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Abstract

Using generalized position vector fields we obtain new upper bound estimates of the first nonzero
eigenvalue of a kind of elliptic operator on closed submanifolds isometrically immersed in Riemannian
manifolds of bounded sectional curvature. Applying these Reilly inequalities we improve a series of
recent upper bound estimates of the first nonzero eigenvalue of the L, operator on closed hypersurfaces
in space forms.
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1. Introduction

Let M"™ be a closed, connected and orientable n-dimensional Riemannian manifold
isometrically immersed in the m-dimensional Euclidean space E" (m > n), let H
denote the mean curvature of the immersion of M" into E™ and let klA denote the
first nonzero eigenvalue of the Laplacian on M". In 1977, Reilly [6] proved

A <—/ HZdM
1 =
VOl(M) M

and a generalized Reilly inequality

2
Af(/ H,dM) Snvol(M)/ H?  dM, 0<r<n-—1,
M M

where H, denotes the r-mean curvature of M". In 2004, Alias and Malacarne [2]
considered an L, operator(see §4) on a closed, connected and orientable n-dimensional
Riemannian manifold isometrically immersed in the (n + 1)-dimensional Euclidean
space EtL if L, is elliptic on M" for some 0 <r <n — 1, they proved a Reilly

The author was partially supported by grant number 60804044 of the NSFC.
© 2009 Australian Mathematical Publishing Association Inc. 0004-9727/2009 $16.00

335

https://doi.org/10.1017/5S0004972709000355 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972709000355

336 R. Wang 2]

inequality of Af’ with H,, Hy as follows

2
xfr(/ Hde) gc,/ H,dM/ H2, dM, 0<s<n-—1 (1.1)
M M M

where ¢, = (n — r)(}).

When the ambient space is the Euclidean sphere S"*!(1), let X be the position
vector of M"(C §"1(1)) in E**2, and (, ) be the Euclidean metric on E"*2. Alias
and Malacarne [2] obtained the Reilly inequality including (X, n)

2
Af(/ Hs<X,n>dM> Scr/ H’dM/ HidM, 0sssn—1 (12)
M M M

where 7 is the gravity center vector of M”(C §"+1(1)) in E"*2,

There is no similar result for the case of hyperbolic space H"*!(—1). Naturally we
hope to obtain such unified inequalities only with H,, Hy for any simply connected
space form R™*1(¢) of constant sectional curvature c.

On the other hand, when the ambient space is a Riemannian manifold
(Mm, 2) (m > n) of sectional curvature bounded above by ¢, we define a tensor set on
M".

A = {T | T is a symmetric positive-definite (1.1)-tensor
on M" such that divy; T = 0}.

(Since I, € A we know that A £ (.) Given any T € A, Grosjean [5] considered the
extrinsic upper bounds for the first nonzero eigenvalue of the elliptic operators Lt
defined on (M", g) (that is, in terms of the second fundamental form of an isometric
immersion of (M", g) into (Mm, 2)) of the form

Lru =divy (TVMu)

where u € C*°(M), divy; and VM denote, respectively, the divergence and the gradient
of the metric g on M". Let ¢ be an isometric immersion of (M", g) into (Mm, 2), and
AIT be the first nonzero eigenvalue of the operator L7, if ¢ < 0 we assume that M",3)
is simply connected, and if ¢ > 0 we assume that ¢ (M") is contained in a convex ball
of radius less than or equal to 77 /4./c. Then he obtained

AT < SUPy |Hr|? + sup,y, c(tr T)?
b= infyy tr(T)

) (1.3)

and
AT < S}‘llp(|HT||H| +c(tr T)), (if |Hr| = constant) (1.4)

where Hr(x) = Zliiin h(Te;, e;), {ei}1<i<n 1s an orthonormal basis of the tangent
space T, (M) and h is the second fundamental form of ¢.
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Inspired by the work of Alias and Malacarne [2] and Grosjean [5], we study these
T-S type upper bound estimates of the first nonzero eigenvalue of the L7 operator,
and prove the following results.

THEOREM 1.1. Let ¢ be an isometric immersion of a closed, connected Riemannian
manifold (M", g) (n > 2) into a complete Riemannian manifold (Vm, 2) (m >n) of
sectional curvature bounded above by c(c > 0), we assume that ¢ (M") is contained
in a convex ball of radius less than or equal to 7t /4./c, then we have

T<fMtervg

1 1
Ir< % |:c+—,—/|H5|2dvg:|, forallSe A (1.5)
M

V infy (tr §)2
where V is the volume of ¢ ¢(M”) If equality holds, then ¢ (M) is contained in a
geodesic hypersphere of M f (M ) is a constant curvature space of sectional

curvature ¢ and ¢ (M) is contamed in a geodesic hypersphere of M", then equality
holds.

THEOREM 1.2. Let ¢ be an isometric immersion of a closed, connected Riemannian
manifold (M", g) (n > 2) into a complete Riemannian manifold (Mm, 2) (m >n) of
sectional curvature bounded above by c, if ¢ <0 we assume that (ﬁm, 2) is simply
connected, and if c > 0 we assume that ¢ (M) is contained in a convex ball of radius
less than or equal to w/4/c. Then

A <sup[ctrT—i—sup(| |>|HS|:| forall S € A. (1.6)

If equality holds, then ¢ (M) is contained in a geodesic hypersphere of M. If ", 2)
Is a constant curvature space of sectional curvature ¢ and ¢ (M) is contained in a
geodesic hypersphere of M " then equality holds.

REMARK 1.3. Theorems 1.1 and 1.2 generalize Grosjean’s [5] work. In fact, letting
S =T and I respectively in (1.6), we obtain (1.3) and (1.4) easily.

Applying Theorems 1.1 and 1.2 to the L, operator, we derive the H,, Hy type
upper bound estimates of its first nonzero eigenvalue of hypersurfaces isometrically
immersed in space forms, which extend the corresponding results in [1, 2, 8].

2. Preliminaries

Let ¢ be an isometric immersion of a compact connected Riemannian manifold
(M", g) (n > 2) into a Riemannian manifold (M g) (m > n) of sectional curvature
bounded above by c. If ¢ <0 we assume that ", g) is simply connected and if
¢ > 0 we assume that ¢ (M) is contained in a convex ball of radius less than or equal to
m/44/c, and denote by VM ¥ the gradients taken in (M", g), (Mm, 2), respectively.
Using the fact that divy; T = 0, we know that L7 is a self-adjoint and elliptic second-
order differential operator on M" with an equivalent form Lru = trace(T Hess u),
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it has discrete eigenvalues 0 = A9 < A| < --- where
— L dv
xfT=inf{ Ju ! zT(f) g,feC"o(M),/ fdvg=0}
fo dvg M

is the first nonzero eigenvalue, and

A;T:hlf{—foLTU)d%

,feC"O(M)and/ fdvg =0, / ffjdvy =0,
M M

l Ju 1* dvg
where Lt f; = —A; 57 fj, fj € C®(M), j=1,...,i—1}
is the ith nonzero eigenvalue (i =2, ..., n).

Leto € M" and let exp, be the exponential map at this point, let {x4}1<a<m be the
normal coordinates centered in o, with respect to some orthonormal basis in 7, (Mm),
and s(-) =d(-, o) be the distance function from o in M"; if ¢ > 0 we assume that
¢ (M) is contained in a convex ball of radius less than or equal to 7w/2./c. Let
Sc(s), 0.(s) be functions defined by

1

NG sin /cs, c>0
Sc(s) =135, c=0
1

sinh o/—cs, ¢ <0,

J=c
and 6.(s) = (d/ds)Sc(s). Obviously

02(s) 4+ cS2(s)=1 and 60'(s) = —cS.(s). 2.1

Define the generalized position vector field X of M" in M", with respect to o,
by X = S.(s)Vs, it is easy to see that its coordinates in the normal local frame are

{(Sc(s)/s)xat1<a<m.

REMARK 2.1. In the case ¢ =0, X = S.(s)Vs is just the position vector field in m-
Euclidean space E™.

LEMMA 2.2. For x € M", and in the case ¢ > 0, x € B(o, w/2/c). Then for any
ueTy (Mm), we have

m 32 2

_ = _ s\ _ —

(8. (Vxa, W] < 58, w+( 1 — 5 )[g, @, Vo) (2.2)
= Sz Sz

and equality holds when ", 2) is a constant curvature space with sectional
curvature c.
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PROOF. Letexp, X =x, X € T,(M"), then the map (d exp,)x T,(M") = T.(M")
is a linear isomorphism. Let y :[0, s] — M" be a normalized geodesic with
y©) =0, y(s)=x, y'(0)=5/|x|, where [X|=s=[>"s_, x51"/% let v=u—
g, (u, Vs) Vs € T, (Mm), then v is orthogonal to V.

We use the notation v = [(d expo);]_lv eT, (Mm); by the standard Jacobi field
estimate [5, 9], we have |U] <s|v|/S.(s), and equality holds when (ﬁm, 2) is a
constant curvature space.

Using §(§xA, v) =v(xa) =1[(d expo)glv](xA), we obtain

lv]2. (2.3)

S2(s)

&

m
> 3(Vxa, v)? =|d exp,); P =1 <
A=1
On the other hand,

3 8 (Vxa, g, (Vxa, Vs) = ,((d exp,)7 u. (d exp,)' (Vs)
A=l = 2.((d exp, )5 @ (. V)Vs). (d exp, )z (V)

=2, (u, V5)g,((d exp,)z" (Vs), (d exp,)z ' (Vs))
=g, (u, Vs)

SO
m m
D 18 (Vaa u— 2, V)V = > g, (Vxa, u)* — g, (u, Vs)?.
A=1 A=1

By (2.3) and the above formula, we have

-z 2
8 (Via, P < ——|u — gy, V5)Vs| + (2, , V)2
A=1 Sz(s)
2
— S 2 = J— 2 _ o )
- Scz(s)(lul (2, (u, V$)1?) + [2, (u, Vs)]
— 52 ||2+(1_i)[—( g)]z -
B Sz(s) . SLZ(S) 8xU, VS§)| .

We can easily see that all of the inequalities above are in fact equalities if M",3)
is of constant sectional curvature c.

Let X, X' be the tangential and the normal projection of X respectively on the
tangent bundle and the normal bundle of M". Grosjean [5] proved an important
inequality

divy (TX ") > (ir(T))0c(s) + 8(X, Hr) 2.4)

where the equality holds if 7 is the identity and (ﬁm, 2) has a constant sectional
curvature equal to c.
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Now we improve and simplify the proof process of (2.4), and obtain the fact that
the equality holds if (M " 2) has a constant sectional curvature equal to c, that is, the
condition that 7 is the identity can be omitted.

LEMMA 2.3. For all symmetric divergence-free positive-definite (1.1)-tensors T on
M", we have the inequality (2.4), and the equality holds if ™, 2) has a constant
sectional curvature equal to c.

PROOF. For x € M, let {ei}1<i<n be an arbitrary local orthonormal frame at x, by
using the standard Jacobi field estimates (see [9, Lemma 2.9, p. 153]), we have for all
vectors v orthogonal to Vs at x, the inequality

- s O o
gx(vvvsv v) 2 _|U|x
Se
and equality holds if M has a constant sectional curvature equal to c.

Similar to the method applied in the proof of Lemma 2.2, for any u € Ty (M), let
v=u — g,(u, Vs)Vs, by direct calculation we can obtain

R 6 I
2. (VuVs, u) > S—C{|u|,% — (g (u, Vo)I%).
3

So it follows that

n
> 2V 7, Vs, NTei)
i=1

v
éﬂlé'D

Zgx<«/_e,,fel>—[gx<fel,w)]}
=1

«S”Ir?’

Z{gﬂel, ei) — 8, (VT (V)" en)?}

= S—“[tr T — 2. (WTVs)T , VT (V)]

c

= %m T —g.(T(Vs)T, (V).

c

By [5, Equations (14) and (15)],

n
divy TX T =2, (X, Hr) + 0.8(T(Vs)", (V) + 8. Y 8. (V sz, Vs, VTei)
i=1
2 EX(X’ HT) + OC(tr T)

and the equality holds if (M"", g) has a constant sectional curvature equal to c. O

COROLLARY 2.4, Let f(s) be a posmve and C*(k>1) function, where
s(-)=d(-, o) is the distance function in M , then

1 ()
M Se(s)

and equality holds if ", 2) is a constant curvature space.

&(TXT, XT)dv< /M f@)Hr|IX | dv — fMar T)0c f (s) dv
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PROOF. Using

diviy(f)TXT) = f(s)divg TX T + g (TX T, VM f(s)), VM f(s)= f/(S)XT’

Se(s)

the proof follows easily from the inequality (2.4), the divergence theorem, and the
compactness of M". O

3. Proofs of the theorems

PROOF OF THEOREM 1.1. For any p € ¢p(M") cM", let {e1, er, ..., ey} be an
orthonormal basis of T}, ™, using the compactness of M” and the assumption that
¢ (M") is contained in a convex ball B of radius 7 /44/c, by a standard argument [4, 5]
we can parallel translate the frame {ey, ez, .. ., e,} along every geodesic emanating
from p and thereby obtain a differentiable orthonormal frame field {Ey, E», ..., E,;}
in a neighborhood of B. We define a vector field near B as

A Sc(S(CI’ P)) — M"
Yq _/M W equ l(p) dUp € Tq(M )’

which points towards the interior of B at the boundary dB. Thus, by the Brouwer
fixed-point theorem and the continuity of Y, |p, there exists a point 0 € B, such that
Y, = 0; that is

/ 5e) \ du, =0, 3.1)
M S

where {x,4} is the normal coordinates with respect to o.

Since M" is contained in a convex ball B of radius 7 /4/c, this means that M”" lies
in a convex ball B of radius 7 /2./c around o, with ¢ > 0.

By

m 1/2 m
s=|X|= [Z(m)z} , sVs= Z xAVx4 (3.2)
A=1

A=1

and VM S. = (VS.)T =0,VMs, we have

S S S
VM<—CxA) - x—A(ec _ —C)vMs L 2egMy (3.3)
S S S S

On the other hand,
X" =(S.(5)Vs)] = S,.(s)V¥s.
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Using Lemma 2.2, (3.1) and (3.3) we obtain

2
,\T/ 1 X| dvg—AT/ ( xA) dvg
M 5=1
Se Se
/ 2x (TVM(—xA>, VM<—xA>) dvg
1YM N N
n x2 S 2
I/MS—‘;<GC—?> gx(TVMs VMs) dvg
u XA S
+2Z/ S—2s0<90—?°>gx(TvMs, VMx4) dug
A=1'M
m S2
+ 3 [ eV, v v,
A=1'M
) 2 M, oM
:/M<QC —S—§>gx(TV s, V¥s) dv,

i s2
+Z/ s—;gx(TvaA,vaA)dvg. (3.4)
A=1“M

=

NgE

A

3

A

Since T is a positive symmetric (1.1)-tensor, we can define a natural positive
symmetric (1.1)-tensor VT on M", such that T = ﬁﬁ(see [5]), we have

2 m 2 m
S
; E c(TVMxp, VMxp) = =5 E g (VTVMx s, VTVMxy)

2 m n
= S—z DY L WTVY x4, e))

A=1 i=1
S2
=5 Z[gx(VxA, VTep))?
A=l i=

IA

ng(ﬁei’ﬁei)
=1
n Sg B f _
+Z<s—2—1)[gx< Tei, Vs)]
=ng(T€z,€l)+( —1) Z[gx(x/_VMs e’

SZ
=T+ <—§ - 1>gx(TVMs, vMy). (3.5)
S
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Furthermore, from (3.5), we have
x{/ 1X|* dvg 5/ tr T dvg —c/ &(TX", XT) dv,. (3.6)
M M M
Letf.=1/V [, 6 dvg, then we obtain
/ (0 — 6¢) dvg = 0.
M

Using VMG, = —cX T, and the Rayleigh quotient with the test function 6, — 6., we
obtain

AT /M O — 6)*dv,

< / g (TVM (O, — 00), VM (0. — 0.)) dvy = ¢ / & (TXT, XT) dv,.
M M

Thus,
1 2
A / 02 dvg < c* / &(TXT, XT)dvg + AIT—(/ Oc dvg) : (3.7)
M M V\Jum
By (3.6) and 62 + ¢S2 = 1, we have
AT 2
AITVSC/ tervg+71</ GCdvg) . (3.8)
M M

Let f(s) = constant > 0 in Corollary 2.4, then we obtain

/Qcterng/ |Hr||X™| dv,.
M M

From (3.6), for any S € A, we have

2 2
AT inf(tr 5)? 6. dvg ) <Al |Hs|| X" | dvg
M M M

SA{/ |HS|2dvg/ X dv,
M M

5/ |HS|2dvg/ tr T dvg. (3.9)
M M

Putting this into (3.8) gives the desired result (1.5), and the equality holds if (Mm, 2)
is a constant curvature space of sectional curvature ¢ and X T =5.(s)VMs =0, that
is, ¢ (M) is contained in a geodesic hypersphere of M " centered at o. O
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PROOF OF THEOREM 1.2. Similar to the proof in [5], let f(s)=06.(s) in
Corollary 2.4, then we have

c/ g (TXT, XT) dvgz/ 62(tr T) dvg—/ |Hr||X 16, dv,.
M M M
By (3.6), for any S € A, we immediately obtain
x{/ 52 dv, 5/ tervg—/ [62(tr T) — |Hr |01 X1 dvg
M M M
=c/ S2(tr T) dvg+/ Oc|Hr || X | dvg
M M

H
| T')/ 0 tr S|X | dv,. (3.10)
S ) Ju

< cf S2(tr T) dvg +Sup<
M M tr
Taking f(s) = S¢(s) in Corollary 2.4

6
/(tr T)GcScdvgff |HT|SC|X¢|dvg—/ c(s) (TXT, XT) dv,.
M M M Sc(s)

By the positive definiteness of 7" and (3.10),

H
AIT/Msfdvg5cﬁlsf(trT)dug+sEp(%) /M|HS|S§dvg,

that is,

H
AlT < sup|:c tr T + sup<ﬂ>|HS|], forall S € A.
M M trS

So the equality holds if (Mm, 2) is a constant curvature space of sectional curvature
ce and X' = S.(s)VMs = 0; that is, ¢ (M) is contained in a geodesic hypersphere of
M" centered at o. g

4. Application to the operator L,

Let M" be a connected, orientable and compact manifold without boundary
isometrically immersed in space form R"*!(c), we now introduce the (1, 1)-type
[11,12]
Newton tensor 7 by

Tp =1,
T, =011 — A,

Tr =00 —0, 1A+ + (=Dfo, 4 A  + ... 4 (=1)A",
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or inductively by T, =0,1 — Al,_1 (r=1,...,n), where A is the second
fundamental tensor of the isometric immersion. Associated with each T, we have
on M" a second-order self-adjoint differential operator L, defined by

L. f =div(T, VM f),

where divy; and V¥ are the divergence and the gradient of the metric g. On the other
hand, by the Codazzi formula, as proved by Rosenberg [7]

divy T, = trace(VMT,) = Z(v;‘f Ty (e;)) = 0. 4.1)

i=1
So the L, operator can also be given by

L, f =trace(T, Hess(f)) 4.2)

foreachr =0,1,...,n.
In the case r =0, Lo = A is naturally elliptic operator, but L, (r > 1) is not usually
elliptic, the following Lemma 4.1 proves that L, is elliptic under certain hypotheses.

LEMMA 4.1 (Barbosa and Colares [3]). Let M™ be a connected, orientable and
compact manifold without boundary isometrically immersed by ¢ into space form
R™t1(¢), in the case ¢ > 0 we assume that ¢ (M) is contained in an open hemisphere
of the Euclidean sphere R"T1(c). If H.1 > 0, then for each j(1 < j <r), we have
Jj-mean curvature H; > 0 and L ; is elliptic.

Therefore, when H, 11 > 0, T, € A, using the relations tr T = tr T, = ¢, H, and
|Hrl= Y B(Tei,ei)= Y g(AT(e), ei) =tr(AT) =c,Hy
1<i<n 1<i<n

(see [3]). We immediately have the following results by applying Theorems 1.1 and
1.2 to T,.

COROLLARY 4.2. Let M"™ be a connected, orientable and closed manifold
isometrically immersed by ¢ into space form R™L(¢) (¢ > 0), and ¢ (M) is contained
in a convex ball of radius less than or equal to 7w /4./c, if there exists a non-negative
integerr (r =0, 1,...,n — 1), such that H. 1 > 0, then

cr H, dv 1 1
Af‘r §M C—{-—,—/ HS2+1 dvg |, foralls=0,1,2,...,r
1% Vinfy H? Jy
equality holds if and only if (M) is a geodesic hypersphere in R"*1(c).

COROLLARY 4.3. Let M"™ be a connected, orientable and closed manifold
isometrically immersed by ¢ into space form R"1(c); in the case ¢ > 0 we assume
that ¢ (M) is contained in a convex ball of radius less than or equal to 7w/4./c,
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if there exists a nonnegative integerr (r =0, 1, ..., n — 1), such that H. > 0, then
we have

L, Hr+1
A" < crsup|cH, + sup i Hgi 1| foralls=0,1,2,...,r
M M N

equality holds if and only if $ (M) is a geodesic hypersphere in R"*1(c).

REMARK 4.4. When R"*!(¢) =S"*(¢) (¢ > 0) or H"*(¢) (¢ <0), we improved
and obtained the H,—H,-type upper bounds of AIL’ (see [2]) and the corresponding
result in [1, 8].
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