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Abstract. We characterize those non-negative, measurable functions ψ on [0, 1]
and positive, continuous functions ω1 and ω2 on �+ for which the generalized Hardy–
Cesàro operator

(Uψ f )(x) =
∫ 1

0
f (tx)ψ(t) dt

defines a bounded operator Uψ : L1(ω1) → L1(ω2). This generalizes a result of Xiao [7]
to weighted spaces. Furthermore, we extend Uψ to a bounded operator on M(ω1) with
range in L1(ω2) ⊕ �δ0, where M(ω1) is the weighted space of locally finite, complex
Borel measures on �+. Finally, we show that the zero operator is the only weakly
compact generalized Hardy–Cesàro operator from L1(ω1) to L1(ω2).

2010 Mathematics Subject Classification. 44A15, 47B34, 47B38, 47G10.

1. Introduction. A classical result of Hardy [5] shows that the Hardy–Cesàro
operator

(Uf )(x) = 1
x

∫ x

0
f (s) ds

defines a bounded linear operator on Lp(�+) with ‖U‖ = p/(p − 1) for p > 1. Clearly,
U is not bounded on L1(�+). Hardy’s result has been generalized in various ways, of
which we will mention some, which have inspired this paper.

For 1 ≤ p ≤ q ≤ ∞ and non-negative measurable functions u and v on �+,
Muckenhoupt [6] and Bradley [3] gave a necessary and sufficient condition for the
existence of a constant C such that

(∫ ∞

0

(
u(x)

∫ x

0
f (t) dt

)q

dx
)1/q

≤ C
(∫ ∞

0
(v(x)f (x))p dx

)1/p

for every positive, measurable function f on �+. This can be rephrased as a
characterization of the weighted Lp and Lq spaces on �+ between which the Hardy–
Cesàro operator U is bounded.
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In a different direction, for a non-negative measurable funtion ψ on [0, 1], Xiao
[7] considered the generalized Hardy–Cesàro operators

(Uψ f )(x) =
∫ 1

0
f (tx)ψ(t) dt

for measurable functions f on �n. We remark that

(Uψ f )(x) = 1
x

∫ x

0
f (s)ψ(s/x) ds

for measurable functions f on �. Xiao proved that Uψ defines a bounded operator on
Lp(�n) (for p ≥ 1) if and only if

∫ 1

0

ψ(t)
tn/p

dt < ∞.

Xiao’s result is the main motivation for this paper.
Finally, we mention that Albanese, Bonet and Ricker in a recent series of papers

(see, for instance, [1] and [2]) have considered the spectrum, compactness and other
properties of the Hardy–Cesàro operator on various spaces of continuous functions
and discrete spaces.

In this paper, we will study the generalized Hardy–Cesàro operators between
weighted spaces of integrable functions, and we will obtain a generalization of Xiao’s
result in this context. Let ω be a positive, continuous function on �+ and let L1(ω) be
the Banach space of (equivalence classes of) measurable functions f on �+ for which

‖f ‖L1(ω) =
∫ ∞

0
|f (t)|ω(t) dt < ∞.

In the usual way, we identify the dual space of L1(ω) with the space L∞(1/ω) of
measurable functions h on �+ for which

‖h‖L∞(1/ω) = ess supt∈�+|h(t)|/ω(t) < ∞.

We denote by C0(1/ω) the closed subspace of L∞(1/ω) consisting of the continuous
functions g in L∞(1/ω) for which g/ω vanishes at infinity. Finally, we identify the dual
space of C0(1/ω) with the space M(ω) of locally finite, complex Borel measures μ on
�+ for which

‖μ‖M(ω) =
∫

�+
ω(t) d|μ|(t) < ∞.

We consider the space L1(ω) as a closed subspace of M(ω).
In Section 2, we characterize those functions ψ,ω1 and ω2 for which Uψ defines

a bounded operator from L1(ω1) to L1(ω2). These operators are extended to bounded
operators on M(ω1) in Section 3, where we also obtain results about their ranges.
Finally, in Section 4, we show that there are no non-zero weakly compact generalized
Hardy–Cesàro operators from L1(ω1) to L1(ω2).
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2. A characterization of the generalized Hardy–Cesàro operators. For a non-
negative, measurable function ψ on [0, 1] and positive, continuous functions ω1 and
ω2 on �+, we say that condition (C) is satisfied if there exists a constant C such that

∫ 1

0
ω2(s/t)

ψ(t)
t

dt ≤ Cω1(s)

for every s ∈ �+.

THEOREM 2.1. Let ψ be a non-negative, measurable function on [0, 1] and let ω1 and
ω2 be positive, continuous functions on �+. Then, Uψ defines a bounded operator from
L1(ω1) to L1(ω2) if and only if condition (C) is satisfied.

Proof. Assume that condition (C) is satisfied and let f ∈ L1(ω1). Then,

∫ ∞

0

∫ 1

0
|f (s)| ψ(t)

t
ω2(s/t) dt ds ≤ C

∫ ∞

0
|f (s)|ω1(s) ds = C‖f ‖L1(ω1) < ∞,

so it follows from Fubini’s theorem that
∫ 1

0

∫ ∞

0
|f (tx)|ψ(t)ω2(x) dx dt =

∫ 1

0

∫ ∞

0
|f (s)| ψ(t)

t
ω2(s/t) ds dt ≤ C‖f ‖L1(ω1) < ∞.

Another application of Fubini’s theorem thus shows that (Uψ f )(x) is defined for almost
all x ∈ �+ with

‖Uψ f ‖L1(ω2) =
∫ ∞

0
|(Uψ f )(x)|ω2(x) dx ≤

∫ ∞

0

∫ 1

0
|f (tx)|ψ(t)ω2(x) dt dx

=
∫ 1

0

∫ ∞

0
|f (tx)|ψ(t)ω2(x) dx dt ≤ C‖f ‖L1(ω1) < ∞.

Hence, Uψ defines a bounded operator from L1(ω1) to L1(ω2).
Conversely, assume that Uψ defines a bounded operator from L1(ω1) to L1(ω2).

Since L1(ω2) is a closed subspace of M(ω2) which we identify with the dual space
of C0(1/ω2), it follows from [4, Theorem VI.8.6] that there exists a map ρ from
�+ to M(ω2) for which the map s 
→ 〈g, ρ(s)〉 = ∫

�+ g(x) dρ(s)(x) is measurable and
essentially bounded on �+ for every g ∈ C0(1/ω2) with ‖Uψ‖ = ess sups∈�+‖ρ(s)‖M(ω2)

and such that

〈g, Uψ f 〉 =
∫ ∞

0
〈g, ρ(s)〉f (s)ω1(s) ds =

∫ ∞

0

∫
�+

g(x) dρ(s)(x) f (s)ω1(s) ds

for every g ∈ C0(1/ω2) and f ∈ L1(ω1). On the other hand,

〈g, Uψ f 〉 =
∫ ∞

0
g(x)(Uψ f )(x) dx

=
∫ ∞

0

∫ x

0

g(x)
x

f (s)ψ(s/x) ds dx

=
∫ ∞

0

1
ω1(s)

∫ ∞

s

g(x)
x

ψ(s/x) dx f (s)ω1(s) ds
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for every g ∈ C0(1/ω2) and f ∈ L1(ω1), so it follows that

∫
�+

g(x) dρ(s)(x) = 1
ω1(s)

∫ ∞

s

g(x)
x

ψ(s/x) dx

for almost all s ∈ �+ and every g ∈ C0(1/ω2) (considering both sides as elements of
L∞(�+)). Considered as elements of M(ω2), we thus have

dρ(s)(x) = 1
ω1(s)

1
x

ψ(s/x) 1x≥s dx

for almost all s, x ∈ �+. Hence, ρ(s) ∈ L1(ω2) with

‖ρ(s)‖L1(ω2) =
∫ ∞

0
ω2(x) dρ(s)(x)

= 1
ω1(s)

∫ ∞

0

1
x

ψ(s/x) 1x≥s ω2(x) dx

= 1
ω1(s)

∫ ∞

s

1
x

ψ(s/x)ω2(x) dx

= 1
ω1(s)

∫ 1

0

ψ(t)
t

ω2(s/t) dt

for almost all s ∈ �+. Therefore,

∫ 1

0
ω2(s/t)

ψ(t)
t

dt = ‖ρ(s)‖L1(ω2)ω1(s) ≤ ‖Uψ‖ω1(s)

for almost all s ∈ �+. Since both sides of the inequality are continuous functions of s,
the inequality holds for every s ∈ �+, so condition (C) holds. �

Letting s = 0 in condition (C), we see that Xiao’s condition is necessary in our
situation.

COROLLARY 2.2. Let ψ be a non-negative, measurable function on [0, 1] and let ω1

and ω2 be positive, continuous functions on �+. If Uψ defines a bounded operator from
L1(ω1) to L1(ω2), then

∫ 1

0

ψ(t)
t

dt < ∞.

The following straightforward consequences can be deduced from Theorem 2.1.

COROLLARY 2.3. Let ψ be a non-negative, measurable function on [0, 1]

(a) Let ω be a decreasing, positive, continuous function on �+, and assume that∫ 1
0 ψ(t)/t dt < ∞. Then, Uψ defines a bounded operator from L1(ω) to L1(ω).

(b) Let ω1 and ω2 be positive, continuous functions on �+, and assume that ω2 is
increasing. If Uψ defines a bounded operator from L1(ω1) to L1(ω2), then there
exists a constant C such that ω2(s) ≤ Cω1(s) for every s ∈ �+.
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(c) Let ω be an increasing, positive, continuous function on �+, and assume that there
exists a < 1 and K > 0 such that ψ(t) ≥ K almost everywhere on [a, 1]. If Uψ defines
a bounded operator from L1(ω) to L1(ω), then there exist positive constants C1 and
C2 such that

C1ω(s) ≤
∫ 1

0
ω(s/t)

ψ(t)
t

dt ≤ C2ω(s)

for every s ∈ �+.

Proof.

(a) We have

∫ 1

0
ω(s/t)

ψ(t)
t

dt ≤
∫ 1

0

ψ(t)
t

dt ω(s)

for every s ∈ �+, so condition (C) is satisfied with ω1 = ω2 = ω and the result
follows.

(b) We have

∫ 1

0
ω2(s/t)

ψ(t)
t

dt ≥
∫ 1

0

ψ(t)
t

dt ω2(s)

for every s ∈ �+. Since condition (C) is satisfied, the result follows.
(c) We have

∫ 1

0
ω(s/t)

ψ(t)
t

dt ≥ K
∫ 1

a
ω(s/t) dt ≥ K(1 − a)ω(s)

for every s ∈ �+. The other inequality is just condition (C) with ω1 = ω2 = ω.

�

We finish the section with some examples of functions ψ,ω1 and ω2 for which Uψ

defines a bounded operator from L1(ω1) to L1(ω2).

EXAMPLE 2.4.

(a) For α > 0, let ψ(t) = tα for t ∈ [0, 1]. Also, for β1, β2 ∈ �, let ωi(x) = (1 + x)βi for
x ∈ �+ and i = 1, 2. Then, Uψ defines a bounded operator from L1(ω1) to L1(ω2)
if and only if β2 ≤ β1 and β2 < α.

(b) For α > 0, let ψ(t) = tα for t ∈ [0, 1]. Also, let ω1(x) = e−x/(1 + x) and ω2(x) = e−x

for x ∈ �+. Then, Uψ defines a bounded operator from L1(ω1) to L1(ω2). Moreover,
it is not possible to replace ω1(x) by a function tending faster to zero at infinity.

(c) Let ψ(t) = e−1/t2
for t ∈ [0, 1]. Also, let ω1(x) = ex2/4/x and ω2(x) = ex for x ∈ �+.

Then, Uψ defines a bounded operator from L1(ω1) to L1(ω2). Moreover, it is not
possible to replace ω1(x) by a function tending slower to infinity at infinity.
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Proof.

(a) For s ≥ 1 and t ∈ [0, 1], we have s/t < 1 + s/t ≤ 2s/t, so

∫ 1

0
ω2(s/t)

ψ(t)
t

dt =
∫ 1

0

(
1 + s

t

)β2

tα−1 dt


 sβ2

∫ 1

0
tα−β2−1 dt


 sβ2

for s ≥ 1 if β2 < α (where F(s) 
 G(s) for positive functions F and G on [1,∞)
indicates the existence of positive constants C1 and C2 such that C1F(s) ≤ G(s) ≤
C2F(s) for all s ∈ [1,∞)), whereas the integrals diverge if β2 ≥ α. Moreover, the
expression

∫ 1

0
ω2(s/t)

ψ(t)
t

dt =
∫ 1

0

(
1 + s

t

)β2

tα−1 dt

defines a positive, continuous function of s on �+, so it follows that condition (C)
is satisfied if and only if β2 ≤ β1 and β2 < α.

(b) For s ≥ 1, we have

∫ 1

0
ω2(s/t)

ψ(t)
t

dt =
∫ ∞

s

ω2(x)
x

ψ(s/x) dx

=
∫ ∞

s

e−x

x
sα

xα
dx ≤

∫ ∞

s

e−x

x
dx ≤ e−s

s
.

Moreover,

∫ 1

0
ω2(s/t)

ψ(t)
t

dt ≤
∫ 1

0

ψ(t)
t

dt < ∞

for all s ∈ �+, so condition (C) is satisfied and Uψ thus defines a bounded operator
from L1(ω1) to L1(ω2). On the other hand, since

∫ 1

0
ω2(s/t)

ψ(t)
t

dt ≥
∫ 2s

s

e−x

x
sα

xα
dx ≥ 1

2α+1s

∫ 2s

s
e−x dx ≥ 1

2α+2

e−s

s

for s ≥ 1, it is not possible to replace ω1(x) by a function tending faster to zero at
infinity.

(c) For s ∈ �+, we have

∫ 1

0
ω2(s/t)

ψ(t)
t

dt =
∫ ∞

s

ω2(x)
x

ψ(s/x) dx =
∫ ∞

s

ex−x2/s2

x
dx =

∫ ∞

1

esy−y2

y
dy.

Moreover, for s ≥ 4

∫ ∞

s/4

esy−y2

y
dy ≤ 4

s

∫ ∞

s/4
e−(y−s/2)2+s2/4 dy = 4

∫ ∞

−s/4
e−u2

du
es2/4

s
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and

∫ s/4

1

esy−y2

y
dy ≤

∫ s/4

1
esy dy ≤ es2/4

s
,

so condition (C) is satisfied and Uψ thus defines a bounded operator from L1(ω1)
to L1(ω2). On the other hand, the estimate

∫ 1

0
ω2(s/t)

ψ(t)
t

dt =
∫ ∞

1

esy−y2

y
dy ≥ 1

s

∫ s/2+1

s/2
e−(y−s/2)2+s2/4 dy =

∫ 1

0
e−u2

du
es2/4

s

for s ≥ 2 shows that it is not possible to replace ω1(x) by a function tending slower
to infinity at infinity.

�

In Example 2.4(b), we have ω2(x)/ω1(x) → ∞ as x → ∞, which should be
compared to the conclusion in Corollary 2.3(b). Conversely, Example 2.4(c) shows
an example where we need ω2(x)/ω1(x) → 0 rapidly as x → ∞ in order for Uψ to be
defined.

3. Extensions to weighted spaces of measures. Identifying the dual space of L1(ω)
with L∞(1/ω) as in the introduction, we have the following result about the adjoint of
Uψ .

PROPOSITION 3.1. Let ψ be a non-negative, measurable function on [0, 1] and let ω1

and ω2 be positive, continuous functions on �+. Assume that condition (C) is satisfied
so that Uψ : L1(ω1) → L1(ω2) is a bounded operator, and consider the adjoint operator
U∗

ψ : L∞(1/ω2) → L∞(1/ω1).

(a) For h ∈ L∞(1/ω2), we have

(U∗
ψh)(x) =

∫ 1

0
h(x/t)

ψ(t)
t

dt

for almost all x ∈ �+.
(b) U∗

ψ maps C0(1/ω2) into C0(1/ω1).

Proof.

(a) Let h ∈ L∞(1/ω2). Since |h(x/t)| ≤ ‖h‖L∞(1/ω2)ω2(x/t) for almost all x, t ∈ �+, it
follows from condition (C) that

∫ 1
0 h(x/t)ψ(t)/t dt is defined and satisfies

∣∣∣∣
∫ 1

0
h(x/t)

ψ(t)
t

dt
∣∣∣∣ ≤ ‖h‖L∞(1/ω2)

∫ 1

0
ω2(x/t)

ψ(t)
t

dt ≤ C‖h‖L∞(1/ω2)ω1(x)
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for almost all x ∈ �+. Hence, the function x 
→ ∫ 1
0 h(x/t)ψ(t)/t dt belongs to

L∞(1/ω1). Also, for f ∈ L1(ω1) we have

〈f, U∗
ψh〉 = 〈Uψ f, h〉 =

∫ ∞

0
(Uψ f )(s)h(s) ds

=
∫ ∞

0

∫ s

0

1
s

f (x)ψ(x/s)h(s) dx ds

=
∫ ∞

0

∫ ∞

x

h(s)
s

ψ(x/s) ds f (x) dx

from which it follows that

(U∗
ψh)(x) =

∫ ∞

x

h(s)
s

ψ(x/s) ds =
∫ 1

0
h(x/t)

ψ(t)
t

dt

for almost all x ∈ �+.
(b) It suffices to show that U∗

ψ maps Cc(�+) (the continuous functions on �+ with
compact support) into C0(1/ω1). Let g ∈ Cc(�+), let x0 ∈ �+ and let (xn) be a
sequence in �+ with xn → x0 as n → ∞. Then,

(U∗
ψg)(xn) − (U∗

ψg)(x0) =
∫ 1

0
(g(xn/t) − g(x0/t))

ψ(t)
t

dt

for n ∈ �. Since g is bounded on �+ and since
∫ 1

0 ψ(t)/t dt < ∞ by Corollary 2.2,
it follows from Lebesgue’s dominated convergence theorem that (U∗

ψg)(xn) →
(U∗

ψg)(x0) as n → ∞. Hence, U∗
ψg is continuous on �+. Finally, from the expression

(U∗
ψg)(x) =

∫ ∞

x

g(s)
s

ψ(x/s) ds

it follows that supp U∗
ψg ⊆ supp g, so we conclude that U∗

ψg ∈ Cc(�+) ⊆ C0(1/ω1).
�

Let Vψ be the restriction of U∗
ψ to C0(1/ω2) considered as a map into C0(1/ω1).

We then immediately have the following result.

COROLLARY 3.2. Let ψ be a non-negative, measurable function on [0, 1] and let ω1

and ω2 be positive, continuous functions on �+. Assume that condition (C) is satisfied
so that Uψ : L1(ω1) → L1(ω2) is a bounded operator. The bounded operator Uψ = V∗

ψ

from M(ω1) to M(ω2) is an extension of Uψ .

Let ψ be a non-negative, continuous function on [0, 1] with ψ(0) = 0. For μ ∈
M(ω1) and x > 0 let

(Wψμ)(x) = 1
x

∫
(0,x)

ψ(s/x) dμ(s).

PROPOSITION 3.3. Let ψ be a non-negative, continuous function on [0, 1] and let ω1

and ω2 be positive, continuous functions on �+. Assume that condition (C) is satisfied so
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that Uψ : L1(ω1) → L1(ω2) is a bounded operator. Then, Wψμ ∈ L1(ω2) and

Uψμ = Wψμ +
∫ 1

0

ψ(t)
t

dt · μ({0})δ0

for μ ∈ M(ω1). In particular, ran Uψ ⊆ L1(ω2) ⊕ �δ0 and Uψ maps M((0,∞), ω1) into
L1(ω2).

Proof. By Corollary 2.2, we have
∫ 1

0 ψ(t)/t dt < ∞, so it follows that ψ(0) = 0. Let
μ ∈ M(ω1) with μ({0}) = 0. By condition (C), we have

∫
(0,∞)

∫ ∞

s

1
x

ψ(s/x)ω2(x) dx d|μ|(s) =
∫

(0,∞)

∫ 1

0
ω2(s/t)

ψ(t)
t

dt d|μ|(s)

≤ C
∫

(0,∞)
ω1(s) d|μ|(s) = C‖μ‖M(ω1) < ∞,

so it follows from Fubini’s theorem that∫ ∞

0

1
x

∫
(0,x)

ψ(s/x) d|μ|(s) ω2(x) dx < ∞.

Hence, Wψμ ∈ L1(ω2). Moreover, for g ∈ C0(1/ω2), we have

〈g, Uψμ〉 = 〈Vψg, μ〉 =
∫

(0,∞)

∫ 1

0
g(s/t)

ψ(t)
t

dt dμ(s)

=
∫

(0,∞)

∫ ∞

s

g(x)
x

ψ(s/x) dx dμ(s)

=
∫ ∞

0

1
x

∫
(0,x)

ψ(s/x) dμ(s) g(x) dx

=
∫ ∞

0
(Wψμ)(x)g(x) dx = 〈g, Wψμ〉,

so we conclude that Uψμ = Wψμ. Finally, for g ∈ C0(1/ω2), we have

〈g, Uψδ0〉 = 〈Vψg, δ0〉 = (Vψg)(0) = g(0)
∫ 1

0

ψ(t)
t

dt = 〈g,

∫ 1

0

ψ(t)
t

dt · δ0〉.

Since Wψδ0 = 0 this finishes the proof. �
The conclusion about the range of Uψ can be generalized to the case, where ψ is

not assumed to be continuous.

PROPOSITION 3.4. Let ψ be a non-negative, measurable function on [0, 1] and let ω1

and ω2 be positive, continuous functions on �+. Assume that condition (C) is satisfied so
that Uψ : L1(ω1) → L1(ω2) is a bounded operator. Then, ran Uψ ⊆ L1(ω2) ⊕ �δ0.

Proof. Choose a sequence of non-negative, continuous functions (ψn) on [0, 1] with
ψn ≤ ψ and

∫ 1

0

ψ(t) − ψn(t)
t

dt → 0 as n → ∞.
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For μ ∈ M(ω1) and g ∈ C0(1/ω2), we have

|〈g, (Uψ − Uψn )μ〉| = |〈(Vψ − Vψn )g, μ〉|

=
∣∣∣∣
∫

�+

∫ 1

0
g(x/t)

ψ(t) − ψn(t)
t

dt dμ(x)

∣∣∣∣
≤ ‖g‖C0(1/ω2)

∫
�+

∫ 1

0
ω2(x/t)

ψ(t) − ψn(t)
t

dt d|μ|(x).

Let

pn(x) =
∫ 1

0
ω2(x/t)

ψ(t) − ψn(t)
t

dt

for x ∈ �+ and n ∈ �. By condition (C), there exists a constant C such that pn(x) ≤
Cω1(x) for every x ∈ �+ and n ∈ �. Moreover, for every x ∈ �+, we have pn(x) → 0
as n → ∞ by Lebesgue’s dominated convergence theorem. Hence,

‖(Uψ − Uψn )μ‖M(ω2) = sup
‖g‖C0(1/ω2)≤1

|〈g, (Uψ − Uψn )μ〉| ≤
∫

�+
pn(x) d|μ|(x) → 0

as n → ∞ again by Lebesgue’s dominated convergence theorem. Consequently, Uψn →
Uψ strongly as n → ∞. Since ran Uψn ⊆ L1(ω2) ⊕ �δ0 for n ∈ � by Proposition 3.3,
the same thus holds for ran Uψ . �

COROLLARY 3.5. Let ψ be a non-negative, measurable function on [0, 1] and let ω1

and ω2 be positive, continuous functions on �+. Assume that condition (C) is satisfied so
that Uψ : L1(ω1) → L1(ω2) is a bounded operator. For s > 0, we then have (Uψδs)(x) =
ψ(s/x)/x for almost all x ≥ s and (Uψδs)(x) = 0 for almost all x < s.

Proof. For ψ continuous, this follows from Proposition 3.3. For general ψ, it
follows from the approach in the proof of Proposition 3.4 using Uψn → Uψ strongly
as n → ∞. �

It follows from Corollary 3.5 that

‖Uψδs‖M(ω2) =
∫ ∞

s

ω2(x)
x

ψ(s/x) dx =
∫ 1

0
ω2(s/t)

ψ(t)
t

dt,

whereas ‖δs‖M(ω1) = ω1(s). Since Uψ is bounded we thus recover condition (C).
If we without using Theorem 2.1 could show that if Uψ : L1(ω1) → L1(ω2) is a
bounded operator, then is has a bounded extension Uψ : M(ω1) → M(ω2) for which
Corollary 3.5 holds, then we would in this way obtain an alternative proof of condition
(C).

4. Weakly compact operators. We finish the paper by showing that there are no
non-zero, weakly compact generalized Hardy–Cesàro operators between L1(ω1) and
L1(ω2).

PROPOSITION 4.1. Let ψ be a non-negative, measurable function on [0, 1] and let ω1

and ω2 be positive, continuous functions on �+. Assume that condition (C) is satisfied
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so that Uψ : L1(ω1) → L1(ω2) is a bounded operator. If ψ �= 0, then Uψ is not weakly
compact.

Proof. For f ∈ L1(ω1) and x ∈ �+, we have

(Uψ f )(x) = 1
x

∫ x

0
f (s)ψ(s/x) ds =

∫ ∞

0
f (s)ρ(s)(x)ω1(s) ds,

where (with a slight change of notation compared to the proof of Theorem 2.1)

ρ(s)(x) = 1
ω1(s)

1
x

ψ(s/x) 1x≥s

for x, s ∈ �+. In the proof of Theorem 2.1, we saw that ρ(s) ∈ L1(ω2) with ‖ρ(s)‖L1(ω2) ≤
C for a constant C for almost all s ∈ �+. It thus follows from [4, Theorem VI.8.10] that
Uψ is weakly compact if and only if {ρ(s) : s ∈ �+} is contained in a weakly compact
set of L1(ω2) (except possibly for s belonging to a null-set). Consider ρ(s) as an element
of C0(1/ω2)∗ for s ∈ �+ and let g ∈ C0(1/ω2). Then,

〈g, ρ(s)〉 =
∫ ∞

0
g(x)ρ(s)(x) dx

= 1
ω1(s)

∫ ∞

s

g(x)
x

ψ(s/x) dx

= 1
ω1(s)

∫ 1

0
g(s/t)

ψ(t)
t

dt.

Since g(s/t) → g(0) as s → 0+ for all t > 0, it follows from Lebesgue’s dominated
convergence theorem that

〈g, ρ(s)〉 → 1
ω1(0)

g(0)
∫ 1

0

ψ(t)
t

dt

as s → 0+. We, therefore, conclude that

ρ(s) → 1
ω1(0)

∫ 1

0

ψ(t)
t

dt · δ0

weak-star in M(ω2) as s → 0+. Since δ0 /∈ L1(ω2), it follows that {ρ(s) : s ∈ �+} is not
contained in a weakly compact set of L1(ω2) (even excepting null sets), and the result
follows. �
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