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Abstract
An old conjecture of Erdős and McKay states that if all homogeneous sets in an n-vertex graph are of
order O(log n) then the graph contains induced subgraphs of each size from {0, 1, . . . ,�

(
n2

)
}. We prove

a bipartite analogue of the conjecture: if all balanced homogeneous sets in an n× n bipartite graph are of
order O(log n), then the graph contains induced subgraphs of each size from {0, 1, . . . ,�

(
n2

)
}.
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1. Introduction
Given a graph G we write hom(G) to denote the homogeneous number of G, given by

hom(G) := max
{
t ∈N : ∃ U ⊂V(G) with |U| = t such that G[U] is complete or empty

}
.

In its simplest form, Ramsey’s theorem [30], [15] states that any n-vertex graph G satisfies
hom (G)= �(log n) and a classical result of Erdős [14] shows that this behaviour is essentially
optimal; there are n-vertex Ramsey graphs G0 with hom (G0)=O(log n). However, the existence
of such Ramsey graphs has only been demonstrated indirectly via probabilistic methods and find-
ing explicit constructions of graphs exhibiting such behaviour remains a tantalising open problem
(a $1000 Erdős problem [11]).

Despite the challenges in constructing Ramsey graphs, and perhaps influenced by them, there
has been much success in understanding the intrinsic properties possessed by these graphs.
For example, Ramsey graphs have been shown to (roughly) exhibit similar behaviour to the
Erdős-Renyi random graph w.h.p. with respect to edge density [16], non-isomorphic induced sub-
graphs [31], universality of small induced subgraphs [29], and the possible edge sizes and degrees
appearing in induced subgraphs [23], [22], [19].

A challenging remaining problem in this context is the Erdős–McKay conjecture [17].
Informally, the conjecture asks whether every Ramsey graph must contain (essentially) the entire
interval of possible induced subgraph sizes. More precisely the conjecture asks whether every
n-vertex graph G with hom (G)≤ C log n satisfies

{
0, . . . ,�C

(
n2

)} ⊂ {e(G[U]) :U ⊂V(G)}. The
best known bound for the conjecture is due to Alon, Krivelevich and Sudakov [1] who proved
that such graphs necessarily contain induced subgraphs of each size in

{
0, . . . , n�C(1)

}
. The con-

jecture was also proved for random graphs (in a strong form) by Calkin, Frieze andMcKay in [10].
More recently, Kwan and Sudakov [23] gave further support proving that such graphs necessarily

†The second author is grateful for support through an EPSRC DTP studentship.

C© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution-NonCommercial-ShareAlike licence (https://creativecommons.org/licenses/by-nc-sa/4.0/), which permits
non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the
original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.

https://doi.org/10.1017/S0963548322000347 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548322000347
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0963548322000347&domain=pdf
https://doi.org/10.1017/S0963548322000347


466 E. Long and L. Ploscaru

contain induced subgraphs of �C
(
n2

)
different sizes, which improved an earlier almost quadratic

bound of Narayanan, Sahasrabuhde and Tomon [25].
Our aim here is to study the natural analogue of this conjecture for bipartite graphs. Recall

that the bipartite analogue of Ramsey’s theorem states that any balanced bipartite graph G=
(V1,V2, E) with |V1| = |V2| = n contains either Kt,t or Kt,t as an induced subgraph with t =
�(log n). This type of behaviour is again known to be the best possible in general, though explicit
constructions of ‘bipartite Ramsey graphs’ are also unknown. In fact, these are more challenging
in a sense as such constructions would lead to constructions in the usual Ramsey setting (see e.g.
[7]). In part, this has contributed to significant interest in Ramsey results in the bipartite setting,
e.g. see [13], [12], [4] [5], [8], [32].

Given the context above, and the difficulties in the Erdős–McKay conjecture, it is natural to ask
what can be said about the edge sizes of induced subgraphs in balanced n-vertex bipartite Ramsey
graphs? A general result of Narayanan, Sahasrabuhde and Tomon [27] gives some information
here. These authors also studied a generalisation of the Erdős ‘multiplication table problem’ and
showed that any bipartite graph with m edges has induced subgraphs of �̃(m) distinct sizes.
Recently, Baksys and Chen [6] raised the bipartite Ramsey question and proved an analogue of
Kwan and Sudakov’s theorem: any balanced bipartite Ramsey graph on vertex classes of order n
has induced subgraphs of �

(
n2

)
different edge sizes.

Our main theorem extends this line of research, proving an analogue of the Erdős–McKay
conjecture in the bipartite setting. Before stating it, we give amore precise definition of the Ramsey
property for bipartite graphs, in a slightly more general setting.

Definition 1.1. Given C > 0, a graph G= (V1,V2, E) is called C-bipartite-Ramsey if for any t1 ≥
C log2 |V1| and t2 ≥ C log2 |V2| there is no induced copy of Kt1,t2 or Kt1,t2 in G.

We will often simply say that G is a C-Ramsey graph when it is clear that G is bipartite.
We can now state our main result, which gives an analogue of the Erdős–McKay conjecture in

the bipartite Ramsey setting.

Theorem1.2. Given C > 0 there is α > 0 such that the following holds. Suppose that G= (V1,V2, E)
is a C-bipartite-Ramsey graph. Then {0, . . . , α|V1||V2|} ⊂ {e(G[U]) :U ⊂V(G)}.

Our proof of Theorem 1.2 follows a similar line of approach to [25], [23] and [6], in which we
first show that one can get close to the desired edge sizes and then refine this to show that certain
perturbations are typically available to allow one to adjust to the exact size. Anti-concentration
estimates are a key tool in ensuring that the desired perturbations are ‘sufficiently rich’ here. We
prove such bounds using diversity of vertices and diversity for pairs of vertices, introduced by
Bukh and Sudakov [9] and Kwan and Sudakov [23], respectively, though a different notion of pair
diversity was key here in obtaining the required behaviour. We were also able to keep track of the
perturbation structure using certain sumset techniques.

Update: After this paper was submitted, Kwan, Sah, Sauermann and Sawhney [21] uploaded a
remarkable paper, which has completely resolved the Erdős − McKay conjecture. The proof is
a tour de force, combining a wide range of techniques, and it is significantly different from our
approach here.

Notation. Given disjoint sets V1 and V2 we write G= (V1,V2, E) to represent a bipartite graph G
with vertex set V(G)=V1 	V2 and edge set E(G)= E⊂V1 ×V2. The edge density of G is given
by e(G)/|V1||V2|. Given Ui ⊂Vi for i= 1, 2 we write G[U1,U2] to denote the induced subgraph
G[U1,U2]= (U1,U2, E∩ (U1 ×U2)).

Given a graph G and u, v ∈V(G), we write u∼ v if u and v are adjacent vertices in G. The
neighbourhood of u is given by NG(u)= {v ∈V(G) : u∼ v} and given S⊂V(G) we let NS

G(u) :=
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NG(u)∩ S; we will omit the subscriptGwhen the graph is clear from the context.Wewrite dSG(u)=∣∣NS
G(u)

∣∣.
Given vertices u, v ∈V(G) we write divG(u, v) for the symmetric difference N(u)�N(v). The

biased diversity of u and v, denoted by divbG(u, v), is going to be the largest of the two sets N(u) \
N(v) and N(v) \N(u). If these have the same size, then we arbitrarily pick one of the sets to be
divbG(u, v). Clearly |divbG(u, v)| ≥ |divG(u, v)|/2.

We will also be interested in ordered pairs of vertices p= (u, v) ∈ (V(G)
2

)
. Naturally, given such a

pair p we can define divG(p) := divG(u, v). We will also make the convention throughout that all
pairs are ordered so that divbG(p)=N(u) \N(v), which implies d(u)≥ d(v). Moreover, for later
diversity purposes, we will need to study deg-diffS (p) := dSG(u)− dSG(v).

Given integers m≤ n we will write [m, n] to denote the interval {m,m+ 1, . . . , n} and given
n ∈N we write [n] for the interval {1, . . . , n}. All logarithms in the paper will be base 2 unless
otherwise stated. Floor and ceiling signs are omitted throughout for clarity of presentation.

2. Collected tools
Before beginning in earnest on the proof of the theorem, we make two simple observations on the
relation between vertex classes and the size of a C-bipartite-Ramsey graph G= (V1,V2, E), which
are useful for future reference.

• Given any α ∈ (0, 1) andUi ⊂Vi with |Ui| ≥ |Vi|α for i= 1, 2, the induced graphG[U1,U2]
is (Cα−1)-Ramsey.

• Suppose that |V1| ≥ |V2| and let W ⊂V2 of size |W| = 2C log |V2|. By the pigeonhole
principle there is a set U ⊂V1 with |U| ≥ |V1|2−|W| such that for all u ∈U one has
NW
G (u)=W′. It follows that G contains an induced Kt1,t2 or Kt1,t2 where t1 = |V1|2−|W|

and t2 = C log |V2|. As G is C-Ramsey it follows that t1 ≤ C log |V1|, which in particular
gives |V1| ≤ |V2|OC(1). Thus the vertex classes of C-bipartite-Ramsey graphs are necessarily
polynomially related.

2.1 Density control
We start by proving a density result for bipartite Ramsey graphs, which is the analogue of
the Erdős-Szemerédi theorem [16] for Ramsey graphs in general. The proof uses a well-known
argument due to Kovari−Sós−Turán [20].

Lemma 2.1. Given C > 1 there is nC ∈N such that the following holds. Suppose that G= (V1,V2, E)
is a C-bipartite-Ramsey graph with |V1|, |V2| ≥ nC. Then G has edge density between (16C)−1 and
1− (16C)−1.

Proof. To see this let ε = (16C)−1, t1 = C log |V1|, t2 = C log |V2| and assume that t1 ≤ t2. It is
enough to show that our graph cannot have density larger than 1− ε, as the other statement
follows by looking at the (bipartite) complement G.

For the sake of contradiction, suppose the density d(G)> 1− ε, and let us count in two ways
the number M of stars Kt1,1 which are formed by taking a single vertex in V2 and t1 of its
neighbours. On one hand, each vertex v ∈V2 contributes

(d(v)
t1

)
stars, giving us:

M ≥
∑
v∈V2

(
d(v)
t1

)
≥ |V2| ·

(
e(G)/|V2|

t1

)
≥ |V2| ·

(
(1− ε)|V1|

t1

)
≥ |V2| · (1− 2ε)t1

(|V1|
t1

)
. (1)

Here we have used Jensen’s inequality for the map x→ (x
t1
)
in the second inequality, and that

t1 ≤ ε|V1| for the final step, as |V1| ≥ nC.
On the other hand, if G is Kt1,t2 -free then for each subset S⊂V1 of t1 vertices there are at most

t2 − 1 vertices in V2 that can form a star with S, and so M ≤ (t2 − 1)
(|V1|
t1

)
. Combined with (1)
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this gives |V2| ≤ (t2 − 1)(1− 2ε)−t1 ≤ |V2|1/2e4εt1 , using that |V2| ≥ nC and that 1− x≥ e−2x for
x ∈ [0, 1/2]. It follows that |V2| ≤ e8εt2 = |V1|8Cε = |V2|1/2, a contradiction. �
Corollary 2.2. For any C > 1 there exists nC ∈N such that the following holds true. Any C-bipartite-
Ramsey graph G= (V1,V2, E) with |V1|, |V2| ≥ nC contains at least 2|V1|/3 vertices in V1 which all
have degrees between (32C)−1|V2| and (1− (32C)−1)|V2|.
Proof. Suppose for the sake of contradiction that the conclusion is not true. Let ε := 1/32C and
suppose at most 2|V1|/3 vertices v ∈V1 have degrees between ε|V2| and (1− ε)|V2|. Then, by the
pigeonhole principle, without loss of generality we can assume that there is a set U1 ⊂V1 with
|U1| ≥ |V1|/6 such that all vertices in U1 have degree less than ε|V2|. But then the edge density of
the induced bipartite graph G[U1,V2] is less than ε. On the other hand, it is easy to see that if G is
C-bipartite-Ramsey, since 6|U1| ≥ |V1| ≥ nC, the graph G[U1,V2] is 2C-bipartite-Ramsey. This is
a contradiction by Lemma 2.1. �

In particular, we can repeatedly make use of Corollary 2.2 inside a bipartite graph to obtain the
following result, which will be useful later.

Lemma 2.3. Given C > 1 and a natural number L there is n0 ∈N such that the following
holds. Suppose that G= (V1,V2, E) is a C-bipartite-Ramsey graph with |Vi| ≥ n0. Then, taking
εi := (64C)−i for all i ∈ [L], one can find vertices U := {u1, u2, . . . , uL} ⊂V1 such that

∣∣∣N(ui) \⋃
j<i

N(uj)
∣∣∣ ≥ εi|V2| and

∣∣∣V2 \ ⋃
j≤i
N(uj)

∣∣∣ ≥ εi|V2| for all i ∈ [L].

Proof. By Corollary 2.2 we can pick u1 ∈V1 such that d(u1) ∈ [ε1|V2|, (1− ε1)|V2|]. Our require-
ment is clearly satisfied for i= 1. Now let us assume that we have found u1, u2, . . . , ui with i< L
that satisfy our requirements and let us look for a vertex ui+1.

Let Si := V1 \ {u1, u2, . . . , ui} and Ti := V2 \ ∪
j≤i
N(uj). Note that |Si| ≥ |V1| − L≥ |V1|1/2 and

that |Ti| ≥ (64C)−L|V2| ≥ |V2|1/2 since |V1|, |V2| ≥ n0. Therefore, the subgraph G[Si, Ti] is (2C)-
bipartite-Ramsey. Thus, by Corollary 2.2, it follows that we can find a vertex ui+1 ∈ S1 such that
dTiG (ui+1) ∈ [ε1|Ti|, (1− ε1)|Ti|]. But this is precisely the vertex we were looking for, as then we
have

∣∣∣N(ui+1) \ ∪
j≤i
N(uj)

∣∣∣ ≥ dTiG (ui+1)≥ ε1|Ti| ≥ εi+1|V2| and we also get that
∣∣∣V2 \ ∪

j≤i+1
N(uj)

∣∣∣ ≥∣∣∣Ti \NTi
G (ui+1)

∣∣∣ ≥ ε1|Ti| ≥ εi+1|V2|.
By repeating this step L times we reach our conclusion. �

2.2 Richness and diversity
We will use the notion of richness, which was introduced by Kwan and Sudakov [23].

Definition 2.4. Given δ, ε > 0, a bipartite graph G= (V1,V2, E) is (δ, ε)-bipartite-rich if for each
i ∈ {1, 2} the following holds: for every set W ⊂Vi with |W| ≥ δ|Vi| there are at most |V3−i|1/5
vertices v ∈V3−i such that |N(v)∩W| ≤ ε|V3−i| or |N(v)∩W| < ε|V3−i|.

By adapting a result of Kwan and Sudakov (Lemma 4 in [23]) to the bipartite context, we show
that the Ramsey setting guarantees richness. Perhaps the most striking difference here is that in a
general Ramsey setting one needs to move to a subgraph to find richness, whereas in the bipartite
setting Ramsey graphs already possess it.

Lemma 2.5. Given C, δ > 0 there is ε > 0 and n0 ∈N such that the following holds true. Every C-
bipartite-Ramsey graph G= (V1,V2, E) with |V1|, |V2| ≥ n0 is (δ, ε)-bipartite-rich.

Proof. It is enough to prove that the bipartite-richness condition holds when i= 1. So set
ε := (200C)−1 and suppose there is a set U1 ⊂V1 with |U1| ≥ δ|V1| which contradicts the
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bipartite-richness condition – more precisely that there is a set W2 ⊂V2 with |W2| ≥ |V2|1/5
such that |N(v)∩U1| < ε|U1| or |N(v)∩U1| < ε|U1| for all v ∈W2. Without loss of generality,
we can assume that there is a subset U2 ⊂W2 of size |V2|1/5/2 such that |N(v)∩U1| < ε|U1| for
all v ∈W2. But this means that the edge density of G[U1,U2] is less than ε.

On the other hand, as |Ui| ≥ |Vi|1/5/2≥ |Vi|1/6 as |Vi| ≥ nC, and since G=G[V1,V2] is C-
Ramsey, it follows G[U1,U2] is 6C-Ramsey. But by Lemma 2.1 such a graph must have edge
density at least (196C)−1 > ε, which is a contradiction, thus proving our result. �

Next, we discuss the notion of diversity, which was introduced by Bukh and Sudakov [9] (in
the non-bipartite setting).

Definition 2.6. A bipartite graph G= (V1,V2, E) is said to be c-bipartite-diverse if for each i ∈ {1, 2}
the following holds: every vertex v ∈Vi has |divG(v,w)| ≤ c|V3−i| for at most |Vi|1/5 vertices w ∈Vi.

We also introduce a useful diversity notion for pairs. We note that diversity for pairs was also
considered by Kwan and Sudakov in [23], who considered multisets of neighbourhoods, but we
require a different notion suitable for our later applications.

Definition 2.7. A bipartite graph G= (V1,V2, E) is said to be (c, α)-pair-diverse if for each i ∈ {1, 2}
the following holds true for both i= 1, 2. For each ordered pair p ∈ (Vi

2
)
with |div(p)| ≥ α|V3−i| there

are at most |Vi|1/5 pairwise vertex disjoint pairs p′ = (x, y) ∈ (Vi
2
)
such that |divbG(p) \N(x)| ≤

c|V3−i| or |divbG(p) \N(y)| ≤ c|V3−i|.
Lemma 2.8. Let G= (V1,V2, E) be a (δ, ε)-bipartite-rich graph with δ ≤ 1/2. Then:

(i) G is ε/2-diverse;
(ii) G is (αε/2, α)-pair-diverse for all α ≥ 2δ.

Proof. It is enough to show that each property holds when taking i= 1.
(i) For each v ∈V1 either |N(v)| ≥ |V2|/2 or |N(v)| ≥ |V2|/2. In the former case, all but at most

|V1|1/5 vertices w ∈V1 we have |N(v)∩N(w)| ≥ ε|N(v)| ≥ ε/2 · |V2|, and in the latter, for all but
at most |V1|1/5 vertices w ∈V1 we have |N(v)∩N(w)| ≥ ε|N(v)| ≥ ε/2 · |V2|. In either case, there
are at most |V1|1/5 vertices w ∈V1 with |divG(v,w)| < ε/2 · |V2|, as desired.

(ii) Suppose now there is an ordered pair p := {x, y} ∈ (V1
2
)
and a collection Y of |V1|1/5 vertex

disjoint pairs pi := (xi, yi) ∈
(V1
2
)
such that |divb(p) \N(xi)| ≤ αε/2 · |V2| for each i. Note that if

|div(p)| ≥ α|V2| then |divb(p)| ≥ α/2 · |V2|, as divb(p) is simply the largest of the two sets N(x) \
N(y) and N(y) \N(x), whose union is div(p). But in this case there are |V1|1/5 distinct vertices
zi ∈ {xi, yi} such that |divb(p)∩N(zi)| ≤ αε/2 · |V2| ≤ ε|divb(p)|, which contradicts the richness
of the set divb(p). �

2.3 Probabilistic tools
Throughout the proof, we will use Markov’s inequality, Chebyshev’s inequality, the Chernoff
bound and Turán’s theorem. Statements and proofs of all of these can be found, for example,
in [3]. We will also need a probabilistic variation of the Erdős–Littlewood–Offord theorem, a
proof of which can be found, for instance in [19], or more generally as a consequence of the
Doeblin-Kolmogorov-Levy-Rogozin theorem.

Theorem 2.9. Fix some non-zero parameters a1, a2, . . . , an ∈R and α ∈ (0, 0.5], then let
p1, p2, . . . , pn ∈ [α, 1− α]. Suppose that X1, X2, . . . , Xn are independent Bernoulli random vari-
ables with Xi ∼ Be(pi). Then the following holds:

max
x∈R

P

( n∑
i=1

aiXi = x
)

=Oα(n−1/2).
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The following natural proposition will be useful in our proof of Theorem 1.2.

Proposition 2.10. Given an integer d ≥ 2, there is an integer n0 := n0(d) such that if X is a
uniformly chosen subset of [n], where n≥ n0, then for any integer k with 0≤ k< d one has:

1
d + 1

≤ P
(|X| ≡ k (mod d)

) ≤ 1
d − 1

.

Comparable statements already exist in the literature (see for example Lemma 2.3 in [18] for a
more quantitative behaviour), but to keep the paper contained we outline a simple proof, show-
ing that it can be easily deduced from a standard result about stochastic processes. The next few
paragraphs represent a brief introduction to this topic and, for more details, the reader can refer
to [28].

AMarkov chain is a sequenceX := (Xn)n≥0 of random variables taking values in some common
ground set I such that, for all n≥ 1 and i0, i1, . . . , in ∈ I, one has:

P
(
Xn = in | X0 = i0; X1 = i1; . . . ; Xn−1 = in−1

) = P
(
Xn = in | Xn−1 = in−1

)
.

A Markov chain is called homogeneous if, in addition, pi,j := P(Xn = j|Xn−1 = i) depends only on
the states i and j, not on the time n. These quantities are known as the transition probabilities of
the chain. We are only interested in homogeneous chains, and we can observe that in order to
describe such a chain it is enough to have the initial distribution λ of X0, given by λi := P(X0 = i),
and the transition matrix P := (pi,j)i,j∈I . Moreover, if we write p(n)i,j for P

(
Xk+n = j|Xk = i

)
, then it

is easy to see that p(n)i,j = (Pn)i,j.
A Markov chain X on the set I with transition matrix P := (pi,j)i,j∈I is called irreducible if for

all i, j ∈ I there is n≥ 0 such that p(n)i,j > 0. The period of a state i ∈ I is defined to be the greatest

common divisor of the set
{
n≥ 1 : p(n)i,i > 0

}
. TheMarkov chain X is called aperiodic if all its states

have period 1.
We say π = (πi)j∈I is a stationary distribution for a Markov chain X if starting the chain from

X0 with distribution π implies that Xn has distribution π for all n≥ 1. As the distribution of Xn is
given by πPn, where P is the transition matrix, we deduce that π is a stationary distribution if and
only if πP = π .

Theorem 2.11. Suppose X is an irreducible and aperiodic Markov chain on a ground set I with
transition matrix P, stationary distribution π and any initial distribution. Then, for all j ∈ I, one
has P(Xn = j)→ πj as n→ ∞.

Proof of Proposition 2.10. We can view choosing X as going through each number from 1 to
n and independently tossing a fair coin for each to decide whether it is an element of X or not.
Thus |X| (mod d) can be viewed as a Markov chain on {0, 1, 2, . . . , d − 1} starting at 0 and with
transition probabilities pi,i = pi,i−1 = 0.5 for each 0≤ i< d, where indices ar taken modulo d. This
chain is aperiodic as p(1)i,i = 0.5, and it is also irreducible as we can reach state i from state j in
i− j(mod d) steps with positive probability. It is easy to see that the stationary distribution π is
given by πi = 1/d. The conclusion now follows from Theorem 2.11. �

2.4 Progressions in sumsets
Given sets A1, . . . ,AK ⊂Z, the sumset of A1, . . . ,AK is the set A1 + . . . +AK given by

A1 + · · · +AK = {
a1 + · · · + aK : ai ∈Ai for all i ∈ [K]

}
.

Much research has focused on the topic of estimating the size or understanding the structure of
sumsets under certain assumptions on the sets (see for example [33] or Chapter 2 of [34]). For our
purposes, the following elementary estimate will suffice.
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Lemma 2.12. Given δ, B> 0 there are C, d0 ≥ 1 such that the following holds. Suppose that
A1, . . . ,AK ⊂ [−M,M] with K ≥ CM and that |Ai| ≥ δM ≥ 2 for all i ∈ [K]. Then there is a ∈Z

and d ∈N with 1≤ d ≤ d0 such that:{
a+ id : 0≤ i≤ BM2} ⊂A1 +A2 + · · · +AK . (2)

Proof. We will prove the statement under the assumption that Ai ⊂ [0,M] for all i ∈ [K]. Note
that the general case follows immediately by taking translations of the sets, i.e. replacing Ai with
A′
i =Ai − ci for ci =min{a : a ∈Ai}. Indeed if (2) holds for A′

1, . . . ,A
′
K (which may now lie in

[0, 2M] instead of [−M,M]) then (2) also holds for A1, . . . ,AK (possibly with a different value of
a). The same argument also allows us to assume that 0 ∈Ai for all i ∈ [K].

Next, we double count pairs (m, j) ∈ [M]× [K] for which m is among the largest δM/2 ele-
ments in Aj. Counting by each set Aj, we deduce that there are δKM/2 such pairs. Therefore,
there isM′ ∈ [M] which appears in at least δK/2 of these pairs. Let J := {j ∈ [K] :M′ ∈Aj}, so that
|J| ≥ δK/2, and note that |Aj ∩ [0,M′]| ≥ δM/2 as M′ is one of the largest δM/2 elements in Aj.
Recalling that also 0 ∈Aj, by restricting all the sets to [0,M′], then eventually reordering them and
slightly adjusting the parameter C, we can now assume that Ai ⊂ [0,M] for all i ∈ [K], but with
{0,M} ⊂Ai as well.

Given a set S⊂Z, we will let S := {a ∈ [0,M − 1] : a≡ s mod M for some s ∈ S}. For each i ∈
[K] let Si := A1 + · · · +Ai. By reordering the sets A1, . . . ,AK , we may assume that |Si+1| > |Si|
for i≤K ′ and that Si = SK′ for all i≥K ′. Observe that SK′ ⊂ [0,M − 1] and that |SK′ | ≥ |S1| +
(K ′ − 1)≥K ′ + 1, therefore K ′ <M.

Now, as 0 ∈Ai for all i ∈ [K], we have 0 ∈ SK′ ⊂ SK′ +AK′+1 = SK′+1. As |SK′+1| = |SK′ |, it
follows that the set SK′ contains the subgroup of ZM generated by AK′+1. However, recalling
that |SK′ | = |SK′+1| ≥ |AK′+1| ≥ δM, we obtain that there is some d ≤ d0(δ) with d|M such that
{id : 0≤ i≤M/d} ⊂ SK′ ⊂ SM .

To proceed with the last step, recall that {0,M} ∈Ai for all i ∈ [K]. Using this, it is easy to see
that as {id : 0≤ i≤M/d} ⊂ SK′ ⊂ SM , we have {M2 + id : 0≤ i≤M/d} ⊂A1 + · · · +A2M . More
generally, as d|M, we have:{

M2 + id + jM : 0≤ i≤M/d, 0≤ j≤K − 2M
} ⊂A1 + · · · +AK ,

and so (2) holds by taking a=M2 and K ≥ CM ≥ (B+ 2)M. This completes the proof. �

3. Proof of Theorem 1.2
3.1 Pair-stars and pair-matchings
We start this section by defining two constructions which will be of central importance in our
attempt to find induced subgraphs of many sizes. Let G= (V1,V2, E) be a bipartite graph.

An ε-pair-star of size k rooted at x0 associated toV1 is a setPS = {x0, x1, x2, . . . , xk} ⊂V1 which
satisfies the following properties:

(i) |dG(xj)− dG(x0)| ≤ |V2|0.5 for all j ∈ [k];
(ii) |div(xi, xj)| ≥ ε|V2| for all i �= j in [0, k].

We define the head of PS to be the set H(PS)= {x0}.
An ε-pair-matching of size k associated to V1 is a collection PM = {p1, p2, . . . , pk} of vertex

disjoint ordered pairs of vertices in V1 which satisfy the following properties:
(i) pi = (xi, yi) for all i ∈ [k] and the pairs p1, . . . , pk are vertex disjoint;
(ii) deg-diff (pi)≤ |V2|0.5 for all i ∈ [k];
(iii) |divb(pi) \N(xj)| ≥ ε|V2| and |divb(pi) \N(yj)| ≥ ε|V2| for all i �= j in [k].

We define the head of PM to be H(PM)= {xi : i ∈ [k]}.
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By swapping V1 and V2 above, we can define pair-stars and pair-matchings associated to V2.
Our result in this subsection gives large pair-stars or large pair-matchings in C-Ramsey graphs.

Lemma 3.1. Given C > 1 there is ε > 0 and nC ∈N such that the following holds. Suppose that
G= (V1,V2, E) is a C-bipartite-Ramsey graph with |V1| ≥ |V2|/2≥ nC. Then either:

• V1 contains an ε-pair-star of size |V1|0.5, or
• V1 contains an ε-pair-matching of size |V1|0.5.

Proof. Let us start by dividing the interval [0, |V2|] into � := |V2|1/2 disjoint intervals I1, I2, . . . Il
of length |V2|1/2 and let, for each interval Ij, nj denote the number of vertices in V1 whose
degree lie in Ij. Now any vertices x, y ∈ Ij with d(x)≥ d(y) give an ordered pair p= (x, y)
with deg-diff (p)≤ |V2|1/2. Obviously n1 + n2 + . . . + n� = |V1|, so by Jensen’s inequality the
collection S of such ordered pairs p= (x, y) ∈ (V1

2
)
has size:

|S| ≥
�∑

j=1

(
nj
2

)
≥ � ·

(|V1|/�
2

)
≥ |V1||

(|V1|/� − 1
)

2
≥ |V1|1.5

4
,

using � = |V2|0.5 ≤ (2|V1|)0.5 and |V1| ≥ nC. By Lemmas 2.8 and 2.5, we deduce that our graph
G is ε0-diverse, where ε0 := (400C)−1. Therefore, at most |V1|1.2 = o(|S|) pairs from S fail to be
ε0-diverse. By removing such pairs, we obtain a collection S0 of size at least |V1|1.5/8 such that
deg-diff(p)≤ |V2|1/2 and |div(p)| ≥ ε0|V2| for all p ∈ S0.

Next, we view the elements of S0 as the (unordered) edges of a graph H on V(G). We claim
that either H has a matching of size m := |V1|0.75/4 or a set of m+ 1 edges that have a common
vertex. To see why this is true, suppose that neither of these two events hold and letM be a largest
matching in H. Then |M| <m and so all the edges in e(H) \M must be adjacent to an edge of
M. But because of the other condition, each edge ofM has at most 2m other edges adjacent to it.
Thus, e(H)< 2m2 ≤ |S0|, which is a contradiction.

Let us now observe that this set of edges will create our pair-star or pair-matching. Indeed,
assume first that we have obtained m+ 1 edges x0x1, x0x2, . . . , x0xm+1 in S0. Again, by diversity,
each vertex xj has at most |V1|0.2 other vertices xi such that |div(xj, xi)| < ε0|V2|. Thus, by Turán
theorem there is a set I ⊂ [0,m+ 1], with 0 ∈ I, of size at least (m+ 1)/(1+ |V1|0.2)≥ |V1|0.5 such
that |div(xj, xi)| ≥ ε0|V2| for all i �= j in I. Taking x0 as the root gives our pair-star.

In the other case, assume that we have obtained m disjoint ordered pairs p1, . . . , pm in S0,
with pi = (xi, yi). Then, by Lemmas 2.5 and 2.8 our graph G is ((ε0/2)2, ε0/2)-pair-diverse, so for
each pair (xj, yj) there are at most |V1|0.2 other pairwise disjoint edges xiyi such that |divb(xj, yj) \
N(xi)| < (ε0/2)2|V2| or |divb(xj, yj) \N(yi)| < (ε0/2)2|V2|. Setting ε = (ε0/2)2, by Turán, there is
a set I ⊂ [m] of size at least m(1+ |V1|0.2)−1 ≥ |V1|0.5 such that |divb(pj) \N(xi)| ≥ ε|V2| and
|divb(pj) \N(yi)| ≥ ε|V2| for all i �= j in I. This represents our pair-matching. �

3.2 Degree control from pair-stars and pair-matchings
Our next aim is to show that when picking a subsetW ⊂V2 uniformly at random, there is a very
good chance that pair-stars and pair-matchings associated to V1 produce well distributed degree
sets inW. The following lemma will be useful in this context.

Lemma 3.2. Let G= (V1,V2, E) be a bipartite graph and suppose the subset W ⊂V2 is selected
uniformly at random. Then:

(i) if x, y ∈V1 with |div(x, y)| ≥ δ|V2| then P(dW(x)= dW(y))=Oδ(|V2|−0.5).
(ii) if p1 = (x1, y1) ∈

(V1
2
)

and p2 = (x2, y2) ∈
(V1
2
)

with |divb(p1) \N(x2)| ≥ δ|V2| and
|divb(p1) \N(y2)| ≥ δ|V2| then P( deg-diff (p1)W = deg-diff (p2)W)=Oδ(|V2|−0.5).

https://doi.org/10.1017/S0963548322000347 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548322000347


Combinatorics, Probability and Computing 473

Proof. (i) We will use a classical randomness exposure argument. Suppose we reveal the random
setW onV2 \ div(x, y). Then, given such a choice, the difference dW(x)− dW(y) becomes dU(x)−
dU(y)+ constant, where U := W ∩ div(x, y). Now, dU(x)− dU(y) := ∑

v∈div(x,y) θvXv, where for
each v ∈ div(x, y) we have θv ∈ {−1, 1} and Xv ∼ Bern(0.5). Since |div(x, y)| ≥ δ|V2|, by Theorem
2.9, the random variable dW′(x)− dW′(y) hits any particular value with probability Oδ(|V2|−1/2).
The conclusion follows from the law of total probability.

(ii) The argument here is similar, but a little more involved. By the choice of the order-
ing we have divb(p1)=N(x1) \N(y1). Note that the condition in the lemma now gives that
the set T = divb(p1) \N(x2)=N(x1) \ (N(x2)∪N(y1)) satisfies |T| ≥ δ|V2|. Letting X denote the
random variable X = deg-diffW(p1)− deg-diffW(p2) we have:

X = dW(x1)− dW(y1)− dW(x2)+ dW(y2).

Now note that if we expose the random set W ∩ (V2 \ T), then the random variable X reduces
to dW∩T(x1)+ dW∩T(y2)− C, where C is some constant depending only onW ∩ (V2 ∩ T) – cru-
cially, here we use that y1 and x2 have no neighbour in T. But dW∩T(x1)+ dW∩T(y2)= ∑

v∈T θvXv
where θv ∈ {1, 2} is a constant for each v ∈ T and Xv ∼ Bern(0.5) so that {Xv}v∈T are independent.
By Theorem 2.9, since |T| ≥ δ|V2|, the random variable dW∩T(x1)+ dW∩T(y2) takes any particu-
lar value with probability at most Oδ(|V2|−0.5). The conclusion again follows from the law of total
probability. �

Let G= (V1,V2, E) be a bipartite graph and select a vertex set W ⊂V2. Given an ε-pair star
P = {x0, x1, . . . , xk} rooted at x0 and associated to V1, we write:

AW
P := {

dW(xi)− dW(x0) : i ∈ [k]
} ∩ [−3|V2|0.5, 3|V2|0.5

]
.

The following lemma provides a useful estimate on the size of AW
P .

Lemma 3.3. Given ε > 0 there is δ > 0 such that the following holds. Let G= (V1,V2, E) be a
bipartite graph with |V1| ≥ |V2|/2 and let P = {x0, . . . , x|V2|0.5} be a ε-pair-star of size |V2|0.5
rooted at x0 and associated to V1. Suppose that a set W ⊂ B is selected uniformly at random, then
P
(|AW

P | ≥ δ|V2|0.5
) ≥ 3/4.

Proof. To begin, pick j ∈ [|V2|0.5] and set Dj := dW(xj)− dW(x0). By Chebyshev’s inequality, we
have |Dj −E[Dj]| ≤ 2|V2|0.5 with probability at least 15/16. As |E[Dj]| ≤ |V2|1/2/2, it follows by
triangle inequality that P(|dW(x0)− dW(xj)| ≤ 3|V2|0.5)≥ 15/16.

Next, call a vertex xj with j ∈ [|V2|0.5] bad if |dW(x0)− dW(xj)| ≤ 3|V2|0.5 and good otherwise.
Note P(xj is bad)≤ 1/16 and so E[|{j ∈ [|V1|0.5] : xj is bad}|]≤ |V2|0.5/16. If U denotes the set of
good vertices, then it follows by Markov that P(|U| ≥ |V2|0.5/2)≥ 7/8.

Now we build a graphH on {x1, . . . , x|V2|1/2}where we join two vertices by an edge inH if their
degrees inW are equal. By Lemma 3.2 (i) there is an edge inH between two vertices xi and xj with
probability Oε(|V2|−1/2). Therefore, E[e(H)]=Oε((|V2|0.5)2 · |V2|−0.5) and by Markov we easily
deduce that, with probability at least 7/8, one has e(H)=Oε(|V2|0.5).

Combining our estimates, by applying the union bound we find that |U| ≥ |V2|0.5/2 and that
e(H[U])≤ e(H)=Oε(|V2|0.5) with probability at least 3/4. But then the average degree of H is of
order Oε(1), hence by Turán H contains an independent set of size �ε(|V2|0.5). This set though
gives us precisely the vertices with pairwise distinct degrees that we sought. �

Let G= (V1,V2, E) be a bipartite graph, and set W ⊂V2. Given an ε-pair-matching P =
{p1, . . . , pk} associated to V1, we write:

AW
P := {

deg-diffW(pi) : i ∈ [k]
} ∩ [−3|V2|0.5, 3|V2|0.5

]
.

https://doi.org/10.1017/S0963548322000347 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548322000347


474 E. Long and L. Ploscaru

The following lemma gives the analogous estimate for AW
P when P is an pair-matching and can

be proven in exactly the same way as in Lemma 3.3, replacing Lemma 3.2 (i) in the proof with
Lemma 3.2 (ii) instead.

Lemma 3.4. Given ε > 0 there is δ > 0 such that the following holds. Let G= (V1,V2, E) be a bipar-
tite graph with |V1| ≥ |V2|/2 and let P be a ε-pair-matching in V1 of size |V2|0.5. Suppose that a set
W ⊂ B is selected uniformly at random, then P(|AW

P | ≥ δ|V2|0.5)≥ 3/4.

3.3 Breakingmodular obstructions

Lemma 3.5. Given a natural number d > 1 and ε > 0 there are L,D> 0 such that the follow-
ing holds. Suppose that G= (V1,V2, E) is a bipartite graph and that {u1, . . . , uL} ⊂V1 such that
Si =NG(ui) \ ∪j<iNG(uj) satisfies |Si| ≥D for all i ∈ [L]. Then, if a subset W is chosen uniformly at
random from V2, with probability at least 1− ε for every pair (k,m) with 0≤ k≤m and 2≤m≤ d
there is i ∈ [L] such that dWG (ui)≡ k mod m.

Proof. Suppose that W ⊂V2 is selected as in the lemma. To begin, we fix a pair (k,m) so that
0≤ k≤m and 2≤m≤ d. For i ∈ [L] let Ei denote the event Ei :=

{
dWG (ui) �≡ k mod m

}
. Our

first aim is to upper bound P
(∩i∈[L]Ei

)
. To do this, we can observe that:

P
( ∩L

i=1 Ei
) =

L∏
i=1

P
(
Ei| ∩j<i Ej

)
.

Now the event ∩j<iEi is entirely determined by the choice of W′ =W ∩ (V2 \ Si). Thus, to
upper bound P

(
Ei| ∩j<i Ej

)
, it suffices to upper bound P

(
Ei|W′ =W0

)
for each choice of W0.

However, given such a choice of W0, the conditional probability P
(
Ei|W′ =W0

)
becomes

P

(
dW∩Si
G (ui) �≡ ki (modm)

)
for some 0≤ ki <m. Besides this, from our hypothesis we know

that W ∩ Si ∼ Bin(|Si|, 0.5) and |Si| ≥D, so by Proposition 2.10 this gives P
(
Ei| ∩j<i Ej

) ≤
maxW0 P

(
Ei|W′ =W0

) ≤ d(d + 1)−1. Combining all these, we obtain:

P
( ∩L

i=1 Ei
) ≤

L∏
i=1

P
(
Ei| ∩j<i Ej

) ≤
(
1− 1

d + 1

)L ≤ exp
(−L(d + 1)−1) .

To finish the proof, let F(k,m) denote the event that {dWG (ui) �≡ k mod m for all i ∈ [L]}. We have
shown that P(F(k,m))≤ exp

(−L(d + 1)−1). It follows that the probability that some congruence is
not obtained is P

(∪(k,m)Fk,m
) ≤ ∑

(k,m) P
(
Fk,m

) ≤ d2 exp
(−L(d + 1)−1) ≤ ε, provided that L (and

D from above) are sufficiently large. �

3.4 Completing the proof of Theorem 1.2
The following lemma is the final key step in our proof.

Lemma 3.6. Given C > 1, there are constants aC > 0 and nC ∈N such that the following holds.
Every C-bipartite-Ramsey graph G= (V1,V2, E) with |V1|, |V2| ≥ nC has:[

aC|V1||V2|, 2aC|V1||V2|
] ⊂ {

e(G[U]) :U ⊂V(G)
}
.

Proof. We start by fixing parameters 1≥ C−1 � ε � δ � d−1
0 � L−1 � C−1

0 � c� n−1
C > 0.

Without loss of generality, we may assume that |V1| ≥ |V2|. We also fix an arbitrary set V ′
2 ⊂V2

with |V ′
2| = c|V2| and a partition V1 =U1 ∪U2 ∪U3, where |Ui| ≥ |V1|/4 for i ∈ [3].

To begin, we claim that there are P1, . . . ,PK with K := C0|V2|0.5 such that each Pi is either
an ε-pair-star or a ε-pair-matching in G

[
U1,V ′

2
]
of size |V ′

2|0.5 and so that the Pi’s are all vertex
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disjoint. To see this, suppose that we have found P1, . . . ,Pi and now seek Pi+1. LetU ′
1 denote the

subset of U1 with the vertices of ∪j≤iPj removed and apply Lemma 3.1 to G
[
U ′
1,V

′
2
]
, noting that

as |U ′
1| ≥ |U1| − 2K|V ′

2|0.5 ≥ |U1| − 2(C0|V2|0.5)(c|V1|)0.5 ≥ |U1|/2≥ |V1|/8, making G
[
U ′
1,V

′
2
]

a 2C-Ramsey graph. By Lemma 3.1, we can find a ε-star-pair or a ε-pair-matching Pi+1 of size
|U ′

1|0.5 ≥ |V ′
2|0.5, which gives the desired set (perhaps after removing some of its elements). Thus

such a collection P1, . . . ,PK exists.
Our next step is to apply Lemma 2.3 to G

[
U2,V ′

2
]
, which is again 2C-Ramsey, to find a set

S2 = {s1, . . . , sL} ⊂U2 such that
∣∣N(si) \ (∪j<i N(sj))

∣∣ ≥ |V2|0.5 for all i ∈ [L]. It is possible to do
this since C−1 � L−1 � n−1

C .
The final step of preparation is to select a setW ⊂V ′

2 uniformly at random. For each i ∈ [K] let
Ai := AW

Pi
. Now consider the following events:

• Let E1 denote the event that, for at least K/2 values i ∈ [K], we have |Ai| ≥ δ|V ′
2|1/2. By

Lemmas 3.3 and 3.4, and using that ε � δ, we see that for any Ai we have |Ai| ≥ δ|W|1/2
with probability at least 3/4, so a simple application of Markov gives P(E1)≥ 1/2;

• Secondly, let E2 denote the event that, for every 0≤ k≤m and 2≤m≤ d0, there exists
s ∈ S2 with dWG (s)≡ k mod m. By the choice of S2, Lemma 3.5 gives P(E2)≥ 7/8;

• Lastly, let E3 denote the event that |W| ≥ |V ′
2|/4. By Chebyshev’s inequality P(E3)≥ 7/8.

It follows from the union bound that P(E1 ∩ E2 ∩ E3)≥ 1/2. Fix a choice of W ⊂V ′
2 ⊂V2 for

which all three events occur. By reordering, we get that |Ai| ≥ δ|V ′
2|1/2 ≥ δ|W|1/2 for i ∈ [K/2].

We are now ready to complete the proof. Take Vinit1 to be the union of the heads of Pi, i.e.
Vinit1 := ∪i≤L/2H(Pi), and e0 := e(G[Vinit1 ,W]). Take a ∈Ai and note the following:

(i) If Pi = {x0, . . . , x|V ′
2|0.5} is a pair-star rooted at x0, then by definition dW(xj)− dW(x0)= a

for some j ∈
[∣∣V ′

2
∣∣1/2]. Removing x0 fromVinit1 and adding xj changes the number of edges

in the resulting graph by exactly a.
(ii) Similarly, if Pi is a pair-matching, then there is p= (x, y) ∈Pi such that deg-diffW(p)= a.

Removing x from Vinit1 and adding y to it changes the number of edges by exactly a.
(iii) The edits from different Pi’s can be performed independently of one another, resulting in

the same changes to the edge size given in (i) and (ii).

From observations (i)−(iii) we can immediately deduce that:
{e0} +A1 +A2 + · · · +AK/2 ⊂ {

e(G[U,W]) :U ⊂U1
}
.

By definition of Ai := AW
Pi
, we have Ai ⊂

[−3|V ′
2|1/2, 3|V ′

2|1/2
] ⊂ [−6|W|1/2, 6|W|1/2] and |Ai| ≥

δ|W|1/2. By takingM = 6|W|1/2 and B= 1 in Lemma 2.12, as δ, 1� C−1
0 , d−1

0 , it follows that there
is a ∈Z and 1≤ d ≤ d0 such that (2) holds, which gives:{

e0 + a+ id : 0≤ i≤ 3|W|} ⊂ {e0} + {
a+ id : 0≤ i≤M2} ⊂ {e0} +A1 +A2 + · · · +AL/2

⊂ {e(G[U,W]) :U ⊂U1} . (3)

Furthermore, as d ≤ d0, by the choice of S2 there are si0 , si1 , . . . , sid−1 ∈ S2 with dW(sj)≡ j mod d
for each j ∈ [0, d − 1]. Combined with (3), setting e1 = e0 + a+ |W|, this gives:[

e1, e1 + |W|] ⊂ {
e(G[U ∪ {s},W]) :U ⊂U1, s ∈ S2

}
. (4)

To finish the proof, note that |U3| ≥ |V1|/4≥ |V1|1/2 and |W| ≥ |V ′
2|/4≥ |V2|1/2. As G is C-

Ramsey, we get that G[U3,W] is (2C)-Ramsey. It follows from Corollary 2.2 that at least 2|U3|/3
vertices in U3 have degrees between (64C)−1|W| and (1− (64C)−1)|W| in G[U3,W]. In par-
ticular, {e(G[U ′,W]) :U ′ ⊂U3} contains an element from each interval [|W|i, |W|(i+ 1)] with
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i ∈ [0, (96C)−1|U3|]. However, e(G[U ∪ {s} ∪U ′,W])= e(G[U ∪ {s},W])+ e(G[U ′,W]) for any
U ⊂U1, s ∈ S2 and U ′ ⊂U3. Therefore, we deduce from (4) that:[

e1 + |W|, e1 + |W| + (96C)−1|U3||W|] ⊂ {
e(G[U ∪ {s} ∪U ′,W]) :U ⊂U1, s ∈ S2,U ′ ⊂U3

}
.

We can finally claim that the lemma holds with aC := c/4000C. To see this, note that:

e1 + |W| = e0 + a+ |W| ≤ (K/2)|V ′
2|0.5|W| + (K/2)(6|W|)0.5|W| + |W|

≤ 4K|W|1.5 ≤ 4(C0|V2|)0.5(c|V2|)1.5 = 4c1.5(C0)0.5|V2|2 ≤ aC|V1||V2|,

where we have used that |W| ≤ c|V2|, that c� C−1
0 , C−1, and that |V2| ≤ |V1|.

Since aC|V1||V2| = (c/4000C)|V1||V2| ≤ (200C)−1|U3||W|, it is quite easy to observe that
[aC|V1||V2|, 2aC|V1||V2|]⊂ {e(G[U]) :U ⊂V(G)}, as required. This completes the proof. �

With Lemma 3.6 in hand, it is now easy to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Bymaking α small enough wemay assume, without losing generality, that
|V1| ≥ |V2| and that |V2| is large enough so that our estimates below hold. We can also assume
that C > 1 since the Ramsey condition still holds when we increase C.

First note that as G= (V1,V2, E) is C-Ramsey, there is a vertex v ∈V2 with degree at least
(32C)−1|V1| inV1, by Corollary 2.2. But then the induced subgraphs of the formG[W, {v}], where
W ⊂V1, give all edge sizes in [0, (32C)−1|V1|] (and so in particular the analogue of the Alon −
Krivelevich − Sudakov theorem from [1] is easier in the bipartite Ramsey context).

On the other hand, observe that by fixing any W1 ⊂V1 and W2 ⊂V2 with |Wi| ≥ |Vi|1/3 for
i ∈ {1, 2}, the graph H =G[W1,W2] is (3C)-Ramsey, as G is C-Ramsey. It follows by applying
Lemma 3.6 to H that there are induced subgraphs of each size in [a3C|W1||W2|, 2a3C|W1||W2|].
It follows, takingM = {(m1,m2) : |Vi|1/3 ≤mi ≤ |Vi| for i ∈ {1, 2}}, that G contains a subgraph of
each size in ∪(m1,m2)∈M[a3Cm1m2, 2a3Cm1m2]. It can be easily seen that these sets together cover
the interval [aC(|V1||V2|)1/3, 2aC|V1||V2|].

Finally, note that the intervals [0, (32C)−1|V1|] and [a3C(|V1||V2|)1/3, 2a3C|V1||V2|] together
cover [0, 2a3C|V1||V2|], since |V1| ≥ |V2| and |V2| is large enough, thus completing the proof of
the theorem. �

4. Concluding remarks
In this paper, we have proven a bipartite analogue of the Erdős–McKay conjecture, showing that
any C-bipartite-Ramsey graph G= (V1,V2, E) must contain induced subgraphs of all sizes in
[0,�C(|V1||V2|)]. Of course the Erdős–McKay conjecture itself remains an outstanding problem,
and we hope that some of our ideas will be useful in future approaches here.

Another interesting direction is to understand the effect of weakening the Ramsey hypothesis
in Theorem 1.2, as considered already in a number of other settings (see e.g. [2], [26], [24]). That
is, what are we able to say about the edge sizes of induced subgraphs of a bipartite graph G=
(V1,V2, E), which do not contain induced copies of Kt1,t2 or Kt1,t2 , where t1 and t2 are now general
parameters?

Lastly, we note that Narayanan, Sahasrabudhe and Tomon in [27] showed that any bipartite
graph with m edges must have induced subgraphs of �(m/ log12(m)) different sizes. An obvious
upper bound here for the number of such sizes is m, though if m is a perfect square m= k2 then
the complete bipartite graphs Kk,k allows onlym/(logm)0.086...+o(1) edge sizes. The authors of [27]
conjecture that whenm= k2 the graphKk,k is extremal here. It would be interesting to understand
whether our approach, perhaps combined with stability arguments, could be applied to improve
knowledge here.
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