1, then (5, T) is a direct summand in (X, F). 

tfThis proposition and the related result [3, Lemma 3.6] may be improved by making the 
following changes in [3]: p. 295, 1. 4: replace "m ^ «" by "m ^ n + 1"; 1. 23: replace "the 
first, that m ^ n. If m ^ n" by "that m ^ n. If m ^ n + 1" ; p. 310, 1. 5 from bottom: 
replace "n ^ m" by "n + 1 ^ m"; p. 310, last line: replace "n ^ w" by "n ^ m-\- 1". 
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2. First proof of Theorem 1. The proof will follow from the following 
two results. 

THEOREM 2. Let (X, Y) be a non-zero torsion-free G2-system which has no 
direct summand of any of the types III171, m = 1, 2, . . . . Then for every finite-
dimensional subsystem (5, T) of (X, Y) and positive integer n, there exists a 
subsystem (U, Z) of (X, Y) containing (S, T) such that (U, Z) is a finite direct 
sum of subsystems of types IIImJ with m^ ^ n for all j . 

Proof. Since (X, F) is non-zero and torsion-free, Y ^ 0. Thus if (5, T) = 
(0, 0), we can embed it first in a subsystem (0, Cy) with 0 ^ y £ Y. Hence 
we may assume that (5, T) ^ (0, 0). Then by Theorem B, (5, T) is a non­
empty finite direct sum 

(s, T) = E . (s\ r), 
3=1 

where (Sj, Tj) is of type IIIZ>, j = 1, . . . , g. Put 

1 = min{Z,:l £j£g}. 

Using induction, it suffices to embed (S, T) in a subsystem (U, Z) of (X, F), 
which has a finite decomposition 

(*) (u, z) = £ • (tf*. z*), 
fc=i 

where ([/*, Z*) is of type IIIm* and 
(**) mk> I for all k = 1, . . . , h. 

Actually, the m^s are uniquely determined by (U, Z) up to order (see [3, p. 
309]); but this is immaterial for the present proof. 

Fix a basis (a, b) of C2 and let Tj be a chain in C1,z ' -1(a, b; Sj, rFj) which 
spans (Sj, Tj). Since by assumption (S', Tj) is not a direct summand of 
(X, F), it follows from Theorems 5.5 and 6.6 of [3] that Tj Ç Cllll^a,b;X, F) ; 
namely, that F is the sum of restrictions of two longer chains F\ £ 
C°-li-l(a, b; X, F) and r>2 € C 1 ' ^ , 6; X, F). Here the restrictions of the 
domain sequences are to the interval [1, lj — 1] which is empty if lj = 1) and 
those of the range sequences are to the interval [1, / J . Let (Uji, Z\) and 
(Uj2, Zj

2) be the subsystems spanned by T;i, and r;'2 respectively (i.e., JJ\ 
is the subspace spanned by the domain sequence of Tji, etc.). Define (U, Z) 
as the (not necessarily direct) sum 

(V, z)= i {{uj
u z\) + (uj

2l z
j
2)). 

This subsystem clearly contains (5, JT). By Theorem B, (U, Z) has a de­
composition of the form (*). We claim that any such decomposition satisfies 
the condition (**). 
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Let {iric)k=i and (pk)
k
h=i be the sequences of projections associated to the 

decompositions 

U= £ -Uk and Z = 2 • Z* 
k=l k=l 

respectively. Then it is easy to verify that the pairs (irkl pk) are endomorphisms 
of the C2-system (U, Z). It follows that by applying irk to the elements of the 
domain sequence of T;i and pk to the elements of its range sequence one obtains 
a chain (*•*, Pk)Y\ G C0-1'-1^, b; U\ Zk). Similarly, (Vk, Pib) r ' a G &-l*(a, b; 
U\ Zk). 

We now observe that, in general, if (V, W) is a C2-system of type I I P and V 
is a chain in C1,Q(a, b; V, W) for some integer q ^ p, then T is a zero chain. 
Indeed, by passing to an isomorphic system, we may assume that V is the 
space of all complex polynomials in the indeterminate z of degree at most 
p — 2 (V = 0 iî p = 1), W is the space of polynomials of degree at most 
p — 1 and the system operation is defined as follows. For v (z) G V, aa + fib G 
CMet 

(aa + /3b)v(z) = (a + 0z)v(z). 

The chain 

which belongs to CltP~l{a, b; V, W), shows that this (V, W) is actually of type 
I I P (if p = 1, the domain sequence is empty). Now if T = ((^(s))ï , 
(wk(z))\+l), we have the relations 

wk(z) = az^O) = ^ ( s ) , wk+1(z) = bvk(z) = s^O), & = 1, . . . , q. 

Thus ^4-1(2) = zQWi(z). Since PF contains no non-zero polynomial of degree 
exceeding p — 1, it follows that W\(z) = 0. The above relations then imply 
that all the chain elements vanish. 

In our case we thus get that if mk ^ /, and hence mk ^ ljf then (irk, pk) Tji 
and (wkj pk) T

}2 vanish. Hence for every j = 1, . . . , g the elements of the do­
main and range sequences of r ; 'i and T\ belong to J2{Uk:mk > /} and 
^{Zk:mk > 1} respectively. It follows that 

(U,Z) Clll(Uk9Zk):mk> /}. 

As the reverse inclusion is obvious, we actually have here equality. Since 
none of the subspaces Zk, 1 ^ k ^ h, is a zero space, this and (*) imply (**). 

We observe that if (5, T) is a pure subsystem of a C ̂ -system (X, Y), then 
every equation ex = t, t £ T, e G C^, which is solvable by some x G X is also 
solvable by some s G S. This is because (5, 7") is a direct summand in (S + Cx, 
T + GNx). I t follows that whenever (S, T) is pure in a torsion-free C ̂ -system 

https://doi.org/10.4153/CJM-1974-068-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-068-8


740 U. FIXMAN AND F. A. ZORZITTO 

(X, F), the quotient (X, Y)/(S, T) is also torsion-free. The following partial 
converse is already a generalization of [5, Theorem 5.6]. 

LEMMA 1. Let (5, T) be a torsion-free subsystem of a C2-system (X, F) . 
Suppose that (5, T) has no direct summand of any of the types IIIm

y m = 1, 2, 
. . . , and that (X, Y)/(S, T) is torsion-free. Then (S, T) is pure in (X, Y). 

Proof. A sufficient condition for purity is that (5, T) be a direct summand in 
every intermediate extension with a finite-dimensional indecomposable 
quotient (see [3, Proposition 5.2]). Since (X, Y)/(S, T) is torsion-free we see 
from Theorem B that only quotients of the types I I P come into account here. 
So it suffices to consider the case that (X, F) / (S , T) is itself of type I I P and 
prove that (S, T) is a direct summand in (X, F). Let (P, Q) be a finite-
dimensional subsystem of (X, F) such that 

(i) (X, Y) = (S, T) + (P, Q). 

We neglect the trivial case (S, T) = (0, 0). Then by Theorem 2 there exists 
a subsystem ([/, Z) of (5, T) containing (S, T) C\ (P, Q) such that 

(ii) (U, Z) = £ • (£/', Z') 

where (U3, Z1) is of type III*™* and Wj + 1 è » for all j = 1, . . . , r. By the 
choice of (U, Z) we have (S, T) f\ (P, Q) C (U,Z)(~\ (P, Q). Since (5, T) D 
(£/, Z) , we have in fact (5, T) Pi (P, Ç) = (U, Z) C\ (P, Q). This implies by 
the isomorphism theorem that 

«U,Z) + (P,Q))/(U,Z) £- ((5, r ) + (P,Q))/(S, T) = (X, F ) / (5 , T), 

which is of type I I P . Using (ii), Theorem C, and the fact that Ext commutes 
with finite direct sums in its second variable, we conclude that we have a 
decomposition 

(iii) (U,Z) + (P, Q) = (U,Z) + (K, L). 

The last decomposition can also be derived directly, by showing by induction 
on& = 1,2,. . . , r that (U, Z ) / Z 5 = i ( ^ ' , Zj) is a direct summand in ((£/,Z) + 
(P Q))/J2T-Z\(Uj Zj). 

From (i)' (iii) and (P, Q) C\ (S, T) C (U, Z) C (5, T) it easily follows that 
(X, F) = (5, r ) + (K,L). 

Conclusion of proof of Theorem 1. We show that the assumption in Lemma 1, 
that (5, T) be torsion-free, can be deleted, whence we are done. 

Indeed, let (X, F) and (5, T) be as in the statement of Theorem 1. We 
denote by/(X, F) the torsion part (see footnote) of (X, F), which is the smallest 
subsystem (P, Q) of (X, F) such that (X, Y)/(Pf Q) is torsion-free (see [3, 
p. 324]). The subsystem t(X, Y) is pure in (X, F) by [3, Proposition 9.12], 
and since it is contained in (5, T) it is pure also in (5, T). The subsystem 
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(S, T)/t(X, F) inside (X, Y)/t{X, Y) satisfies the hypotheses of Lemma 1. 
Clearly ((X, Y)/t(X, F)) / ( (S , T)/t(X, F)) ^ (X, F) / (S , T) is torsion-free. 
In addition, if (K, L)/t(X, Y) is a direct summand in (5, T)/t(X, Y) of type 
I I P for some w, then (K, L) = *(X, F) + (G, H) , where (G, H) is of the same 
type. By [3, Proposition 5.3], which gives the usual properties of pure sub­
systems, {K, L) is pure in (S, P) and hence (G, H) is pure in (S, P). From [3, 
Theorem 5.5] it follows that, being finite-dimensional, (G, H) is a direct sum­
mand in (5, P). This is against the hypothesis on (S, T). Thus Lemma 1 im­
plies that (5, T)/t(X, F) is pure in (X, Y)/t(X, F). Using [3, Proposition 5.3] 
again, it follows that (S, T) is pure in (X, F). 

3. Second proof of Theorem 1. We break this proof into three parts. 

LEMMA 2. A subsystem (S, T) of a C2-system (X, F) is copure in (X, F) if 
and only if for every subsystem ([/, Z) of (S, T) such that (S, T)/(U, Z) is 
finite-dimensional and indecomposable we have that (S, T)/(U, Z) is a direct 
summand of (X, Y)/(U, Z). 

Proof. This lemma is clearly the dual statement of [3, Proposition 5.2], and 
we shall use that result to prove it. 

The condition is evidently necessary. We show that it is sufficient. Consider 
the dual C2-system (F*, X*) of (X, F), where F* is the space of linear func­
t ional on F, and X* the functionals on X. (In [3] the dual is defined by anti-
linear functionals instead of linear ones, but for the purpose at hand it does 
not matter which are taken.) The system operation for (F*, X*) is given by 

(ey*)(x) = y*(ex), e G C2, y* G F*, x G X. 

The polars T± = {y* G Y*:y*(T) = 0} and S-1 = {x* G X:x*(S) = 0} in­
side F* and X* respectively determine a subsystem (T1-, SL) of (F*, X*). One 
may check in a routine way or from [7] that (S, P) is copure in (X, F) if 
(and only if) (T1-, S1-) is pure in (F*, X*). Let (Q, P ) be a subsystem of 
(F*, X*) containing the polar (P-1, S-1) inside (F*, X*) such that 
(Q, P ) / ( r ± , 5X) is finite-dimensional and indecomposable. By [3, Proposition 
5.2] to show that (P-1, 5X) is pure in (F*, X*) it suffices to show that (T1-, 5X) 
is a direct summand in every such (Q, P ) . The polar (P±

J Q1-) is inside (5, T) 
and is such that (S, T)/(P±, Q-1) is finite-dimensional and indecomposable. 
Here P1- is defined as [x G X:x*(x) = 0 for all x* G P] ; similarly for Q1-. By 
hypothesis, (5, T)/(P J- , Q1-) is a direct summand in (X, Y)/(P±

1 Q1-) with a 
supplement (i£, P ) / ( P X , (H) for some (X, L) in (X, F). Then (L-1, K-1-) in 
(F*, X*) serves as a supplement to (P-1, 5X) inside (Q,P). 

LEMMA 3. Let (5, P) be a subsystem of a G2-system (X, F). Suppose (5, P) 
/zas wo homomorphic images of any of the types IIIm, m = 1, 2, . . . , and that 
(X, F ) / (5 , P) is torsion-free. Then (S, T) is pure in (X, F). 

Proof. Let (P, (?) be an intermediate subsystem (5, P) C (P, (?) C (X, F) 
such that (P, Q)/(S, T) is finite-dimensional and indecomposable. Since 
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(X, Y)/(S, T) is torsion-free it follows from Theorem B that (P, Q)/(S, T) 
must be of type IIIW for some m. To show that (5, P) is a direct summand of 
(P, Q) it clearly suffices to show it is pure in (P, Q). By Theorem A it will do 
to show (S, T) is copure in (P, Q). Testing for this according to Lemma 2 we 
let (U, Z) be a subsystem of (5, P) such that (S, T)/(U, Z) is finite-dimensional 
and indecomposable. By hypothesis (5, T)/(U,Z) is never of type I I P for any 
n, and thus must be of one of the types P or II f. From Theorem C we deduce 
that (S, P ) / ( U, Z) is a direct summand in (P, Q)/ ( Z7, Z) and hence that (5, P) 
is copure in (P, <2), yielding our result. 

THEOREM 3. / / (5, P) is a C2-system with a homomorphic image of type IIP 
for some n, then it has a direct summand of type IIIm for some m S n. 

Proof. The proof could be derived from the dual statement which is implicit 
in [3]. However, a direct proof is almost as simple. Let (J7, Z) be a subsystem 
of (S, P) such that (S, T)/(U, Z) is of type IIIm with m minimal. We shall 
prove that (£7, Z) is a direct summand of (5, P), in which case the other 
summand will be of type III™. By Theorem A one needs only to show ([/, Z) 
is copure in (S, P) . In view of Lemma 2 consider (P, Q) inside (U, Z) such that 
([/, Z)/(P, Q) is finite-dimensional and indecomposable, and hence of type 
P , lle

k or I I P for some k = 1, 2, . . . . In the cases P , II^fc and I I P where 
j ^ m, Theorem C guarantees that (U, Z)/(Py Q) is a direct summand in 
(5, T)/ (P, Q). The remaining case where j < m cannot occur. To see this 
suppose to the contrary that (U, Z)/(P, Q) is a subsystem of (5, T)/(P, Q), 
which is of type I I P with j < m. The system (5, T)/(P, Q) is finite-dimen­
sional and torsion-free and thus by Theorem B 

(S, T)/(P, Q)= £ .{Vu W(), 

where for each i = 1, . . . , r (Vu Wt) is of type IIP* for some nt. If we had 
Wj < m for some i, then {Vu Wt) would be a homomorphic image of (5, T), 
contrary to the minimality of m. So nt ^ m for all i, but since j < m and 

T 

m + j = dim P/Q = Yl nj 
i=l 

it follows that r = 1 and Wi = m + j . Thus (5, P ) / ( P , (?) is of type 111™+' 
and has (5, T)/(U, Z) of type III™ as a homomorphic image. This contradicts 
the easily verifiable fact that systems of type I I P do not have homomorphic 
images of type I I P when k < n. Hence j < m cannot occur. So (U, Z) is a 
direct summand of (Xy Y). 

The statement of Theorem 1 now follows immediately by applying Theorem 
3 to Lemma 3. 

4. Counterexamples. The statement in Theorem 1 or in Lemma 1 that 
(S, T) has no direct summands of any of the types IIIm is tantamount to 
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saying t h a t (5, T) has no finite-dimensional, torsion-free, indecomposable 
(non-zero) direct sumands. With this rewording, the s ta tements of Theorem 1 
and Lemma 1 make sense with any N replacing N = 2. However, the examples 
to follow show these generalizations to be false when N > 2. 

Example 1. We present an infinite-dimensional indecomposable torsion-free 
C3-system (S, T) embedded inside a C3-system (X, F) such t h a t (X, Y)/(S, T) 
is torsion-free and finite-dimensional. Yet (S, T) will fail to be a direct sum-
mand, and hence fail to be pure, in (X, Y). Wi th this we negate the proposed 
generalization of Lemma 1 and of the stronger Theorem 1 to N = 3. 

Le t X be complex vector space containing C[z], the space of complex poly­
nomials, as a subspace such t h a t X/C[z] is 2-dimensional. Let F be a space 
containing G[z] as a subspace such t ha t F/C[s] is 4-dimensional. We select 
bases {1, z, z2 

Xi, X2\, { 1 , Z, Z2 ; yu y*> y*, y A and {ely e2, ez\ of x , Y 
and C 3 respectively. We define the system operation of C 3 from X to F as 
follows. F o r / ( z ) G C[z], a\e\ + a2e2 + «3^3 G C3 , let 

(«i^i + a2e2 + adez)f(z) = («i + a2z + azz
2)f(z). 

For xi, x2 G X let e1} e2, ez act according to the diagram 

yi + 2y* + 2yz - l 

T h a t is, exXi = yu • • • , e%x2 = yi + 2y2 + 2y^ — 1. Then we extend the 
operation of C 3 to all of X linearly to define the C3-system (X, F ) . 

Evident ly (C[z], G[z]) is a torsion-free subsystem of (X, F ) , and 
(X, F ) / ( C [ s ] , C[z]) is finite-dimensional. This quot ient system is also torsion-
free; for if 

(«101 + a2e2 + o^sK/SiXi + p2x2 + C[z]) = 0 

in F /C[s] with a non-zero aiei + a2e2 + a^ez G C 3 and ($1, /32 G C, then 

(a^x + a2e2 + a^ez) (fixXi + /32x2) = 7 • 1 

for some 7 G C. By expanding the left-hand side and comparing coefficients of 

the five linearly independent vectors ylt y2, 3/3, y*, 1, one sees t ha t this implies 

0i = £2 = 0. 
In addit ion (C[s], C[z]) has no finite-dimensional, non-zero direct summands . 

(In fact, it is indecomposable.) Indeed, if (P , Q) is a direct summand of 
(C[z], C[z]) the fact t ha t ^i G C 3 acts as the identi ty on C[z] implies t h a t 
P = Q. If 0 3^ / ( s ) G P , then, by the action of e2 on C[z], we see t h a t znj{z) G P 
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for all n. Thus P is not finite-dimensional. (One could show that in fact P = 
CM.) 

Finally, we check that (C[s], C[z]) is not a direct summand of (X, F) . 
The equation 

Oi + 2e2 + e3)£i + (ei — ez)£2 = 1 

with 1 Ç C[z] is solved by £i = xu £2 = x2 in X. If (C[z], C[z]) were a direct 
summand in (X, F) one could also solve this equation by some/i(z),/2(z) G C[z] 
(see [3, Proposition 3.4]). However (a + 2e2 + e3)/i(z) + ( î — 03)/(z) = 
(1 + 2z + z2)fi(z) + (1 — z2)f2(z), which is never 1 due to the common 
divisor 1 + z of 1 + 2z + z2 and 1 — z2. 

Suppose now that N > 3. Let {ej} j==i be a basis of C^. We replace the former 
C3-system (X, F) by the C ̂ -system (X, W), where W is the external direct 
sum of F with N — 3 copies of X. We define the system operation in (X, W) by 

I ^2 OùjejJX = ((ûJl^l + «2^2 + <*3<?3)#, &lX, • . • , ûfA^), 

where the first component on the right hand side is computed as in (X, F). If 

Z = {(t, sA, . . . , sN) :t £ T; 54, . . . , sN G S], 

then (5, Z) is a subsystem of (X, IF). It is easy to verify that (S, Z) and 
(X, IF) provide the required counterexample for the case of C^-systems. 

Example 2. Now we negate again the tentative generalization of Theorem 1, 
this time by use of a finite-dimensional G3-system. 

Let X be a 3-dimensional complex space with a base \xi, x2, #3} and F a 
6-dimensional space with a base {3/1, . . . , yQ\. Let [e\, e2y e^} be a base of C3. 
We determine a C3-system (X, F) by the following diagram 

Xi X2 #3 

and extending these assignments linearly to an action of C3 from X to F. 
Clearly, the subsystem (Cx3, C Y^i=iJi + Qye) of (X, F) is not torsion-free, 

and, being indecomposable, does not have any finite-dimensional, torsion-
free, indecomposable, non-zero direct summands. The quotient (X, F ) / 
(Cx3, C J2i=iyi + Qy6) is torsion-free. For if 0 ^ «i^i + a2e2 + a3e3 Ç C3 

and /3i(xi + Cx3) + 02 (#2 + Cx3) £ X/Cx 3 are such that 

(aid + ot2e2 + «3^3)(/3i(xi + Cx3) + 02(x2 + Cxz)) = 0 
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in F/(C Y^Uji + Cy,), then 
5 

(aiei + a2e2 + aze3)(PiXi + /32x2) = 7 E J'i 

for some y Ç C. Expansion of the left-hand side and comparison of coefficients 
of the 6 independent yly . . . , y% reveals that fi± = (32 = y = 0 and proves our 
claim. Thus (Cx3, C Y^i-iJi + Cye) in (X, Y) satisfies all the hypotheses of 
the proposed generalization of Theorem 1. 

However, (Cx3, C Y^i^iJi + C^6) is not a direct summand (equivalent to 
pure in this case) in (X, F). This follows from the fact that the equation 

5 

(ei + e2)£i + (ei + e2 + ^s)?2 = X) 3^ 
i=i 

can be solved by Xi, x2 in X but not by a pair Xi#3, X2X3 in Cx3. Indeed, the 
equation (^ + e2)XiX3 + (ei + e2 + e3)X2x3 = 2*=i:y* would imply the con­
tradictory equations 0 = Xi + X2 = 1. 

The procedure outlined at the end of Example 1 can be used also here to 
provide a counterexample with a finite-dimensional C^-system where N > 3. 
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