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Abstract

The US government invests substantial sums to control the HIV/AIDS epidemic. To monitor progress toward epidemic
control, PEPFAR, or the President’s Emergency Plan for AIDS Relief, oversees a data reporting system that includes
standard indicators, reporting formats, information systems, and datawarehouses. These data, reported quarterly, inform
understanding of the global epidemic, resource allocation, and identification of trouble spots. PEPFAR has developed
tools to assess the quality of data reported. These tools made important contributions but are limited in themethods used
to identify anomalous data points. Themost advanced consider univariate probability distributions,whereas correlations
between indicators suggest amultivariate approach is better suited. For temporal analysis, the same tool compares values
to the averages of preceding periods, though does not consider underlying trends and seasonal factors. To that end, we
apply two methods to identify anomalous data points among routinely collected facility-level HIV/AIDS data. One
approach is Recommender Systems, an unsupervised machine learning method that captures relationships between
users and items. We apply the approach in a novel way by predicting reported values, comparing predicted to reported
values, and identifying the greatest deviations. For a temporal perspective, we apply time series models that are flexible
to include trend and seasonality. Results of these methods were validated against manual review (95% agreement on
non-anomalies, 56% agreement on anomalies for recommender systems; 96% agreement on non-anomalies, 91%
agreement on anomalies for time series). This tool will apply greater methodological sophistication to monitoring data
quality in an accelerated and standardized manner.

Policy Significance Statement

Policymakers aim tomake data-driven decisions and invest in information systems and processes to this end. Part
of a mature and effective data infrastructure are tools to monitor data for quality and accuracy and processes to
identify and correct for errors. This paper describes a tool developed for the President’s Emergency Plan for
AIDS Relief (PEPFAR) to aid in the routine monitoring of data reported by the thousands of health facilities it
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supports. We find that by applying machine learning approaches, we can identify with a high level of accuracy
those health facilities that are reporting atypical data and that require further scrutiny, enabling intervention to
improve data quality.

1. Introduction

Through the United States President’s Emergency Plan for AIDS Relief (PEPFAR)—managed by the
United States Department of State and implemented by the United States Agency for International
Development (USAID), the United States Department of Defense, the United States Health Resources
and Services Administration, the Peace Corps, and the United States Centers for Disease Control and
Prevention (CDC)—the United States government has supported implementing partners to provide HIV
services and commodities and to invest in systems (including health information systems) that monitor
progress toward epidemic control effectively. An important way in which PEPFAR monitors program
performance is through the regular collection of monitoring, evaluation, and reporting (MER) data:
aggregate counts of the number of clients supported and services provided by PEPFAR-supported sites
(PEPFAR, 2021).

MER data are foundational to the effort to track progress toward programmatic targets, identify trouble
spots in patient retention and outreach, and identify under-performing facilities and partners that require
intervention (USAID, 2021). Because of the importance of MER data in programmatic decision making,
and to strengthen confidence in the data being collected and reported, USAID has invested in tools to
assess data quality at a systemic level and at an individual facility level. However, these tools can be too
costly and labor intensive to deploy at scale, are used with a lag rather than in real time, or favor breadth in
data quality topics—such as data completeness, internal consistency, and timeliness—over methodo-
logical depth in identifying anomalous facilities or regions that have likely misreported data or experi-
enced performance issues that require programmatic intervention.

The data quality audit (DQA) toolkit, developed initially by the USAID-funded MEASURE
Evaluation project and updated by the Evaluation Branch of USAID’s Office of HIV/AIDS, enables
practitioners to assess the quality of data reporting systems and provides a framework to assess data
quality at the level of the health facility. It encompasses two types of activities (Hardee, 2008). Its
protocol for one activity, “Assessment of Data Management and Reporting Systems,” identifies
dimensions and questions to probe data reporting systems. It includes questions such as whether
monitoring and evaluation staff have received proper training, whether standard data reporting forms
exist, whether appropriate indicators have been developed, whether reporting processes are well
documented, and whether data flow to a central repository. Its protocol for the other activity, “Verifi-
cation of Data Reported for Key Indicators,” envisions in-depth reviews of records at service delivery
sites to ascertain if data reported are complete, are reported on time, and are consistent with underlying
patient record counts. This protocol includes modules on “trace and verification,” in which teams
recount patient records and compare them with metrics reported by facilities, and “cross-checks,” in
which teams triangulate counts of patient records against other data sources, such as laboratory
registers. For each of the key indicators reviewed, the numbers reported are compared with the numbers
re-counted. Then, a verification factor is calculated to analyze the levels of discrepancy (<5%; between
5 and 10%; >10%).

Although the DQA toolkit is an effective way to identify both systematic and facility-level program
and data quality issues, using it—and particularly its second module on data verification—is costly and
requires a substantial level of effort. Thus, MEASURE Evaluation developed the routine data quality
assessment (RDQA) tool, a lighter version of the DQA that can be used more nimbly and with fewer
barriers (MEASURE Evaluation, 2017). Whereas the DQA toolkit has templates and guides that are
specific to health programs and indicators, the RDQA provides generic program- and indicator-agnostic
guidance. Whereas the DQA has a rigorous sampling framework for facilities, the RDQA uses so-called
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convenience sampling. Moreover, whereas the DQA is intended to be used by external reviewers once
every few years, the RDQA is set up for program self-assessment, to be conducted by implementing
partners on a regular basis.

The data quality review (DQR) toolkit—developed in 2017 as a collaboration by the World Health
Organization (WHO); the Global Fund to Fight AIDS, Tuberculosis andMalaria (Global Fund); Gavi, the
Vaccine Alliance; and MEASURE Evaluation—is similarly organized into components that address
systemic and facility-level issues (World Health Organization, 2017a–c). However, this toolkit made
several advances by offering a Microsoft Excel-based tool that can be used essentially in real time and
remotely and that applies statistical approaches to identify anomalous data points. Like the DQA toolkit,
the DQR toolkit takes a broad approach to data quality: thus, it considers the dimensions of completeness
and timeliness, external consistency with other data sources, and external comparison of population data.
But the DQR’s fourth dimension, internal consistency, offers a more sophisticated approach than DQA’s
to identify anomalous data points.

The DQR’s Excel-based tool performs three types of analyses using reported aggregate health metrics:
presence of outliers, consistency over time, and consistency between indicators. To identify outliers, the
DQR tool calculates the mean and standard deviation for each indicator reported and flags as extreme
anomalies any value more than three standard deviations from the mean and as moderate anomalies any
value between two and three standard deviations from the mean. Consistency over time is measured as a
comparison of the reported value either to the average value from the three preceding years or to a value
forecasted from the values of the three preceding years, using a straightforward linear model if a non-
constant trend is expected. Finally, consistency between related indicators examines the extent to which
two related indicators follow a predictable pattern. For example, the ratio between antiretroviral therapy
coverage and HIV care coverage should be less than one.

In 2018,WHO, in collaboration with USAID, the CDC, the Global Fund, and the Joint United Nations
Programme on HIV/AIDS (UNAIDS), developed a data quality assessment module focused on the HIV
treatment indicators (World Health Organization, 2018). Generally, the related tools are used to conduct
data quality assessment of national and partner HIV treatment and client monitoring systems. The process
implies verification and recounting of reported data, assessing the system generating the data, and using a
standardized approach to address the data quality issues identified, including adjusting national data on
HIV treatment. This 2018 module has three main components: (a) rapidly assessing the HIV patient
monitoring system; (b) recreating select indicators and validating reports; and (c) assessing the quality and
completeness of reports.

Under the USAID-fundedData for Implementation (Data.FI) project, we developed a tool that builds
on the approach of these previous tools but uses more advanced statistical techniques to identify data
anomalies in aggregate MER data. This tool contributes to the existing data quality tool landscape by
complementing the strengths and limitations of the existing PEPFAR data quality tools, in turn
providing USAID teams and USAID implementing partners with a more diverse data quality toolkit.
The tool presented in this paper employs recommender systems—a technique commonly used for
product recommendation by companies such as Netflix and Amazon—to compute patterns and
relationships among all indicators, estimate values based on these patterns, and identify facilities
whose reported values deviate most from values estimated by the recommender system (Park et al.,
2012). The reported values that deviate most from values estimated by the recommender system are
flagged as anomalies. An anomaly signals that the reported data did not seem consistent with the
expected/generally observed data pattern. PEPFAR and its implementing partners can then investigate
these anomalies to identify data quality issues in a more targeted way. Whereas the DQR tool looks at
univariate distributions and simple ratios, the Data.FI tool can capture more complex, multivariate
patterns across indicators. The Data.FI tool also uses a suite of time series models to forecast values and
compare them to reported values. In contrast with theWHODQR tool, the Data.FI tool uses models that
capture nonlinear trends and seasonality to generate more nuanced forecasts. Our tool is R-based rather
than Excel-based, to enable the use of more advanced computing libraries (R Core Team, 2021).
Although a user must have R installed, use of the tool does not require programming skills. The tool is
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set up to handle common MER data formats and so requires little data preparation by users and
completes its analysis in anywhere from 5 min to 1 hr, depending on the number of facilities analyzed.

The Data.FI tool will enable PEPFAR analysts and programmatic leads to review aggregate facility-
level health metrics remotely, quickly, and using sophisticated statistical methods to identify likely data
quality or performance issues. This will allow PEPFAR and its implementing partners to identify and
correct data quality issues before they are used for decision making and to identify facilities facing
performance issues in near real time. This tool will also inform decisions to conduct comprehensive data
quality assessments focused on reviewing individual records related to 80–100%of the clients served by a
program, if needed.

2. Background on PEPFAR and MER Data

PEPFAR’s focus is to achieve HIV epidemic control through the UNAIDS 95-95-95 global goals:
95% of people living with HIV know their HIV status, 95% of people who know their HIV status are
accessing treatment, and 95% of people on treatment have suppressed viral loads (UNAIDS, 2015).
MER indicators monitor program outputs and help identify potential acute programmatic issues. Data
on these indicators are collected quarterly, semiannually, or annually. The quarterly indicators focus
primarily on the clinical cascade: HIV case finding, diagnosis, linkage, treatment, continuity of
treatment, and viral load suppression (PEPFAR, 2021). Some example MER indicators are as
follows: HTS_TST, which is the number of individuals who received HIV testing services and
received test results; TX_NEW, which is the number of adults and children newly enrolled on
treatment; and TX_PVLS, which is the percentage of patients on antiretroviral treatment with a
suppressed viral load (PEPFAR, 2021). Because disaggregation of MER data is key to understanding
whether PEPFAR services are reaching the intended beneficiaries and locations, MER data are
collected by facility, age, sex, and specific groups of clients: key populations (groups that require
additional sensitivity in HIV care owing to social stigmas, such as men who have sex with men, sex
workers, and people who inject drugs), orphans and vulnerable children, adolescent girls and young
women, and so forth.

MER data can be used in conjunction with data from other sources, such as those generated by the site
improvement through monitoring system (SIMS) tool, which is a quality assurance tool used to monitor
and guide program quality improvement at PEPFAR-supported sites, and expenditure reporting data
(PEPFAR, 2020). Granular PEPFAR data can be used to demonstrate differences in patient outcomes and
site performance, and that can help decision makers prioritize resource allocations and interventions
among sites to ensure that PEPFAR achieves sustained HIV epidemic control. As a result of this data-
driven approach that PEPFAR has been using over the past 5 years, PEPFAR results have dramatically
improved in a budget-neutral environment.

For example, part of achieving epidemic control is ensuring that clients who start treatment continue
with their treatment. Discovering patterns among clients who interrupted their treatment, missed appoint-
ments, or failed to initiate treatment is an example of how early identification of an issue can improve a
program’s quality. If a site or a specific population group has high rates of clients interrupting treatment,
early identification allows programmanagers to adjust the program or implement targeted initiatives, thus
ensuring that those clients return to care.

3. Methods

We used several approaches to examine data for anomalies. We used time series models to capture
temporal trends in data, generate forecasts, and compare forecasts to reported values. To capture patterns
across facilities and indicators, we also used recommender systems, an approach that companies such as
Amazon and Netflix commonly employ for product recommendation.
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3.1. Recommender systems anomaly detection

Recommender systems are a class of information filtering systems that aim to identify points of interest
among large volumes of data (Burke et al., 2011). Applications of recommender systems are increasingly
common on e-commerce platforms such as Amazon and streaming services such as Netflix. In the case of
e-commerce, platforms use recommender systems to identify which products among the oftenmillions on
offer would be most attractive to users based on users’ purchase, rating, and search history. In the case of
streaming services, platforms use recommender systems to suggest movies or shows that users would like
based on their viewing and rating history. From 2006 to 2009, Netflix helped accelerate research on
recommender systems by offering a $1,000,000 prize to the team that could produce recommendations
10% more accurate than the company’s existing recommender system (Hallinan and Striphas, 2014). We
use the approach of one of the top submissions for the so-called Netflix Prize (Roberts, 2010).
Recommender systems are used increasingly for purposes other than product recommendation, such as
fraud identification in the insurance and tax sectors, but their application for anomaly detection is novel.
This paper intends to share this translational application with the broader audience of data and policy
practitioners so that other sectors, beyond global health, can adopt recommender systems approaches to
anomaly detection. Figure 1 summarizes our recommender system approach to anomaly detection in HIV
data specifically.

The two common approaches to recommender systems are collaborative filtering and content-based
filtering. Collaborative filtering models assume that user–product relationships that held in the past will
hold in the future—that users will like the kinds of products and films that they liked in the past (Koren and
Bell, 2015). If our objective is to recommend a film to a viewer, we can identify other viewers who gave
similar ratings to films watched commonly by all. Then, we can identify what other films the group rated
highly that this viewer has not yet watched and recommend those films.

One of the advantages of collaborative filtering is that we do not need to know information about the
class of movie, whether a romance or comedy. The latent features generated by matrix factorization learn
the relevant classes from observed ratings. We only need to know what viewers liked and did not like and
extend recommendations on that basis. Ways of learning what films or products people like are often
grouped as explicit and implicit data collection. An example of explicit data collection is asking customers
to rate products they have used. An example of implicit data collection is tracking users’ viewing history.

Content-based filtering models characterize items or products and recommend items to users that are
similar to items they have liked previously (Thorat et al., 2015). For example, content-based models will
explicitly categorize films in an inventory by theme, cast, language, or other dimensions. To recommend
films, content-based models will identify the types of movies rated highly by users in the past and

Figure 1. Recommender systems approach for anomaly detection. In the illustrative flow, an HIV data set
is linked to the tool, which has no previous knowledge of the data. The tool examines data points and
learns which variables correlate with other variables. The tool then calculates a covariant value for each
that describes the relationship between indicators. Based on the relationship, the tool predicts values
based on other values observed for the facility. The tool compares its predictions for each value to the

actual value in the original data set and detects instances where the two differ greatly.
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recommend movies with common characteristics. For example, if a user previously rated the film Rocky
highly, a content-based model might associate the film with a category called “Feature films starring
Sylvester Stallone” and recommendRambo, in turn. The collaborative filteringmodel maymake the same
recommendation, but the underlying logic would differ: the model would essentially say “users who rated
Rocky highly also rated Rambo highly,” without trying to compare the content or characteristics of the
films.

Content-based algorithms can be quite powerful but require many data elements to execute. Whereas
collaborative filtering models require only user IDs, movie names, and the ratings assigned by users to
movies (in the case of Netflix), content-based filtering requires additional information about each movie
or product. The algorithm then identifies for each user what characteristics matter and how.

Given that our data set does not have the explicit labels needed for content-basedmodels, our challenge
in developing the Data.FI tool was closest to the realm of collaborative filtering. Collaborative filtering is
often implemented using matrix factorization, in which a sparse matrix is approximated by the product of
two rectangular matrices. By a sparsematrix, wemean that most user-item pairs aremissing, and thatmost
users have not purchased or ratedmost of themillions of products or movies available, but that some users
have rated some items. Matrix factorization generates latent features—characteristics that can be used to
group similar users or items and then to extrapolate fromobserved ratings the likely ratings for unobserved
user-item pairs. These approaches have been shown to work quite well.

In his Netflix Prize submission, Roberts applied a third approach to product recommendation, using
estimates of the mean and covariance of the data to generate minimum mean squared error (MMSE)
predictions of missing user-item values (Roberts, 2010). Roberts initialized estimates of the mean as the
arithmetic average of present values and the covariance matrix using four methods. Roberts applied a
gradient descent algorithm and expectation maximization (EM) algorithm to estimate parameters of the
covariance.

Roberts compared performance of this approach against the well-known collaborative filtering
methods on the Netflix data. Roberts found that MMSE prediction outperformed collaborative filtering,
as measured by root mean squared error. The best-performing model initialized the covariance matrix
using the positive semidefinite correlationmatrix of themove ratings (R03 in Roberts) and applied EM for
parameter estimation. Although EM improved performance, the process required 19 iterations to achieve
convergence, with 2 hr per iteration. Given our intended application to analyze data for anomalies on a
quicker basis, we adopted Roberts’s method without EM. Instead, we used the R04method for estimation
of the covariance matrix, which is the initialization method found by Roberts to perform best on the
Netflix data set when not enhanced with EM.

We adapted Roberts’s model specification to our challenge. We adapted his variables as follows
(keeping his notation). Whereas Zt in his work represents movie ratings of the tth user, we used Zt to
denote thematrix ofMER indicators for the tth health facility, t= 1,2,…,n.Whereas k is themean vector of
movie ratings inRoberts, k herewas themean vector ofMER indicators.Rwas the k� k covariancematrix
ofZt.Yt denoted the kt-dimensional sub-vector ofZt that consisted of the presentMER indicators reported
by the tth facility, recognizing that not all facilities report all indicators (kt < k). By contrast, Xt denoted
unreportedMER indicator values.Hyt was the kt� k submatrix of the k� k identity matrix I that consisted
of the rows corresponding to the index of the present values in Yt.

We followed Roberts’s adoption of Little and Rubin’s suggestion to estimate the mean vector as the
arithmetic mean of the MER indicators. We let N be the k � k diagonal matrix given by equation (1).
The mean vector was estimated in equation (2). For the covariance matrix R, we began by defining the
positive semidefinite matrix S, in equation (3). R was then computed from S using equation (4).
Finally, for each reported value, we treated the value as missing and predicted, using conditional
means, the remaining present values as RxtytR�1

yt ðyt�μytÞþμxt (equation (5)). Thus, for a given facility
t, we predicted each reported value yt from 1 to kt as a function of the estimated mean of all
MER indicators, the estimated covariance of all MER indicators, and the other values reported by
a facility:
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N =
Xn

1
H0

ytHyt, (1)

μ = N�1
Xn

1
H0

ytYt, (2)

S =
Xn

1
H0

yt yt�Hytμ
� �

yt�Hytμ
� �0Hytx, (3)

R = N�1=2SN�1=2, (4)

yt = RxtytR
�1
yt ðyt�μytÞþμxt: (5)

3.2. Time series anomaly detection

From a time series perspective, anomalous data points are those that differ significantly from the overall
trend and seasonal patterns observed. An effective time series anomaly detectionmodel would capture the
parameters of the time series and identify those points that are statistically significantly distinct from
the data.

Time series anomaly detection models can be grouped in three types of approaches, though there
are additional methods not discussed here. The first type is that used by the DQR tool and referred to
as a probability-based approach. This approach can be quite effective in identifying global outliers, or
data points that are extreme compared to all other data points in a data set. In this approach, analysts
compute parameters such as mean and standard deviation and identify points that are several
standard deviations above or below the mean. (The DQR tool labeled as “extreme” deviations of
three standard deviations and as “moderate” deviations of two standard deviations.) A benefit of this
approach is that it is straightforward to execute and easy to interpret. However, this type of approach
may neglect to identify local anomalies: data points that are atypical in light of surrounding data
points.

A second approach is to use unsupervised techniques such asK-means clustering to identify data points
that have a high distance to the nearest centroid—the center of a group of data points. One common
limitation in K-means is that a user must define the number of clusters (the “K” in K-means). Other
limitations are that clusters in K-means have a spherical shape, which may not be appropriate given
seasonal trends in a time series, and that the approach does not generate probabilities when assigning
samples to clusters that can be used to set thresholds to determine which values are extreme.

Methods that overcome the limitations of unsupervised techniques exist. Gaussian mixture models do
generate probabilities when assigning points to clusters and can associate points with multiple clusters.
Density-based spatial clustering of applications with noise identifies the number of clusters without user
intervention by first identifying core points with more than a minimum number of observations within a
user-determined distance and then extends each cluster iteratively to include points within that distance of
a point that is already part of a cluster. Any point that is not eventually included in a cluster is considered
anomalous.

A third approach is to use forecasting models to generate prediction(s) for later points in a time series
based on preceding points and to compare predictions to reported values. For each prediction, a
prediction interval is computed and data points outside the interval are identified as anomalous. One
benefit of this approach is that it can be deployed in a supervised manner, meaning that one can assess
the fits of models with numerous parameter combinations and select the model(s) with the empirically
best fit.

We rejected the probability-based approaches because of the limitation described above in identifying
local outliers. Although we also opted not to use unsupervised techniques because they are difficult to
interpret and might struggle given the generally short length of series analyzed in our application
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(typically 20 data points), we believe these approaches should be further explored. Instead, in our tool we
applied the third approach—the one based on forecasting techniques—to time series anomaly detection.

We applied three forecasting models in our tool. The first was a commonly used forecasting model:
auto-regressive integrated moving average (ARIMA) (Hyndman and Khandakar, 2008). ARIMAmodels
data as a function of immediately preceding values (the AR term), as a function of the residual error of a
moving average model applied to preceding values (the MA term), and with differencing of series to
induce stationarity (the I term).

The second model we used was error, trend, seasonal (ETS), also referred to as Holt–Winters
exponential smoothing (Holt, 1957). In exponential smoothing, forecasts are generated as the weighted
sum of preceding values. Whereas ARIMA models weigh all predictors equally, ETS models apply an
exponential decay function to preceding values, so that preceding values of smaller lags have more
influence than preceding values with larger lags do. We applied two additional smoothing parameters for
trend and seasonality, respectively, summing to three smoothing parameters overall.

This third model we applied in the Data.FI tool is called seasonal and trend decomposition using Loess
(STL) (Cleveland et al., 1990). With STL, we used locally fitted regression models to decompose a time
series into trend, seasonal, and remainder components. The trend and seasonal components combined to
generate a forecast interval, leaving aside the unexplained remainder component (though another
approach used remainders from historical data to flag the largest remainders as anomalies).

3.3. Tool overview

The tool applied both recommender systems and time seriesmodels for anomaly detection. The tool was
packaged using packrat, an R package manager, to avoid library incompatibilities. Once installed, or
“unbundled,” to use packrat’s terminology, a user would run the tool via R. There would be two scripts
to source: one to run the recommender model and one to run the time series model. Each script would
have a set of user-adjustable parameters that could be adapted. When the models completed their run,
output would be saved to an Excel workbook with a variety of summary and detailed views of the
findings.

To run the tool, a user would provide as input a data set containing MER indicators that was consistent
with the standard format used for MER data. We set up the tool this way so that users would not have to
perform any data manipulation to formatMER data but instead could input data in the same form in which
they accessed MER data sets currently. Examples of deidentified MER data sets and guides to MER
indicators are available on the PEPFARPanoramawebsite. Only a subset of fields were required to run the
tool, including fields to identify unique observations, such as the name of a facility, sex, and age range; the
fiscal year and quarter of the data reported; and the names, values, and other characteristics of the actual
MER indicators.

Several cleaning steps were applied. First, we removed rows that were aggregations of other rows.
These included aggregations across health facilities aswell as aggregations across age ranges for a facility.
Next, we removed observations that relay indicator targets, which analysts use in comparison with
reported values to monitor progress. For the sex variable, we created a third category for transgender
patients, and a separate variable to indicate whether data reported were for a key population.

3.4. Tool application using recommender systems

We introduced a few additional data processing steps to support the tool’s application of the recom-
mender model. Data transformations were performed to obtain a disaggregate-level data structure in
which unique observations would be defined by the combination of facility name, age (5-year age
bands), sex, and key population status. MER indicator data for each unique combination of these four
variables were converted from long to wide format so that each indicator would have its own column.
We created a second version of this data set aggregated at the facility level. Each row represented a
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facility and each column a MER indicator, with values summed across all age, sex, and key population
disaggregates for the facility.

One of the benefits of the recommender system approach was its flexibility to work with sparse data.
However, some MER indicators were found to be too sparsely reported and their inclusion violated the
requirement to have a positive semidefinite matrix to generate the covariance matrix. These indicators
were therefore removed. On some occasions, pairs of indicators were exactly, or close to, collinear, also
violating the requirement for a positive semidefinite matrix. We removed indicators iteratively until there
was no remaining collinearity. Finally, we removed any indicator with zero variance.

3.4.1. Calculating mean vector and covariance matrix
As in Roberts, we computed an estimated mean vector and covariance matrix. The estimated mean vector
was the sum of present values, by indicator, divided by the number of present values, by indicator.We then
followed the steps in Roberts to compute the covariance matrix. Table 1, below, is an example covariance
matrix for a set of four MER indicators, represented as a heatmap of the variance. The diagonal of the
matrix represents the sparse variance of each variable, and the off diagonals represent the sparse
covariances. With respect to the variance, the higher variance for V1 (2628.9) as compared to V2
(13.1) means that the range of non-anomalous values for V1 is much greater than for V2. Even a small
deviation for V2 may signal an anomaly whereas for V1, a very large deviation would be required.

Table 2 is an example of the same covariance matrix for a set of four MER indicators, represented as a
heatmap of the covariance. The off diagonals represent the sparse covariance. If twoMER indicators have
a high covariance, like V1 and V2 in Table 2, then those two variables have a strong relationship, and
when we estimate V1 based on V2, the value for V2 will have a large impact on our estimate of V1.

3.4.2. Calculating Mahalanobis distance
Next, we used these parameters to perform two types of calculations. First, we computed theMahalanobis
distance for each observation (GeunKim, 2000).Mahalanobis distance is a distancemetric for finding the
distance between a point and a multivariate distribution. Mahalanobis distance is calculated with the
following formula (equation 6), where C represents the covariance matrix, Xp1 is the vector of observed
values, and Xp2 is the vector of corresponding estimates of the mean:

Table 1. Covariance matrix with variance heatmap

V1 V2 V3 V4

V1 2,628.9 130.3 �8.16 48.4

V2 130.3 13.1 21.8 2.3

V3 �8.16 21.8 2,055.4 11.9

V4 48.4 2.3 11.9 7.9

Table 2. Covariance matrix with covariance heatmap

V1 V2 V3 V4

V1 2,628.9 130.3 �8.16 48.4

V2 130.3 13.1 21.8 2.3

V3 �8.16 21.8 2,055.4 11.9

V4 48.4 2.3 11.9 7.9
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D2 = Xp1�Xp2
� �T �C�1� Xp1�Xp2

� �
: (6)

Mahalanobis distance takes into consideration covariances between variables, whichmeans it is useful for
identifying multivariate outliers. Given the sparse nature of these data, we used the Mahalanobis distance
for data with missing values (MDmiss) function from R’s “modi” package (Hulliger, 2018). MDmiss
omitsmissing dimensions before calculating theMahalanobis distance and includes a correction factor for
the number of present MER indicators. After calculating the Mahalanobis distance, we then used the
quantile function for a chi-squared distribution (qchisq) to generate a threshold value, above which we
identified observations as anomalous. Even though Mahalanobis distance identifies which observations
are anomalous, PEPFAR stakeholders indicated that it would be programmatically beneficial to know
which indicator(s) as reported drive the determination that an observation is anomalous. To this end, we
applied the recommender approach.

3.4.3. Generating recommender systems predictions
Next, to identify the values driving the determination that an observation is anomalous, we used Roberts’s
conditional mean approach. We iterated through each observation and through each reported value and
computed the conditional mean based on other values reported by the observation, the estimated means of
those corresponding values, and a subset of the covariance matrix in which the row corresponded with the
MER indicator to predict, and the columns corresponded to the other MER indicators reported by the
facility.

The tool’s output was the model’s prediction. If we had had 1,000 observations that reported
10 variables on average, we would have conducted this calculation 10,000 times and generated 10,000
predictions. This is output as a table, where the rows are the facilities and the columns are the variables.
Each cell displays the predicted value for a given variable, which is calculated based on the relationship
between that variable and the other variables, as described above. Our model predicted only values
reported by facilities. It did not predict values forMER indicators that were not reported by facilities. This
is the case in any cell below with the value missing.

Finally, we compared predictions against values as reported by facilities. We took the difference and
normalized the deviations by dividing by the sample variance so that they would be comparable across
indicators. To help users identify which variables drive the determination that an observation is
anomalous, we provided two types of indications. First, for each anomaly, we added a column to the
Excel workbook output that reports the MER indicator with the greatest normalized deviation. The
frequencies of these were summarized on another tab so that users could see which MER indicators were
most commonly driving anomalies. Second, as a visual aid, we shaded in red cells with the greatest
normalized deviations.

3.4.4. Presenting the recommender systems outputs
The tool applied the recommender model to the post-processed MER data set using facility-age-sex
identifiers and facility-aggregated values. First, using data disaggregated by facility, sex, and age, the
tool followed the steps in the previous section to compute patterns, estimate values, and identify
anomalies. Each facility-sex-age combination was represented by a single row, so there could be as
many as 40 rows representing each facility. Then, the tool split the data by sex and by age and ran the
analysis for each subgroup. Using sex as an example, the tool split the data into observations for female
patients, male patients, and transgender patients. The tool computed three sets of patterns across
indicators and facilities, using aggregate female patient data only, aggregate male patient data only,
and aggregate transgender patient data only, respectively. To then estimate values and identify
anomalies, aggregate female patient data were evaluated using patterns computed from aggregate
female patient data only, and so on. The reason to run the analysis this way was that an observation
might appear anomalous when compared to all others, but would seem more typical when compared
only to observations of the same sex or age group.
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Next, the tool applied the same techniques at the facility level. The tool split the data by administrative
unit and facility type (e.g., hospital, clinic, maternity), calculated patterns separately for each unit and
facility type, and evaluated each facility against the patterns observed only among facilities of the same
unit or facility type. The hypothesis behind this approachwas that while a facilitymight appear anomalous
when compared with all other facilities, it might appear typical when compared only with a subset of
facilities having common characteristics.

For each observation, each of these analyses would provide users with expected values, deviations of
the expected values from reported MER data, the calculatedMahalanobis distance, and the determination
of the observation to be anomalous or not based on the value of this distance. Table 3 shows example
outputs.

3.5. Tool application using time series

For time series applications, additional data processing steps were applied. First, we required a minimum
of 12 quarterly observations to run an analysis.We removed any facility-indicator combinationwith fewer
than 12 observations. (This was because we wanted at least two full years of data to compute a seasonal
component and one full year to evaluate model forecast accuracy.) Second, we removed any indicators
that were reported on a semi-annual or annual basis, rather than on a quarterly basis. Third, definitions of
some MER indicators had changed over time. We removed any indicators whose definition had changed
in recent years.

Rather than convert data to a wide format, as was done for the recommender model, we kept data in a
long format. Each row in the data set consisted of the facility, MER indicator, fiscal year, quarter, and
value.

3.5.1. Fitting time series models
The tool iterated through each facility-MER indicator combination and trained ARIMA, STL, and ETS
models. We used functions from R’s forecast package, developed by Rob Hyndman, to train models and
generate forecasts (Hyndman, 2021). For ARIMA, we used the auto.arima function with a maximum
order of three to train and test several parameter combinations to identify the lags that minimized Akaike
information criterion error. For STL and ETS, we used the seasonal and trend decomposition using Loess
forecasting (stlf) function, also from R’s forecast package.

For each model and for each facility-MER indicator combinations, we fitted the model using the data
series up until the most recent quarter reported, and then generated a 99% forecast interval for the most
recent quarter. For each observation, we identified as anomalies those where the value for the most recent
quarter was outside the forecast interval.

3.5.2. Presenting the time series outputs
Outputs were structured similarly as for the recommender model. As shown in Table 4, below, following
identifying fields, the output showed the reported value with the 99% forecast interval in parentheses. The
time series values as reported for previous quarters were displayed to the right. Observations with
anomalous values in the most recent quarter had a 1 in the outlier column; otherwise, they had a 0.
The number of columns displayed in this table as been truncated for presentation sake.

4. Model Results

Wevalidated both recommender and time series anomaly detection results with in-country experts such as
data analysts and strategic information officers as well as against DQAs conducted in the past. All
communication with experts was done through emails or online meetings.
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Table 3. Example output of actual and predicted values

Facility Analysis date Age group Sex TX_CURR TX_NEW TX_PVLS_D TX_PVLS_N TX_ML TX_RTT Anomaly

A 2020-03-31 50þ Female 127 (172) 100 (99) 93 (86) 314 (8) 2 (144) Yes
B 2020-03-31 50þ Female 613 (637) 4 (45) 602 (608) 594 (577) 305 (57) 74 (145) Yes
C 2020-03-31 50þ Male 507 (506) 7 (10) 486 (480) 460 (469) 21 (25) 15 (16) Yes
D 2020-03-31 50þ Male 106 (102) 3 (35) 86 (87) 75 (76) 219 (5) 2 (98) Yes
E 2020-03-31 35–39 Female 43 (43) 4 (4) 39 (39) 37 (37) 4 (5) No
F 2020-03-31 35–39 Male 41 (40) 4 (4) 36 (36) 34 (34) 5 (5) No
G 2020-03-31 50þ Male 47 (47) 4 (4) 42 (42) 39 (40) 5 (6) 5 (4) No
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Table 4. Example time series output

PSNU Facility Indicator Outlier 2019_1 2018_4 2018_3 2018_2 2018_1 2017_4 2017_3 2017_2 2017_1 2016_4

Oyo B PMTCT_STAT_N 1 105 (213.3–1,170.7) 692 76 140 0 254 74 124 0 0
Rivers F PMTCT_ART_N 1 8 (�8.7–4.7) 1 1 6 8 6 3 3 0 0
Nasarawa D HTS_TST_POS_N 1 2 (2.2–11.8) 7 5 0 2 2 2 2 4 4
Lagos I PMTCT_STAT_N 0 52 (51.7–160.3) 106 94 100 70 80 84 78 80 8
Lagos C HTS_TST_POS_N 0 6 (4.4–19.5) 6 10 8 12 9 10 8 10 10
Kaduna A PMTCT_STAT_N 0 259 (143.4–1,072.6) 608 406 558 494 622 530 282 524 0
Gombe F PMTCT_STAT_N 0 188 (�230.2–2,318.2) 1,044 334 556 398 432 553 1,558 126 1
Nasarawa E PMTCT_STAT_N 0 52 (�218.6–1,262.6) 522 74 114 882 496 30 236 40 13
Lagos H TX_NET_NEW_N 0 �206 (�369–369) �27 6 28 �44 41 84 �97 553 13
Akwa Ibom D TX_NEW_N 0 2 (�2.2–16.2) 7 10 0 4 2 2 2 4 2
Lagos G TX_CURR_N 0 290 (164.5–687.5) 400 312 417 362 407 395 360 306 41
Cross River F HTS_TST_NEG_N 0 241 (�1,071.3–4,320) 1,478 759 1,667 2,094 2,150 1,920 1,545 513 1,087

Abbreviation: PSNU, priority subnational unit. D
ata

&
P
olicy

e23-13

https://doi.org/10.1017/dap.2022.15 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/dap.2022.15


4.1. Validation with experts

The anomaly detection results were validated with two experts in Papua New Guinea (PNG) and four
experts in Nigeria. We provided these experts with Excel workbooks that contained data for the 10 most
and 10 least anomalous observations for each type of the analysis (by sex, age, PSNU, facility type,
ARIMA, ETS, STL) and asked them to review the reported values and define each of these observations as
anomalous or not, based on their expert knowledge. For each expert, and for each analysis type, we
calculated the percentage of agreement between experts and anomaly detection results.

Overall, the agreement on non-anomalous observations was higher than the agreement on the
anomalous observations and the agreement on time series results was higher than the agreement on the
recommender approach results. On the recommender approach, 144 from the 255 anomalous observa-
tions under review were identified by experts as anomalous (56% agreement) and 231 from 242 non-
anomalous observations were identified by experts as non-anomalous (95% agreement). Experts’
agreement on anomalies was highest on the analysis that did not include all disaggregations (82%) and
lowest on the analysis that included disaggregation by region (8%). Experts’ agreement on non-anomalies
ranged from 87 to 100% (See Table 5).

On the time series approach, the agreement on anomalous and non-anomalous observations was over
90%. Thus, 122 from 134 anomalous observations were identified by experts as anomalous (91%
agreement) and 193 from 202 non-anomalous observations were identified by experts as non-anomalous
(96%agreement). Experts’ agreement on anomalies varied from90 to 93% and on non-anomalies it varied
from 92 to 99% (See Table 6).

Table 5. Results of the experts’ validation of the recommender results

Analysis
disaggregation
type

Number
of

experts

Number of
anomalies

for
validation

Experts’
agreement,

n

Experts’
agreement,

%

Number of
non-anomalies
for validation

Experts’
agreement,

n

Experts’
agreement,

%

All 6 59 43 82 50 48 96
Age 5 41 32 78 50 49 98
Sex 6 47 33 70 50 49 98
Facility 4 40 25 63 31 28 90
Type 4 31 8 26 31 27 87
PSNU 4 37 3 8 30 30 100
Total 29 255 144 56 242 231 95

Abbreviation: PSNU, priority subnational unit.

Table 6. Results of the experts’ validation of the time series results

Analysis
type

Number
of

experts

Number of
anomalies

for
validation

Experts’
agreement,

n

Experts’
agreement,

%

Number of
non-anomalies
for validation

Experts’
agreement,

n

Experts’
agreement,

%

ARIMA 4 40 37 93 76 75 99
ETS 6 46 42 91 64 61 95
STL 6 48 43 90 62 57 92
Total 16 134 122 91 202 193 96

Abbreviations: ARIMA, auto-regressive integrated moving average; ETS, error, trend, season; STL, seasonal and trend decomposition using Loess.
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As part of the validation process, we asked experts open-ended questions to understand their
experiences reviewing the results and obtain suggestions on improving the content and user-friendliness
of the results. All experts were satisfied with the results and found those to be useful in their daily work to
improve the quality of data. Content-related suggestions from experts included presentation both of high-
and low-performing facilities and adding data on implementing partners and regions in the results.
Design-related suggestions included comments on colors and font sizes. We incorporated suggestions
from experts on content and design in the final version of the tool.

4.2. Validation against DQAs

Weused the results of the PapuaNewGuinea andNigeria DQAs in validation of anomaly detection results
against DQA. The Papua New Guinea DQA assessed the quality of data reported in Q1 FY20 and the
Nigeria DQA assessed data reported in Q3 FY19. Two indicators were included in the Papua NewGuinea
DQA and six indicators were included in the Nigeria DQA. For the analysis, we prepared a data set that
contained only facilities that had indicator data both on DQA and recommender model results.

To compare findings from anomaly detection with DQA findings, we followed several steps for each
indicator included in the DQA: First, we defined each observation in the data set as anomalous or not
based on the DQA findings. If the difference between the value reported in PEPFAR’s Data for
Accountability, Transparency and Impact Monitoring (DATIM) system and the indicator value found
at the health facility were greater than 5%, we defined this observation as anomalous. Otherwise, the
observation was defined as non-anomalous. Second, we identified each observation as anomalous or not
based on the recommender model findings. If the difference between the DATIM-reported value of an
indicator and the value for that indicator estimated by the recommender model were greater than 5%, we
defined this observation as anomalous. Otherwise, the observation was defined as non-anomalous. Third,
we summarized and presented the results on the number and proportion of concordant pairs (DQA and
recommender agree on the observation that a value is anomalous or not) and discordant pairs (DQA and
recommender disagree on the observation that a value is anomalous or not). We provided results for all
types of the analysis including sex, age, facility type, and region.

In the Papua New Guinea DQA, on average 82% of pairs were concordant across the facility (84%,
N= 69), region (84%,N= 69), and facility type (78%,N= 37) analyses. On average, in about 13%of pairs
an observation was defined as anomalous by the recommender model and as non-anomalous by DQA. In
about 5% of pairs, an observation was defined as non-anomalous by the recommender model and as
anomalous by DQA.

In the Nigeria DQA, on average 37% of pairs were concordant across the facility (40%,N= 75), region
(27%, N = 52), and facility type (45%, N = 56) analyses. In most discordant pairs, an observation was
defined as anomalous by the recommendermodel and as non-anomalous byDQA.On average, therewere
about 58% of this type of discordant pairs across the facility (55%, N = 75), region (69%, N = 52), and
facility type (50%,N= 56) analyses. In 5% of pairs, an observation was defined as non-anomalous by the
recommender model and as anomalous by DQA (see Table 7).

5. Discussion

The Data.FI anomaly detection tool applied innovative machine learning algorithms to improve the data
quality of remote routine aggregate data at the health facility level. We developed the tool in R so that we
could leverage machine learning libraries, but it is packaged so that it is easy to use without any expertise
in R. The application of recommender systems (often used for commercial product recommendations) in
the health space for the purpose of monitoring data quality is novel, to our knowledge. The multidimen-
sional analysis reflected in this approach can be achieved only by using such amachine learning approach.
For example, for a single quarter of Nigerian facilities, the tool captures parameters across approximately
770,000 data points covering 2,000 health facilities and 40 indicators. And whereas existing data quality
tools in the global health space consider temporal trends, none uses time series modeling capable of
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Table 7. Results on validation against DQAs

DQA
source

Analysis
type

Number of
observations

used

Number of
concordant

pairs
(pairs that
agree, both
Yes or both

No)

% of
concordant

pairs
(both Yes or
both No)

Number of
discordant pairs
(DQA–YES,

Recommender–NO)

% of discordant
pairs

(DQA–YES,
Recommender–NO)

Number of discordant
pairs

(DQA–NO,
Recommender–YES)

% of discordant pairs
(DQA–NO,

Recommender–YES)

Papua New
Guinea

Facility 69 58 84.1 3 4.3 8 11.6
PSNU 69 58 84.1 3 4.3 8 11.6
Type 37 29 78.4 2 5.4 6 16.2
Average 82.2 4.7 13.1

Nigeria Facility 75 30 40.0 4 5.3 41 54.7
PSNU 52 14 26.9 2 3.8 36 69.2
Type 56 25 44.6 3 5.4 28 50.0
Average 37.2 4.8 58.0

Abbreviations: DQA, data quality audit; PNG, Papua New Guinea; PSNU: priority subnational unit.
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capturing trends and seasonality in the data reported. Thus, our tool has advantages over existing tools, in
that it enables remote monitoring of aggregate data, using sophisticated modeling for anomaly detection,
in a standardized manner, and with quick execution times.

The tool performed well in signaling data anomalies as evaluated by PEPFAR experts and imple-
menting partner stakeholders. The tool achieved 56% concurrence from experts on anomalies using
recommender systems and 91% using time series models. On non-anomalies, the tool achieved 95%
concurrence using recommender systems and 96% with time series models. These results are encour-
aging, because they show that the tool can help experts identify in a reliable manner facilities that require
scrutiny. The tool will also allow users to monitor data quality over time to see if interventions positively
impact reporting.

As the tool highlights indicators, sites, and partners that have potential anomalies, investigation of
these anomalies by experts familiar with the program will confirm whether they are anomalous or have
some programmatic explanation (e.g., temporary facility closure due to COVID-19 lock down). An
anomaly signals that the data reported did not seem consistent with the expected/generally observed
pattern. Among various other ones, one example of an anomaly can be “lower than expected numbers of
clients currently on treatment.” This could be due to a change of the categories of clients served by the
facility, a stock out issue, clients’ decision to get treatment somewhere else, or maybe the lower numbers
are due to a data entry error. If clients are going elsewhere for treatment, further exploration could reveal
whether the reason is associated with a service quality issue at the facility, suggesting a change in how to
treat clients through staff training. If the potential data issues flagged are anomalous, then an appropriate
intervention can be designed and implemented to reduce or eliminate the anomaly. Running the tool in the
future will then help identify whether those data points are no longer anomalous, thus resolving the issue
and confirming the interventions were a success.

Our work had several limitations. First, in our approach to validation, it would have been ideal to
evaluate model accuracy against a data set with observations labeled as anomalous or non-anomalous, but
we were unable to identify such a data set. Therefore, we relied on expert validation. Second, the tool
achieved a lower rate of concurrence of anomalies using recommender systems than was achieved with
time series models. One hypothesis, based on user feedback, was that it was difficult for users to review
recommender predictions because that required considering up to 40 indicators simultaneously. Although
multivariate analysis is a strength of the tool, it is a limitation in expert validation. Third, the rate of
concurrence from the DQA comparison was lower than with expert validation. While we would have
preferred to see a higher rate of concurrence, comparison against DQAwas less important to us than was
expert validation. This is because our tool was not intended to replace or replicate DQAs but to help
analysts remotely identify issues that may warrant DQAs or other data quality interventions. The higher
rate of concurrence with expert validation means that analysts can reliably use the tool to quickly identify
the data points of interest for their purposes. The anomaly detection tool is designed to assess the quality of
aggregate numbers reported for key indicators, whereas the DQA tool is based on analysis and recounting
of specific parameters from individual client records.

Going forward, we would like to expand the number of countries and experts for validation of tool
predictions.We also aim to add flexibility to the tool, both to make it applicable to other public health data
sets and so that it can be used not only by PEPFARand implementing partners but also by others, such as at
the health facility level.

In addition to its contributions to the PEPFAR data quality tool landscape, this work contributes to the
broader landscape of applied machine learning. The potential for applied machine learning approaches to
improve the efficiency and effectiveness of resource-constrained sectors like health, education, and
agriculture is immense. Recommender systems are consistently used in the technology and business
sectors to improve product recommendations and increase sales. Thiswork demonstrates a novel adoption
of these recommender systemsmethods to the health sector. By using thesemethods to recommendwhich
data points aremost likely to be anomalous, the limited resources for data quality efforts can focus on these
data points, in turn improving the efficiency with which these funds for data quality resources are
allocated.
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