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Accurate weed emergence models are valuable tools for scheduling planting, cultivation, and
herbicide applications. Multiple models predicting giant ragweed emergence have been developed, but
none have been validated in diverse crop rotation and tillage systems, which have the potential to
influence weed emergence patterns. This study evaluated the performance of published giant
ragweed emergence models across various crop rotations and spring tillage dates in southern
Minnesota. Across experiments, the most robust model was a mixed-effects Weibull (flexible
sigmoidal function) model predicting emergence in relation to hydrothermal time accumulation with a
base temperature of 4.4 C, a base soil matric potential of -2.5 MPa, and two random effects
determined by overwinter growing degree days (GDD) (10 C) and precipitation accumulated during
seedling recruitment. The deviations in emergence between individual plots and the fixed-effects model
were distinguished by the positive association between the lower horizontal asymptote (Drop) and
maximum daily soil temperature during seedling recruitment. This finding indicates that crops and
management practices that increase soil temperature will have a shorter lag phase at the start of giant
ragweed emergence compared with practices promoting cool soil temperatures. Thus, crops with early-
season crop canopies such as perennial crops and crops planted in early spring and in narrow rows will
likely have a slower progression of giant ragweed emergence. This research provides a valuable assess-
ment of published giant ragweed emergence models and illustrates that accurate emergence models can
be used to time field operations and improve giant ragweed control across diverse cropping systems.
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Planting dates, cultivation schedules, and herbicide
application timing can improve weed control by being
scheduled when weeds are most vulnerable (Menalled
and Schonbeck 2013). For example, spring preplant
tillage or POST herbicide applications are more
efficient when the number of emerged weeds is
maximized but weed size is small. If tillage or herbicide
is applied too early, only a small percentage of weeds
will have emerged, whereas if either occurs too late,
weeds may be too large to be vulnerable (Carey and
Kells 1995; Gunsolus 1990). Accurate weed
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emergence models provide a tool to optimize the
timing of field operations to obtain maximum weed
control (Anderson 1994; Forcella et al. 1993). Weed
emergence models can also improve our understanding
of abiotic factors influencing seed biology and dor-
mancy release. For example, emergence modeling
studies have provided evidence that giant ragweed seed
dormancy is related to cold, moist conditions during
the overwinter period, supporting previous research
(Davis et al. 2013; Schutte et al. 2012).

Giant ragweed is one of the most competitive
agricultural weeds in the midwestern United States
row-crop production and has developed resistance to
glyphosate and acetolactate synthase (ALS)-inhibitor
herbicides (Heap 2016; Webster et al. 1994). With
limited herbicide options effective for giant ragweed,
proper herbicide application and mechanical weed
control timing is critical for maximizing weed control
efficacy (Buhler et al. 1997). Giant ragweed has been
one of the earliest emerging agricultural weeds in the
midwestern United States, often exhibiting a single
early-season flush of emergence in early spring, with
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90% emergence occurring by early June (Buhler et al.
1997; Goplen et al. 2017; Werle et al. 2014),
although some populations have developed a
delayed, biphasic emergence pattern (Schutte et al.
2008). Using tillage to control early-emerging weeds
not only reduces reliance on herbicides but also
reduces weed population densities and allows POST
herbicide applications to be made to smaller weeds,
making them more effective (Sellers et al. 2009).

There are four publications predicting the timing
of giant ragweed emergence based on concurrent
weather and soil characteristics (Archer et al. 20006;
Davis et al. 2013; Schutte et al. 2008; Werle et al.
2014). All models base predictions on thermal time
accumulation (either growing degree days [GDD] or
hydrothermal time [HTT]) but use different soil
temperature and moisture criteria for thermal
time accumulation (Table 1). All models but Archer
et al. (2006) have used the soil temperature and
moisture model (STM?) (Spokas and Forcella 2009)
to predict soil temperature and moisture, although
predlctlons were from different soil depths.
The STM” uses site- spec1ﬁc soil information, da1ly
precipitation, and minimum and maximum air
temperatures from a nearby weather station to pre-
dict soil temperature. Although the STM? model
can be highly accurate, it does not account for soil
shading as crop canopies develop (Perreault et al.
2013; Schutte et al. 2008).

For this analysis, 11 models were derived from
four publications predicting giant ragweed emer-
gence (Table 1). The single fixed-effect model from
Archer et al. (20006) predicts giant ragweed emer-
gence with HTT using the Gompertz function:

Y =100 * exp[—6 * exp(—0.02 « HTT)] (1]

where Y'is cumulative percent emergence and HT'T
is the predictor variable. All other published
models use the Weibull function to predict giant
ragweed emergence. The models from Schutte et al.
(2008) and Werle et al. (2014) include only fixed
effects:

Y=Mx {1 — exp[(— exp(lrc)) * (GDD or HTT — z) /\c]} [2]

where Y is cumulative percent emergence, M is the
upper horizontal asymptote, lrc is the natural log of
the rate of increase, GDD or HTT is the predictor
variable, z is the time of first emergence, and ¢ is the
curve shape parameter. The fixed-effects models
have model parameters that are fixed across all
locations, years, and changing weather conditions,
with model parameters presented in Table 1. Davis

et al. (2013) included an additional fixed effect for
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Published models predicting the emergence pattern of giant ragweed as cumulative percent emergence.

Table 1.

Weibull model parameters

Equation
type

Soil data
(depth)
(5 cm)

HTT

GDD
base (MPa)

base (C)

Prediction
variable

Drop

lrc

Model details

Fixed

Model no.

Citation

105.7¢
105.7¢

-6.2¢
-8.2

-12.7¢
-7.4

1.38
1.6

60
600

99.8

99.8
60

Gompertz
Weibull
Weibull
Weibull

(2 cm) STM?
(2 cm) STM?
(1.cm) STM?
(1.cm) STM?
(2 cm) STM?
(2 cm) STM?

-0.15
-2.5
-10
-30

-2.5

4.4
4.4
4.4
2.0
2.0
9.0
13.0

HTT
HTT
HTT
HTT
HTT
GDD
GDD

Mixed (arable)
Mixed (riparian)
Fixed (prelag)
Fixed (postlag)

3
9
9
10
11

1
2,4,5,6,7,8°

Archer et al. (20006)
Davis et al. (2013)
Davis et al. (2013)
Schutte et al. (2008)
Schutte et al. (2008)
Werle et al. (2014)
Werle et al. (2014)

1.23

40
100

Weibull

1.6573 -7.0

1.2593

0
0

Weibull

Fixed (common)
Fixed (best)

-3.5

100

Weibull

ymptote relative to upper asymptote; GDD, growing degree days; HT'T, hydrothermal time; lrc, natural log

, soil temperature and moisture model (Spokas and Forcella 2009); z, HTT of first emergence.

STM?

same fixed effects but different random effects for lrc and/or Drop determined by weather variables.

lower horizontal as

upper horizontal asymptote;
“Indicates model also includes random effects for the given parameter determined by weather variables.

* Abbreviations: ¢, curve shape parameter; drop,

of the rate of increase; M,
b Models include the
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a lower horizontal asymptote (Drop) to the Weibull
function, as in Equation 3:

Y =M — (Drop+ drop) x exp|(—exp(ltc+ fre)) « (HTT) " ¢]  [3]

as well as random effects for drop and /rc, which were
determined by their published associations with
weather variables and were different for each site-
year (Equation 3). The terms for drop included by
Davis et al. (2013) determine how much lower the
lower horizontal asymptote is relative to the upper
horizontal asymptote, which had a fixed value of
99.8 for all models derived from Davis et al. (2013)
(Table 1). In Equation 3, Drop and drop are the
fixed and random effects, respectively, for the lower
horizontal asymptote relative to the upper asymp-
tote, and Irc and /rc are the fixed and random effects,
respectively, for the natural log of the rate of
increase. Fixed-effect parameters for all models are
presented in Table 1, while random-effect para-
meters were estimated from their associations with
weather variables found in Davis et al. (2013).

The model from Schutte et al. (2008) was a two-
part model, with a pre— and post-lag phase com-
ponent based on the Weibull function, designed to
predict emergence of giant ragweed with a biphasic
emergence pattern like the populations found in
Ohio. Both phases of this model had an HTT
predictor variable but different base soil matric
potential and model parameters for each phase
(Table 1). Werle et al. (2014) presented two models,
one of which was the best giant ragweed emergence
model in their study and another which was a
common model among other weed species evaluated

in their study. Both models from Werle et al. (2014)

were fixed-effects Weibull functions with GDD
predictor variables but with different base tempera-
tures for GDD calculation and different model
parameters (Table 1).

The models from Davis et al. (2013) included
two mixed-effects Weibull functions with an HTT
predictor variable designed for either arable or
riparian accessions of giant ragweed. Each model had
different fixed-effect parameters for lrc and ¢ but the
same fixed-effect parameters for M and Drop.
In addition to the fixed effects, these models inclu-
ded random effects for /rc and drop. Davis et al.
(2013) found that overwinter GDD (10 C) and
rainfall during seedling recruitment were both
negatively associated with the random effect /rc and
that rainfall during seedling recruitment was nega-
tively associated with the random effect drop. Davis
et al. (2013) concluded that these weather variables
are what influenced deviations from the fixed-
effects-only models, and therefore can be used to
improve model predictions in years or locations with
differing weather conditions. The associations
found by Davis et al. (2013) between weather
variables and random effects for /rc and drop were
used to predict the random-effect parameters for
each site-year of this study, which is how Models 4
to 8 were derived in Table 2. All giant ragweed
populations in our study were from arable acces-
sions, so arable accession Model 2 was used as a
basis for the mixed-effects Models 4 to 8 (Tables 1
and 2). Models 4 to 8 had the same fixed effects as
arable accession Model 2 but different random
effects for each site-year that were predicted from

Davis et al. (2013).

Table 2.  Summary of model performance criteria ordered by model performance across experiments and site-years (» = 1,586)."

GDD base HTT base

Temperature ~ moisture  Random
Model no. Model —C— —MPa—  effects AlCc w; RMSE 7 A ccc
8 Davis arable 4.4 -2.5 Y lre+ Pdrop -5,445 >0.999 0.18 0.87 0.97 0.85
5 Davis arable 4.4 -2.5 W lre -5,383  <0.001 0.18 0.87 0.98 0.85
6 Davis arable 4.4 -2.5 P drop -4,869 <0.001 0.21 0.88 0.94 0.82
2 Davis arable 4.4 -2.5 -4,806 <0.001 0.22 0.87 0.94 0.82
9 Schutte 2.0 -10/-30 -4,447  <0.001 0.25 0.81 0.63 0.51
7 Davis arable 4.4 -2.5 P lrc + P drop -3,731 <0.001 0.31 0.76 0.89 0.68
4 Davis arable 4.4 -2.5 P lrc -3,566  <0.001 0.32 0.74 0.89 0.66
10 Werle 9.0 — -2,919  <0.001 0.40 0.60 0.18 0.12
11 Werle 13 — -2,706 <0.001 0.43 0.46 0.27 0.13
1 Archer 4.4 -0.15 -2,680 <0.001 0.43 0.61 -0.01 -0.01
3 Davis riparian 4.4 -2.5 -2,543  <0.001 0.45 0.61 -0.15 -0.09

* Abbreviations: A, measure of accuracy; AICc, corrected Akaike’s information criterion; w;, Akaike weight; CCC, concordance correlation
coefficient (product of 7 and A); GDD, growing degree days; HTT, hydrothermal time; P drap, drop determined by precipitation during
recruitment; P /e, natural log of the rate of increase determined by precipitation during recruitment; 7, Pearson’s correlation coefficient;
RMSE, root mean square error; W /¢, natural log of the rate of increase determined by winter GDD (10 C) from October to March.
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Davis et al. (2013) and Schutte et al. (2008)
developed giant ragweed emergence models by
evaluating giant ragweed emergence with no sur-
rounding vegetation, while Werle et al. (2014)
developed emergence models in an experiment plan-
ted to soybean [Glycine max (L.) Merr.] that achieved
a crop canopy after the majority of giant ragweed
emergence had occurred. Although Schutte et al.
(2008) validated their model in both no-tillage and
tilled conditions, the type of crop, crop residue, and
tillage influences the soil environment, which can alter
giant ragweed emergence. Since all published emer-
gence models were constructed in either fallow or
annual row-crop systems, it is likely that model per-
formance, or how closely a model predicts actual giant
ragweed emergence, will decrease in perennial crops or
crops planted early in the season and in narrow rows,
because they affect early-season soil temperature and
moisture (Liebman and Dyck 1993). Giant ragweed
emergence has been shown to be prolonged with
less total seedling recruitment in established alfalfa
(Medicago sativa L.), which was attributed to lower soil
temperatures being less conducive to giant ragweed
recruitment (Goplen et al. 2017; Wortman et al.
2012). It is important to validate the applicability of
giant ragweed emergence models in diverse cropping
systems to identify reliable models for timing field
operations. The objectives of this research were to
evaluate the performance of published giant ragweed
emergence models across contrasting cropping sys-
tems, and determine biotic or abiotic factors associated
with deviations in emergence model predictions.

Materials and Methods

Crop Rotation Experiments. Two field experi-
ments were initiated in 2012 and 2013 at separate
sites with naturally occurring giant ragweed resistant
to glyphosate and ALS-inhibitor herbicides near
Rochester, MN (43.91°N, 92.56°W). Crop manage-
ment details are outlined in Goplen et al. (2017) and
consisted of six 3-yr crop rotation treatments applied
in a randomized complete block design with four
replications. Crops in the rotations were corn
(Zea mays L.), soybean, wheat (17iticum aestivum L.),
and alfalfa. Rotations were continuous corn, soybean—
corn—corn, corn—soybean—corn, soybean—wheat—corn,
soybean—alfalfa—corn, and alfalfa—alfalfa—corn. Giant
ragweed emergence was monitored on a weekly basis
with emergence data from a total of 120 experimental
units over 3yr being used for emergence model
analysis, as weekly emergence data were not collected
in 2012.
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Tillage Experiments. Two additional field experi-
ments were conducted in 2015 near Rochester, MN
(43.91°N, 92.56°W) and at the University of
Minnesota Rosemount Research and Outreach Center
near Rosemount, MN (44.70°N, 93.08°W) (Goplen
2017). Both sites had naturally occurring giant rag-
weed resistant to glyphosate, and at Rochester, MN,
giant ragweed was also resistant to ALS-inhibitor
herbicides. Each experiment had six tillage treatments
arranged in a randomized complete block design with
four replications. The tillage treatments included
multiple dates of spring tillage timed relative to the
initiation of giant ragweed emergence. Treatments
included tillage with a field cultivator at a depth of
10 cm at emergence onset; at 14, 28, and 42 d after
emergence onset; at emergence onset and repeated at
28d after onset; and no tillage. At Rochester, MN,
two replications were in oat stubble that had no fall
tillage, and the other two replications were in
fall chisel-plowed corn stubble. At Rosemount, MN,
all replications took place in fall chisel-plowed
soybean stubble. Plots at Rosemount, MN, were 3
by 6 m, and plots at Rochester, MN were 3.7 by 6 m
to accommodate equipment size. Ten 0.09-m”

quadrats were placed in each plot. Giant ragweed
emergence was monitored by counting and removing
emerged seedlings in each quadrat on a weekly
basis, starting at emergence onset and continuing for
at least 10 wk or until emergence ceased. All emer-
gence data were converted to a cumulative percentage
of giant ragweed that emerged each week. These
tillage timing experiments contributed data from
48 experimental units for analysis of giant ragweed
emergence models.

Environmental Effects. Daily precipitation and
minimum and maximum air temperatures were
obtained from the National Weather Service station
within 5km of each study location. Weather data
from each weather station were used to predict daily
soil temperature (C) and m01sture (MPa) at 1-, 2-,
and 5-cm depths usmg STM? (Spokas and Forcella
2009). The STM? predlctlons were based on daily
maximum and minimum air temperature, daily
precipitation, soil properties (sand, silt, clay, and
organic matter), latitude, longitude, and elevation.
Thermal time for each giant ragweed emergence
model was calculated using the method specified in
the respective publication. All emergence models

calculated GDD as:

(Tt T,
GDD = ZSZ ““’“ Tt Toin) _
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where 7}, is maximum daily soil temperature, 7,
is minimum daily soil temperature, 7;, is base
temperature for GDD calculation presented in
Table 1, and §; and S, are beginning and ending
dates for the specific model, respectively. For models
using hydrothermal time (HTT) to predict emer-
gence, HT'T was calculated as:

HTT = Zﬁ 0,,GDD 5]

where GDD were calculated according to Equation 4,
0, = 1 when soil matric potential was in the model’s
designated interval, and 07 = 0 when soil matric
potential was not in the model’s designated interval
(Table 1). Therefore, thermal time was only accumu-
lated when soil moisture was in the designated
interval. Soil temperature at the 5-cm depth was
recorded hourly in plots frorn all experiments using
temperature sensors (Hobo® Water Temp Pro v2,
Bourne, MA). Soil temperature data from temperature
sensors were used to evaluate STM? accuracy and
explore deviations from emergence predictions in crop
rotation and tillage timing treatments.

Statistical Analysis. Measures of model perfor-
mance in our study were based on comparison
between observed and predicted values for cumulative
percent emergence of giant ragweed across the entire
seedling recruitment period. Corrected Akaike’s
information criterion (AICc) was used to evaluate
competing giant ragweed emergence models across
experiments. This criterion includes a correction for
sample size and is recommended in practice over
traditional AIC (Anderson 2008; Hurvich and Tsai
1989; Sugiura 1978). It is based on the minimization
of maximum-likelihood criterion and is calculated as:
2K(K+1
KU
—K—1
where the first term involves the log-likelihood of the
model, given the data, while the second term penalizes
a model for K additional parameters and sample size of
n. Models with lower values of AICc indicate they
better represent reality given the data. Akaike weights
(w;) were calculated from the AICc values for the 11
models to determine the probability that a given model
is the best descriptor of reality among the candidate
models. Akaike weights were calculated as:
1A,
RSP 7

where A; is the AICc difference between the top model
and the ith alternative, and R is the number of

AlICc = —2log (& (é)|x) +
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candidate models (Anderson 2008; Burnham and
Anderson 2002; Hoeting et al. 1999). Akaike weights
(w;) closer to 1 indicate stronger support for a candi-
date model given the data. This methodology has been
used in previous giant ragweed emergence modeling
studies to select the best-fitting predictive model while
minimizing the number of parameters (Davis et al.
2013; Werle et al. 2014).

Since AICc will rank models even if none perform
well, it is recommended that additional performance
criteria be used (Anderson 2008; Kobayashi and
Salam 2000; Legates and McCabe 1999; Meek et al.
2009; Tedeschi 2006). Following earlier methods
(Schutte et al. 2008; Werle et al. 2014), goodness of
fit for each model was analyzed using root mean
square error (RMSE) and the concordance cor-
relation coefficient (CCC) to provide measures of
giant ragweed emergence model precision and
accuracy. The RMSE was calculated to estimate
model prediction accuracy and is recommended
when using AICc model selection methods
(Anderson 2008; Legates and McCabe 1999;
Tedeschi 2006). The RMSE is calculated as:

n 2
RMSE=\/Zi:1(2i_Pi) [8]

where O; and P; are the observed and predicted values
of the cumulative percentage of giant ragweed
emerged, respectively, and # is the number of
comparisons. The CCC was calculated as an additional
model performance measure, since it provides a

measure of precision and accuracy (Mitchell 1997).
The CCC is:

CCC=7rA 9]

which is the product of Pearson’s correlation
coefficient () and accuracy (A). Accuracy (4) is a
bias correction factor calculated as:
45,5, — r(s>+ 52
A= Y ( 'y x) ~ [ 1 0]
(2—7) (syz +352) + (py—ux)

where s, is mean deviation x from p, , 5, is mean
deviation y from p,, W, is the mean of the observed
values, and p, is the mean of the model prediction.
The CCC can range from -1 to 1, with values near 1
indicating better-fitting models (Meek et al. 2009).
Deviations from the best giant ragweed emer-
gence model were analyzed to determine whether
they were associated with crop rotation or tillage
treatments or with specific soil temperature condi-
tions. Since the best giant ragweed emergence model
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was from a mixed-effects model, random effects were
fit to the observed data using maximum-likelihood
methods in each treatment and site-year as done by
Davis et al. (2013). Regression analyses were then
performed to determine the relationship between
fitted random effects, which were the dependent
variables, and crop rotation and tillage treatments
and observed soil temperature data. All analyses were
performed using R v. 3.1.3 (R Foundation for
Statistical Computing, Vienna, Austria).

Results and Discussion
Giant Ragweed Emergence. Giant ragweed

emerged early in the growing season in all experi-
ments, where on average 90% of giant ragweed
emergence occurred on May 29 and June 4 in the
tillage and crop rotation experiments, respectively
(Goplen 2017; Goplen et al. 2017). Crop rotations
with annual crops had similar giant ragweed emer-
gence phenology, whereas emergence was slightly
prolonged in established alfalfa, likely due to the
prominent early-season crop canopy (Goplen et al.
2017). Tillage treatment reduced giant ragweed
emergence the week following tillage, likely because
tillage disrupted germinating seedlings and
prevented them from emerging the week following
tillage (Goplen 2017). Tillage treatments had similar
levels of total giant ragweed emergence (P = 0.460),
however, indicating that tillage did not stimulate or
suppress total giant ragweed emergence.

Model Performance. Across all experiments and
site-years, giant ragweed emergence was best fit by
Model 8, a mixed-effects model derived from the
arable accession model of Davis et al. (2013)
(Tables 1 and 2). Model 8 had the lowest AICc,
greatest Akaike weight (w;), lowest RMSE, and
greatest CCC among candidate models, although it
was only marginally better than Model 5, indicating
that it had the best fit of emergence across diverse
cropping systems in this study (Table 2). Model 8
included the fixed effects specified in Table 1, and
random effects determined by overwinter GDD
(10 C) accumulated from October through March
(W lre), and precipitation accumulated during
seedling recruitment (P drop). The random effect W
lrc included in Model 8 alters the predicted rate of
emergence, with greater values indicating more rapid
emergence. Davis et al. (2013) found /¢ to be
negatively associated with overwinter GDD (10 C),
meaning /rc is greater and emergence progresses
more rapidly following colder overwinter periods.
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The more rapid progression of giant ragweed
emergence following colder overwinter periods
observed in this study has been shown to be related
to greater dormancy loss following cold and moist
conditions (Ballard et al. 1996; Davis et al. 2013;
Schutte et al. 2012). Overwinter GDD (10C)
accumulated in this study ranged from 20 to 67
GDD (10 C), which was comparable to the coldest
overwinter periods observed by Davis et al. (2013),
which ranged from 0 to 300 GDD (10 C). This
resulted in more rapid emergence predictions in all
site-years of our study compared with the fixed-
effects-only Model 2 (Figure 1). Davis et al. (2013)
also found an association (» = -0.39, P = 0.10)
between drop and precipitation accumulated during
seedling recruitment, which was used to predict drop
in Model 8 (AS Davis, personal communication).
The negative association between drop and pre-
cipitation during seedling recruitment indicates that
smaller values for drop occur when there is greater
precipitation during seedling recruitment, resulting
in an extended lag phase when there is greater pre-
cipitation during seedling recruitment. Compared
with Model 2, including the random effects W /rc
and P drop in Model 8 improved model performance
by reducing RMSE by 0.04 and increasing CCC by
0.03 (Figure 1; Table 2). The improved emergence
predictions with Model 8 compared with the fixed-
effects-only Model 2 confirm the findings of Davis
et al. (2013) that random effects for /rc and drop
describe deviations from the fixed-effects-only
Model 2 (Table 2).

Model 5, a mixed-effects model derived from
Davis et al. (2013) with fixed effects and a single
random effect for W /Jre, was the second best
performing giant ragweed emergence model evaluated
in this study. The random effect in Model 5 included
the same random effect for lre (W /rc) included in
Model 8 based on overwinter GDD (10 C), but did
not include the random effect for drop (P drop).
Including only W /rc in Model 5 still resulted in
better model performance than the fixed-effects-only
Model 2 and had nearly the same measures of RMSE
and CCC as the top model. Model 5 had an Akaike
weight (w,) of <0.001, however, implying that there
was a low probability that it was the best among the
candidate models and that it did not predict
emergence as well as Model 8 (Table 2).

Models 4, 6, and 7 were also mixed-effects models
derived from Davis et al. (2013) for arable accessions
of giant ragweed but were inferior compared with
Model 8 (Table 2). Model 6 included a single

random effect for drop determined by precipitation
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Figure 1. Predicted cumulative giant ragweed emergence by model in relation to observed mean cumulative emergence in each
experimental treatment. Random effects included in the Davis et al. (2013) arable-accession mixed-effects models are shown in
parentheses. Abbreviations: P drop, drop determined by precipitation during recruitment; P /¢, natural log of the rate of increase
determined by precipitation during recruitment; W /re, natural log of the rate of increase determined by winter GDD (10 C)

accumulated from October to March.

accumulated during seedling recruitment (P drop),
which resulted in model performance measures only
marginally better than the fixed-effects-only
Model 2 (Table 2). Models 4 and 7 had a random
effect for /rc determined by precipitation during
seedling recruitment (P /), and Model 7 included
an additional random effect for drop based on
precipitation accumulated during seedling recruit-
ment (P drop). Random effects for /rc and drop were
determined from Davis et al. (2013) by the negative
associations between /rc and drop and precipitation
accumulated during seedling recruitment. Among all
models derived from Davis et al. (2013), the two
best-fitting models across our experiments included
a random effect for /rc determined by overwinter
GDD (Models 5 and 8), while the worst-fitting
models determined the random effect for /¢ by
precipitation accumulated during seedling recruit-
ment (Models 4 and 7). These findings indicate that
lre is more closely associated with overwinter GDD
(10 C) than precipitation during seedling recruit-
ment (Table 2). Random-effect model parameters
based on overwinter GDD (10 C) are also easier to
use in making real-time emergence predictions,
because random effects predicted from overwinter
GDD (10 C) are known prior to giant ragweed
recruitment. Random-effect parameters based on
precipitation during the seedling recruitment period
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are unknown until the end of seedling recruitment,
meaning real-time emergence predictions will
require recalculation of random-effect parameters
as precipitation accumulates or use of historical
averages and weather forecasts to predict random-
effect parameters.

Model 9 was derived to model emergence of giant
ragweed with a biphasic emergence pattern in Ohio
(Schutte et al. 2008) and was among the top-
performing models in our study. In our study, giant
ragweed emergence generally occurred after the early
flush but before the late flush of emergence predicted
by Model 9. This monophasic emergence pattern
aligning between the two flushes of emergence
predicted by Model 9 indicates that giant ragweed
populations in Minnesota have not diverged in their
emergence timing as populations found in Ohio have
done (Figure 1).

Across the crop rotation and tillage timing experi-
ments, soil temperature at the 5-cm depth predicted
by the STM? was associated with observed soil
temperature (R* = 0.88, P<0.001) (Figure 2).
Although the observed and predicted soil temperatures
were associated, the STM? had a mean bias of 2.9 C,
indicating that the STM? predicted soil temperature to
be 2.9 C warmer on average than what was observed.
The 2.9C bias of STM” temperature predictions

caused predicted thermal time to accumulate faster
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Figure 2. Daily average soil temperature at the 5-cm depth
predlcted by the soil temperature and moisture model
(STM?) during the crop rotation and tillage timing
experiments relative to observed soil temperature. The solid
1:1 line (y = x) indicates perfect agreement between observed
and predicted soil temperature, while the dotted line indicates
the fitted regression equation (y = 0.96x - 2.1, R* = 0.88,
P <0.001) between observed and predicted soil temperature.

than what actually occurred and contributed to
premature giant ragweed emergence predictions for
Models 1, 3, 10, and 11 in all site-years (Figure 1).
This finding is similar to that of Perreault et al. (2013)
who reported a mean bias of 2.5C for STM? on
loamy soils similar to soils at both of our study
locations. The mean bias of the STM? among crop
rotation and tillage timing treatments ranged from 1.7
to 3.9 C. Established alfalfa and wheat had the greatest
mean bias values of 3.8 and 3.9 C, respectively, while
soybean planted into soybean stubble had the lowest
mean bias value of 1.7 C. The STM? does not account
for changes in crop canopy during the growing season
(Perreault et al. 2013), which likely explams why the
STM? predictions had a greater bias in established
alfalfa and wheat, which were established earlier and in
narrower rows compared with corn and soybean The
STM? model was likely more accurate in previous
giant ragweed emergence modeling studies, since they
were developed with litde or no canopy coverage
(Archer et al. 2006; Davis et al. 2013; Schutte et al.
2008; Werle et al. 2014). Includlng a 2.9 C mean bias
correction factor for STM? predictions decreased the
RMSE of Models 1, 3, 10, and 11 by 0.06, 0.03,
0.09, and 0.08, respectively. However, including the
mean bias correction factor increased the RMSE of
Model 8 by 0.02, indicating that Model 8 without a
bias correction was still the best among all models
evaluated.
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Soil Temperature Associations. The mixed-
effects models derived by Davis et al. (2013) pro-
vide a versatile framework to study giant ragweed
emergence, since unexplained model deviations can
be attributed to environmental variation (Luschei
and Jackson 2005). The associations found by Davis
et al. (2013) allowed the derivation of mixed-effects
Models 4 through 8 in our study. Using this same
approach, new estimates of the random effects drop
and /rc were determined for the arable accession
model (Model 2) from Davis et al. (2013) for each
site-year and treatment combination in our study.
Regression analyses were performed to determine
associations between random effects and experi-
mental treatments and soil temperature (average
daily minimum, maximum, mean, and fluctuation
in temperature for various intervals during the
seedling recruitment period). Neither crop rotation
sequence nor tillage timing treatments were asso-
c1ated with the estimated random effects drop or e
(R* = 0.07 to 0.42, P = 0.55 to 0.99). There also
were no associations between the estimated random
effects for /rc and soil temperature variables
(R*> = 0.01 to 0.07, P =0.17 to 0.99). All soil
temperature variables analyzed were positively asso-
c1ated with the estimated random effects for drop
(R* = 0.24 to 0.72, P<0.001 to 0.006), meaning
warmer soil temperature variables or greater tem-
perature fluctuations had greater fitted random
effects for drop. The soil temperature variable most
strongly associated with the fitted random effect for
drop was the maximum daily soil temperature during
the entire seedling recruitment period (R* = 0.72,
P <0.001). This relationship indicates that greater
maximum soil temperatures during seedling
recruitment were associated with greater fitted ran-
dom effects for drop, the term representing the lower
horizontal asymptote of the Weibull function
(Figure 3). A greater random effect for drop equates
to a shorter lag period at the start of giant ragweed
emergence.

Observed average daily soil temperature fluctua-
tion during the entire seedling recruitment period
was the second most significant association with the
estimated random effects for drop (R* = 0.70,
P <0.001) (Figure 3). It is possible that either the
amplitude or number of temperature fluctuations
influences giant ragweed emergence rather than
maximum soil temperature, as shown for other weed
species including johnsongrass [Sorghum halpense
(L.) Pers.] and large crabgrass [Digitaria sanguinalis
(L.) Scop.] (Benech Arnold et al. 1990a, 1990b;
Forcella et al. 2000; King and Oliver 1994). Daily
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Figure 3. Association between the estimated random effects of 4rop and (a) mean maximum daily temperature observed at a 5-cm soil
depth during the seedling recruitment period and (b) mean daily temperature fluctuation at a 5-cm soil depth during seedling

recruitment.

maximum soil temperature was the primary factor
influencing daily temperature fluctuation, as evi-
denced by the strong association between the two
variables (» = 0.98, P<0.001), indicating that
greater daily maximum soil temperature is more
influential on daily soil temperature fluctuation than
daily minimum soil temperature, which has been
reported previously (Perreault et al. 2013). These
findings indicate that giant ragweed emergence will
have a shorter lag phase at the start of emergence in
environments with greater maximum daily soil
temperature and corresponding greater soil tempera-
ture fluctuation. Davis et al. (2013) stated that the
associations they found between random effects for
lrc and precipitation accumulated during seedling
recruitment may have been caused by increased
cloud cover accompanying increased precipitation.
Cloud cover and precipitation can limit maximum
daily soil temperature, and since soil temperature
was not directly measured in Davis et al. (2013), it is
possible that the association between random effects
and precipitation during seedling recruitment found
in Davis et al. (2013) was driven by maximum daily
soil temperature or daily temperature fluctuation, as
found in the present study.

The positive association between random effects for
drop and mean maximum daily soil temperature
supports the findings of Goplen et al. (2017), in
which giant ragweed emergence extended later into
the growing season in established alfalfa compared
with annual crops. The extended emergence was
likely due to lower soil temperatures causing a longer
initial lag period in emergence. Longer inital lag
periods in emergence could also be expected in other
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crops established early in the growing season that limit
soil temperature, such as small grains or cover crops
(Zhang et al. 2009), although this was not shown to
be the case for wheat (Goplen et al. 2017). It is also
possible that crop management practices maintaining
increased soil residue associated with conservation
tillage will have similar effects on giant ragweed
emergence, since they can also affect soil temperature
(Griffith et al. 1973; Kladivko et al. 1986).

Model 8, a mixed-effects model derived from
Davis et al. (2013) that included random effects for
drop and lrc based on precipitation accumulated
during seedling recruitment and overwinter GDD
(10C), respectively, was the model that most
accurately predicted giant ragweed emergence across
crop rotations and spring tillage dates. The top four
models that best fit giant ragweed emergence in the
present study originated from Davis et al. (2013),
with the top two models including random effects
predicted by overwinter GDD (10 C). This is
supported by studies of giant ragweed seed dor-
mancy, which have found that cold and moist
conditions during winter enhance seed dormancy
release (Ballard et al. 1996; Schutte et al. 2012).

This is the first study to verify the utility of
previously published giant ragweed emergence
models under a diversity of crop management
practices and supports previous research showing
that giant ragweed emergence is affected by winter
weather. This research also suggests that crops such
as alfalfa, small grains, and cover crops, which have
lower soil temperature during seedling recruitment
compared with annual row crops, will have a
longer lag phase at the initiation of giant ragweed
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emergence, potentially extending emergence later into
the growing season. The delay in emergence may
provide weed control benefits, as later-emerged giant
ragweed will be subjected to increased competition
with established crops. As herbicide-resistant giant
ragweed continues to be problematic, robust emer-
gence model predictions will be increasingly important
to optimize planting, tillage, and herbicide application
dates in a variety of crop management systems to
improve giant ragweed control.
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