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THE DETERMINATION OF THE SURFACE IMPEDANCE OF
AN OBSTACLE

by ANDRZEJ W. KEDZIERAWSKI*
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The inverse scattering problem we consider is to determine the surface impedance of a three-dimensional
obstacle of known shape from a knowledge of the far-field patterns of the scattered fields corresponding to
many incident time-harmonic plane acoustic waves. We solve this problem by using both the methods of
Kirsch-Kress and Colton-Monk.
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1. Introduction

The inverse scattering problem we shall consider in this paper is the problem of
determining the unknown surface impedance for a given three-dimensional obstacle
from a knowledge of the far-field patterns of the scattered acoustic waves. This problem
is difficult to solve since it is both nonlinear and improperly posed. We solve this
problem by using two new methods. The first approach is analogous to the method
developed by Kirsch and Kress, (cf. [14, 15, 16, 19]; see also [2]). The second approach
is patterned after the method discovered by Colton and Monk (cf. [6, 7, 8, 9, 16]). The
main idea of these methods is to stabilize the inverse problem by formulating it as a
nonlinear optimization problem. Most of the previous solutions of the impedance
inverse problem require a direct scattering problem to be solved at each step of the
iteration scheme, (cf. [4, 5, 17, 18]). However, it is possible to avoid this disadvantage by
using either the Colton-Monk method or the Kirsch-Kress method.

Let us describe more precisely the problem under consideration. Let D <= R3 be a
bounded connected domain with C2 boundary 3D, and let n denote the unit outward
normal to 3D. Assume that an incoming time harmonic acoustic wave u\x) = eikii<x) is
scattered by the domain D having an unknown continuous surface impedance A(x),
OgA(x), for x on the surface. Here, (a,x) denotes the scalar or dot product between a
and x. The direct scattering problem (assuming A is known) is to find a solution of
Helmholtz equation u such that ueC2(R3\5)nC'(R3\D) and

=0. inR3\£> (1.1)
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u(x) = eikix-d) + us'yx) (1.2)

^ + U(x)u = O ondD (1.3)
on

lim rl^--ikus )=0, (1.4)
\3r /

where ws denotes the scattered field, r = |x|, and the Sommerfeld radiation condition (1.4)
is assumed to hold uniformly for jc = x/|x| on the unit sphere dSl. The boundary
condition (1.3) is called the impedance boundary condition. Physically, the surface
impedance provides information on the physical properties of an obstacle. In particular,
if A = 0 in (1.3) then the obstacle is acoustically hard, while if A = oo in (1.3) then the
obstacle is acoustically soft. It can be shown (cf. [5]), that under above assumptions
there exists a unique solution of the boundary value problem (1.1)—(1.4), and the
scattered wave us has the following asymptotic behaviour

(1.5)

where the function F is the far-field pattern corresponding to the incident wave u' with
wave number k and the direction of propagation a.

In this paper, we will discuss the following inverse scattering problem.

Definition 1.1. Inverse Problem: From knowledge of the domain D, and far-field
patterns Fj = F(x; k,&j) corresponding to the incident plane waves u'j with direction a,,
determine the function L

In [4], Colton and Kirsch proved that the surface impedance k is uniquely
determined by a knowledge of the far-field pattern F on some surface element of the
unit sphere and fixed /c>0. This uniqueness result is valid for all functions X such that
the corresponding direct problem has a unique solution.

The contents of this paper is as follows. First, we solve the impedance inverse
problem by using the method of Kirsch-Kress ([16]). Next, we present the Colton-
Monk method. The method of Colton-Monk for the impedance inverse problem was
originally presented in [7]. Our approach, (based on the ideas of [16]), is different from
that of [7] and seems to be easier.

2. The Kirsch-Kress method

Let us now describe the Kirsch-Kress method for solving the inverse problem.
Knowing the boundary of domain D we can choose an auxiliary smooth closed surface
F contained in the domain D. For a technical reason we chose T such that k2 is not a
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Dirichlet eigenvalue of the Laplacian in the interior of F. This assumption involves no
loss of generality since the choice of F is arbitrary. Then we will try to find uj-
corresponding to the incident field u), j=\,...,n, as an acoustic single-layer potential

(2.1)

with some unknown densities $ ,eL 2 ( r ) , j ' = l , . . . ,n, where

. . . exp[ifc|jc—yl]<Wx,y)= 7 , 1 p
4n\x-y\

denotes the fundamental solution of the Helmholtz equation. It is easily seen that the
single-layer potential satisfies the Sommerfeld radiation condition, (cf. [5]). It can also
be shown, ([3, 5]) that

J Hy)e-ik{i-y)ds(y) + O^j, |x|-oo. (2.2)

Therefore, the far field patterns of the single layer potential are given by

^ $ i k * j=\,...,n (2.3)

for x on the unit sphere 5fl. Let us define the far-field pattern operator J r :L 2 (F ) -»
L2(dQ.) by

{^4>)(x) = ~\cj>(y)e->k^dS{y), xedO. (2.4)
4K r

Notice, that the operator J* is a compact integral operator with an entire analytic
kernel. Under the above assumption and notations, the inverse scattering problem leads
us to the system of the first kind integral equations

SF4>J = FJ (2.5)

for given (measured) far-field patterns Fj, j = l,2,...,n.
We now consider the boundary condition (1.3). To this end, we introduce the

boundary operator B:L2(F)->L2(<5D) by

(flfl(x) = J cP(y) [ / - <D(x, y) + iA(x)4>(x, y)l ds(y), x e 3D. (2.6)
r \_onx J
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Then the boundary condition (1.3) and the representation (2.1) imply

(2.7)

where uj, j=l,2,...,n are given incident plane waves corresponding to the scattered
waves represented by the single layer potential. Obviously the boundary operator B
depends on the function A. The main idea of our method for solving the inverse
scattering problem, (which is analogous to the Kirsch-Kress method for the inverse
Dirichlet problem for determining 3D), is to assume that the scattered fields have
representation (2.1) and then to solve the system of equations (2.5), (2.7) for the
unknown functions A and <f>j, j=l,...,n.

Before further discussion of the system of equations (2.5), (2.7) we will investigate the
basic properties of the operators !F and B. Especially important from the point of view
of solvability of the system (2.5), (2.7) is whether the operators BF and B are injective
and have dense ranges. In fact, motivated by the results of [16], we have the following
result:

Theorem 2.1. The far-field integral operator ^:L2(T)^L2(dQ) defined by (2.4) is
injective and has dense range.

Proof. Let <j>eL2{T) and 0 = 0. Define the single layer potential us with density <f>
given by the formula (2.1). Then the single layer potential satisfies the Sommerfeld
radiation solution and its far-field pattern ^4> vanishes. Hence, ([5, p. 78]), the single-
layer potential us = 0 in the exterior of F. Denote by F + the exterior of F and by F " the
interior. The subscripts + denote the limits as x tends to F from outside and inside F
respectively. Now, the jump relation for the single layer-potential with L2 densities, (cf.
[13, 16]), implies that u~=0. Since the single layer potential us satisfies the homo-
geneous Dirichlet problem in F~ and k2 is not a Dirichlet eigenvalue of the Laplacian
in F~, we obtain us = 0 in F" . From the jump relation for the normal derivative of the
single layer potential with L2 densities (cf. [13, 16])

du+ du~ ,
— _ = - < / > , o n F (2.8
dn dn

we conclude <p = 0 on the surface F, which is equivalent to injectivity of the far-field
operator !F.

To prove that the operator J* has a dense range we will consider its adjoint operator
&*:L2(dQ)->L2(r), given by

~ J gi*)e>«*'»d**), yeTcR3. (2.9)

It is well known (cf. [16]), that for every bounded and linear operator A:X~* Y we have
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N(A*)L = R{A) where X, Y denote Hilbert spaces and, as usual, N(A*) is the null space
for the operator A* and R{A) denotes the range of A. Clearly, the operator & is
bounded and linear and therefore if we prove that the null space of the operator #"*
contains only the zero function then this would imply the second part of the theorem
under consideration.

Let &*g=0. Then the function

v(y) = i- J g(x)eik^ds{x), yeR3 (2.10)

equals zero for yeF and hence solves the homogeneous Dirichlet problem in the
interior of F which implies that v vanishes there. Since the function v is analytic in R3 it
follows that v = 0 everywhere. But the function v is a Herglotz wave function with kernel
g and vanishes everywhere. Therefore from [11] we deduce that g = 0 in L2(3Q) which
proves the injectivity of &* and also completes the proof.

Now, by using the similar arguments to the above, we will establish the properties of
the boundary operator B.

Theorem 2.2. The boundary operator B:L2(F)-»L2(<?£)) defined by (2.6) is injective
and has a dense range.

Proof. Let 0eL2(F) be such that

B(/>=0. (2.11)

Let us define the function

u(x) = $4>(y)<!>(x,y)ds(y), xeR3\F (2.12)
r

Then the function u is a solution of the Helmholtz euation in F + satisfying the
Sommerfeld radiation condition, (cf. [5]). Equation (2.11) implies the boundary
condition

— M + iAu = 0, on 3D. (2.13)
on

Recall that OgA on dD, and hence, by uniqueness of the solution for the exterior
impedance boundary-value problem (cf. [5]), we conclude that u = 0 in the exterior of D.
Since the function u is analytic in F + , the unique continuation principle implies u=0 in
F + . From the jump relation for the single-layer potential with L2 densities we obtain
u~ =0. Since the single-layer potential u also satisfies the Helmholtz equation in F" and
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k2 is not the Dirichlet eigenvalue for the Laplacian in r~ we have w = 0 in F~. The
jump relation (2.8) for the normal derivative of the single-layer potential with L2

densities yields 0 = 0, which proves the injectivity for the operator B.
Similar to the proof of Theorem 2.1, to show that operator B has a dense range

consider the adjoint operator B*:L2(3D)->L2(F) defined by

(B*4>){x)= J <Ky) [ / - <t>(x,y)-a(y)<t>(x,y)]ds(y), xeF. (2.14)
dD \_<Jny J

We will show that the null space of B* is trivial. To establish this, let us consider the
function (p such that

O (2.15)

and then using the function <j>, define

«(*)= j 4>(y) I"/- <S>{x,y)-iX{y)WJ)\ds{y), xeR3\Z>. (2.16)
dD \_dny J

The function u is a solution of the Helmholtz equation in D. The condition (2.15)
implies that u = 0 on F, and hence, satisfies the homogeneous Dirichlet problem for the
Helmholtz equation in F" . Our choice of F again implies that u = 0 in F~. Since the
function u is analytic in D, we conclude that w = 0 in D. Taking the limit of u(x) as x
tends to the boundary dD from the interior and using the jump properties of the double
and single layer potentials with square integrable densities (cf. [13]), we see that

(2.17)

for xedD. From (2.17) we can deduce that 4>eC(dD). Denoting by the subscripts + the
limits as x tends to dD from outside and inside D respectively, using (2.16) and the fact
that <f> e C(dD) we obtain the relations

w + - u " = 2 0 , ondD (2.18)

and

du+ du~ , . , , -
— — = 2iX<$>, on 3D. (2.19)
on on

Since u~ =du~/dn = 0 we have
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— -iXu+=0, on 3D. (2.20)
dn

By the uniqueness of the solution to the exterior impedance problem, we have w + = 0
and hence, from (2.18) we obtain 0 = 0. Therefore, the null space of the operator B* is
trivial and this implies the theorem.

We now consider the problem of determining k,4>l,...,(j)n from the equations

&<i>j = Fj (2.21)

and

where, F,, Uj are given functions and the operators !F and B are defined by the formulas
(2.4) and (2.6) respectively. Recall also that the operator B depends on the function L
Note also that since the integral operator $F is compact and has an analytic kernel, the
system of first kind integral equations (2.21) is severely ill-posed. Hence we need to
regularize the problem. To this end, we assume that the function X belongs to a compact
subset Vc where

Ke: = {A:AeC1-'(3D)>||A||1,,^c,O^Aon3D,OSj8^1} (2.23)

where the constants c, P represent a priori information and C 1 ' denotes the space of
Holder continuously differentiable functions on 3D. Now define the functional
H:(L2(r))nxVc-+Rby

F,a):=

+ WJ+IJ- (2.24)

where 4> = (<f>i,...,<f>n), F = (Fl,...,Fn) and a > 0 is given regularization parameter. Now
we can formulate the inverse scattering problem as the nonlinear optimization problem.

Definition 2.1. By an a-optimal solution of the inverse scattering problem we
understand the functions 0e(L2(r))n , leVc, such that

heVc}. (2.25)
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Theorem 2.3. For each <x>0, the optimization problem (2.25), has a solution.

Proof. Let (0<m), /l(m))e(L2(r))n x Vc be a minimizing sequence, i.e.,

lim n((pim\lim);F, a) = M(F, a). (2.26)
m~* oo

Since Kc is a compact subset, we may choose A(m)such that Xim) —>Ae Vc as m-> oo. Hence,

l k | | ) m - o o , . / = l , . . . , n , (2.27)

and, since <x>0, we see that the sequence {</>;m)} is bounded, so we may assume weak
convergence

<#">—</),•£ L2(F). (2.28)

Since the operator i* is compact, we have

f (2.29)

We will also show the above property for the operator B. Let us recall that the operator
B is compact and depends on the function A, i.e., B = BX. Hence, for every e^O and m
sufficiently large

llBj^"1' —BA0.| |^-, j=l,...,n. (2.30)

We can choose m such that

i J <t>™(y)<t>(x,yW\x)-l(x)-]ds(y)
dD

(2.31)

for xedD and ;' = l,.. . ,n. Using (2.30), (2.31) and the triangle inequality, we obtain

B^tf^Brfj, j=\,...,n. (2.32)

From (2.24), (2.26), (2.29) and (2.32) we conclude that

lim £ | W I N ! H^ll2. (2.33)
m-*co j= 1 J = l

However, from (2.28) and (2.33) it follows that we have norm convergence

https://doi.org/10.1017/S001309150000585X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150000585X


SURFACE IMPEDANCE OF AN OBSTACLE

lim
m-*co

Finally, using (2.26) and the continuity of the functional M, we have

lim
m-* oo

9

(2.34)

(2.35)

which completes the proof.

Theorem 2.4. Assume that F is the exact far-field pattern of the inverse scattering
problem such that X is described by some function from Vc. Then

(2.36)
u - 0

Proof. Since the operator B has dense range, by Theorem 2.2, for every given e > 0
there exists 4> e(L2(r))n such that

B<t>J+\- + a \u'j < £ . (2.37)

Due to the well-posedness of the direct scattering problem, the far-field pattern of
radiating solutions of the Helmholtz equation depend continuously on the boundary
data. Therefore we can estimate

[ba}> (2.38)

for some constant K. From (2.38) and the facts that F and X satisfy the assumptions of
Theorem 2.4 we have

(2.39)

Since e is arbitrary, (2.39) implies the theorem.

3. The Colton-Monk method

In this section we will investigate a different method for solving the inverse scattering
problem under consideration. For the inverse Dirichlet problem of determining dD, this
method was introduced by Colton and Monk, and is discussed in detail in [6, 7, 10; (see
also 16)]. In this section, as in the previous, we consider the problem stated by the
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10 A. W. K^DZIERAWSKI

equations (1.1)—(1.4) and the Definition 1.1. We now make the assumption that l(x)>0
for x e 3D.

We begin by noting that if F(x; fc,a) is the far-field pattern of (1.1)—(1.4) correspond-
ing to the incident wave «', then from Green's formula and the asymptotic behaviour of
the fundamental solution of the Helmholtz equation (cf. [5]), we have

F(x; k,&) = ±- 1 \u(y) / - «-*«.»- J- u(y)e-
ik^Ads(y). (3.1)

From (3.1) amd (1.4), by interchanging the order of integration we obtain

J F(x; k,x)g(x)ds(x)=±- J u(y; k,&) \-f + a(y)]v(y)ds(y) (3.2)

an 47r gD \_dn J

where

v(y)=S g(x)e-ik^£)ds(x), (3.3)

da

It is easily shown (see [7]) that if the unique solution of

A3v + k2v=0 inD (3.4)
b(;0) ondD (3.5)

4 + il\v (H

dn J \3n J

has the form of a Herglotz wave function (3.3), then we have

J F(jc;M)s(*)<fe(Jc) = l, xedil (3.6)

for all angles a. The relation (3.6) now motivates us to introduce the far-field pattern
operator F:L2(<3Q)->L2(dfi) by

= J F(x; k,i)g(x)ds(x), xedQ. (3.7)
en

Then, we can rewrite (3.6) as the integral equation

Fg=l . (3.8)

The boundary condition (3.5) leads us to define the boundary value operator
H:L2(dCl)^-L2(dD) by
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(Hg)(x)=i \-f + a(x)]e-ik^g(y)ds(y), xedD. (3.9)
act \_dn* J

Then the condition (3.5) becomes

[ J ~ h " > 0 ) - (310)

The equations (3.8) and (3.10) are our basic tools for the solution of the inverse
scattering problem. We first examine the properties of the operators F and H.
Motivated by the ideas of [16], we have the following theorem:

Theorem 3.1. The far-field operator F, defined by (3.7), is injective and has dense
range.

Proof. Let Fg = 0. Then we have

| F(x;k,a)g(x)ds(x) = 0, xedil. (3.11)

an

The reciprocity relation, (cf. [1]),

F(x;k,&) = F{-a;k,-x) (3.12)

implies that
J F(x;k,&)gi-a)ds(&) = 0 (3.13)
an

for all xedQ. By the superposition principle, we note that the left-hand side of (3.13) is
the far-field pattern of the scattered field w5 corresponding to the Helmholtz equation
with boundary condition ws= — v on dD, where v is given by (3.3.) with g(x) replaces by
g( — x). By (3.3), ws=0 in R3\D and consequently v = 0 on dD. The result of [11] implies
that g{ — x) = 0 and hence g(ic) = 0 for xedQ which proves that the operator F is
injective. Almost the same argument shows that adjoint operator F* is injective and this
implies the density of the range of the operator F.

Now, we consider the operator H.

Theorem 3.2. The operator H, defined by (3.9), is injective and has dense range.

Proof. Let Hg = 0. Then define the function
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12 A. W. K£DZIERAWSKI

xeR3. (3.14)
an

The function v is a solution of the Helmholtz equation in R3. We have

on
(3.15)

Since A(x)>0 for xedD we have i; = 0 in D and, by unique continuation, for xeR3. By
the results of [11] we can conclude that g = 0 in L2(dQ). Now, let us consider the
adjoint operator of H,H*: L2{dD)->L2(dQ.)

(3.16)

Assume that H*<p = 0 in L2(dfi) and consider the function

= J (3.17)

The far-field pattern of the function us is given by l/(4n)H*4>=0. Hence, us = 0 in R3\D
and also

onT. (3.18)

Now, using exactly the same arguments as in the proof of Theorem 2.2 (except
interchange the roles of interior and exterior domains), we conclude that <p = 0 and
hence the operator H* is injective which implies the theorem.

Based on the equations (3.8) and (3.10) we are now able to formulate our
optimization problem for solving the inverse scattering problem. We first define the
functional

2

L2(dD)
(3.19)

simultaneously, over all XeVc and geUp = {geL2(dQ):

Definition 3.1. The pair {X,g), leVc, geUp is a p-optimal solution of the inverse
scattering problem if

https://doi.org/10.1017/S001309150000585X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150000585X


SURFACE IMPEDANCE OF AN OBSTACLE 13

n(g,X; F,p) = inf{n(q,r; F,p): qeUp,re Vc} (3.20)

where p > 0 is a regularization parameter.

Theorem 3.3. For each p>0 the optimization problem (3.20) has a solution.

Proof. Let (gn,Xn) be a minimizing sequence for (3.20). Since the set Vc is compact, we
can choose the sequence Xn such that

strongly and

(3.21)

(3.22)

converges in a weak sense. The functions X e Vc since the set Vc is compact. Also, we
have

and hence, geUp. Since the operators H and F are compact, it follows that Fgn->Fg
and HXngn -* Hxg which concludes the proof.

Theorem 3.4. Let F be the far-field pattern such that the function Xe Vc. Then

limn(g,X;F,p)=0. (3.24)

Proof. Let £>0. Since the operator H has a dense range, we can find a function gE

such that

-.0)
LHdD)

Now we will show that

(3.25)

(3.26)

where C is a constant depending on the function u, the solution of (1.1)—(1.4). It follows
from (3.7), that

& - 1 = J F(x;k,&)gc(x)ds(x)-l.
da

(3.27)
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14 A. W. KEDZIERAWSKI

As in the proof of (3.6), elementary calculation shows that

J F(x;k,&)gE(x)ds{x)- 1 = J -^ ( Hge-\ — + ik <P(x,0) )ds(y). (3.28)
an dD on y \_onx J J

The Schwarz inequality gives

12 r d ^
~ 1 | = J T" "(•" flslyje ^ C j e (3.29)

BD on

where ^ ( d / d n M j O p d s M ^ C ! , which implies (3.26). From (3.25) and (3.26) we have

rj(gE,l; F,p)^(l + C)e. (3.30)

Since the constant e is an arbitrary positive number, (3.30) implies the theorem.
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