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Abstract

c-Sections of maximal subgroups in a finite group and their relation to solvability have been extensively
researched in recent years. A fundamental result due to Wang [‘C-normality of groups and its properties’,
J. Algebra 180 (1998), 954–965] is that a finite group is solvable if and only if the c-sections of all
its maximal subgroups are trivial. In this paper we prove that if for each maximal subgroup of a finite
group G, the corresponding c-section order is smaller than the index of the maximal subgroup, then each
composition factor of G is either cyclic or isomorphic to the O’Nan sporadic group (the converse does
not hold). Furthermore, by a certain ‘refining’ of the latter theorem we obtain an equivalent condition
for solvability. Finally, we provide an existence result for large subgroups in the sense of Lev [‘On large
subgroups of finite groups’ J. Algebra 152 (1992), 434–438].
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1. Introduction

All groups in this paper are finite. Most of our notation is standard. For A ≤G we
denote the class of all the subgroups conjugate to A in G by ConG(A). If A ≤G and
|A| ≥ |G|1/2 then A is called a large subgroup of G.

Let M be a maximal subgroup of a group G and K/L be a chief factor of G such that
L ≤ M while K � M. Following Shirong and Wang in [5], we call the group (M ∩ K)/L
a c-section of M. It was proved [5, Theorem 1.1] that for a fixed maximal subgroup M
of G all the c-sections of M are isomorphic. We denote the abstract group isomorphic
to a c-section (and so to all c-sections) of M by Sec(M).

In [6] it was proved (although not using this terminology) that a group is solvable if
and only if the c-sections of all its maximal subgroups are trivial. Further solvability
conditions were proved in [5]. In particular, a group is solvable if and only if the
c-sections of all its maximal subgroups are 2-closed [5, Theorem 2.1], and if and only
if the c-sections of all its maximal subgroups are nilpotent [5, Theorem 2.2]. The case
when all the c-sections are supersolvable was discussed in [4].
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In this paper we study further the notion of c-sections and its connection to
solvability. In particular, for a maximal subgroup M we consider the relation between
the order of the c-section |Sec(M)| and the index |G : M|. By the above, if G is solvable
then obviously |Sec(M)| < |G : M| for each maximal subgroup M of G. It turns out that
the converse is not true.

E 1.1. Let T = O’Nan, the O’Nan simple sporadic group, and let G = Aut(T ) =

T : 2. We show that |Sec(M)| < |G : M| for all maximal subgroups M of G. If M = T
then |Sec(M)| = 1 < |G : M| = 2. Let M be maximal in G, M , T . Since T/1 is a chief
factor of G and M � T , M > 1, we have S := Sec(M) = M ∩ T . By G = MT it follows
that for each g ∈G there exists t ∈ T such that S g = S t. Thus ConT (S ) = ConG(S ),
and so ConT (NT (S )) = ConG(NT (S )). Assume now that |Sec(M)| ≥ |G : M|. Then
|S | ≥ |G : M|, implying that |S | ≥ |T : S | and |S | ≥ |T |1/2, that is, S is a large subgroup
of T . By checking the list of maximal subgroups of T = O’Nan in [2], we deduce that
S is contained in a maximal subgroup of T isomorphic to L3(7) : 2. Considering the
maximal subgroups of L3(7) : 2, it follows that the only possibilities are S � L3(7) : 2
and S � L3(7), and in any case NT (S ) � L3(7) : 2. By the information in [2] we
deduce that ConT (NT (S )) , ConG(NT (S )), contradicting our previous observation.
Thus |Sec(M)| < |G : M| for all maximal subgroups M of G.

The involvement of O’Nan in Example 1.1 is not a coincidence. We have the
following result.

T 1.2. Let G be a group such that |Sec(M)| < |G : M| for all maximal subgroups
M of G. Then every composition factor of G is either cyclic or isomorphic to O’Nan.

The converse of Theorem 1.2 is not true. Indeed for G = O’Nan there exists a large
maximal subgroup M, so that |Sec(M)| = |M| ≥ |G : M|. Actually, it was proved in [3]
that each simple nonabelian group has a proper large subgroup (and hence a large
maximal subgroup). A key step in proving Theorem 1.2 is the following proposition.

P 1.3. Let G be a simple nonabelian group. Then the following are
equivalent:

(1) G has a proper large subgroup H such that ConG(H) = ConAut(G)(H);
(2) G � O’Nan.

By a certain ‘refinement’ of Theorem 1.2, we get an equivalent condition for
solvability in Theorem 1.4 below. Throughout this paper, we write

β := log(175 560)/log(2 624 832) ' 0.817.

(This number is connected to the largest proper subgroup H of G = O’Nan satisfying
ConG(H) = ConAut(G)(H).)

T 1.4. Let G be a group. Then G is solvable if and only if |Sec(M)| < |G : M|β

for all maximal subgroups M of G.
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We show in Proposition 2.8 that the (nonsolvable) group G = Aut(O’Nan) satisfies
|Sec(M)| ≤ |G : M|β (with equality in some cases) for all maximal subgroups M of G.
Thus β cannot be replaced by a larger constant in Theorem 1.4.

Next, we include the following result, which, unlike the other results in this paper,
is ‘classification-free’.

T 1.5. Let G be a group. Then the following are equivalent.

(1) |Sec(M)| < |G : M| for all maximal subgroups M of G.
(2) For each nonabelian chief factor K/L of G, and for each L < B < K such that

B/L is large in K/L, ConK(B) , ConG(B).

Let G be a group satisfying the conditions of Theorem 1.5. We note that, by
our Theorem 1.2, it follows that each noncyclic composition factor of G (if exists)
is isomorphic to O’Nan.

The main result of [3] is that each group of composite order has a proper large
subgroup. By applying Proposition 1.3 we prove the following theorem.

T 1.6. Let G be a group such that |G| is divisible by at least two primes. Assume
that G does not have composition factors isomorphic to O’Nan. Then G has a proper
large subgroup H such that ConG(H) = ConAut(G)(H).

The restriction on the composition factors of G in Theorem 1.6 cannot be removed.
This is clearly demonstrated by considering G = O’Nan. Furthermore, the statement
of this theorem does not hold in general for p-groups (where p is a prime), as can be
shown by the example of any elementary abelian p-group.

The proof of Proposition 1.3 is given in Section 2. The proofs of Theorems
1.2, 1.4, 1.5 and 1.6 are given in Section 3.

2. Proof of Proposition 1.3

Notice first that in Example 1.1 we showed that if T = O’Nan and S is a proper
large subgroup of T , then ConT (S ) , ConAut(T )(S ). Thus the implication (1)⇒ (2) of
Proposition 1.3 is proved. It remains to prove that each simple nonabelian group G,
except O’Nan, has a proper large subgroup H satisfying ConG(H) = ConAut(G)(H). We
prove this separately for the sporadic simple groups, the simple groups of Lie type
and the alternating groups; see Proposition 2.1, Corollary 2.4 and Proposition 2.5,
respectively.

P 2.1. Let G be a sporadic simple group which is not isomorphic to O’Nan.
Then G has a proper large subgroup H such that ConG(H) = ConAut(G)(H).

P. As mentioned above, it was proved in [3] that each simple nonabelian
group G has a large maximal subgroup. When Out(G) = 1 this large subgroup H
certainly satisfies our extra condition. In Table 1 we give for each sporadic group G
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T 1. Large subgroups H such that ConG(H) = ConAut(G)(H).

G H |H| |G : H|

M12 L2(11) 660 144
M22 L3(4) 20 160 22
Suz G2(4) 251 596 800 1 782
HS M22 443 520 100
MC L U4(3) 3 265 920 275
He S 4(4) : 2 1 958 400 2 058
HN A12 239 500 800 1140 000
J2 U3(3) 6 048 100
J3 L2(16) : 2 8 160 6 156
Fi22 2 · U6(2) 18 393 661 440 3 510
Fi′24 Fi23 4089 470 473 293 004 800 306 936

with Out(G) > 1, except O’Nan, a corresponding large maximal subgroup H such
that ConG(H) = ConAut(G)(H). This information is based on [2], and completes the
proof. �

Recall that a Borel subgroup B of a group of Lie type G in characteristic p is
the normaliser of a Sylow p-subgroup of G. Since the Sylow p-subgroups of G are
conjugate in G, it follows that ConG(B) = ConAut(G)(B). The following proposition
states that in most cases B is large in G. We have not found a reference for this
property, which may be of independent interest. For brevity of notation, we say that
the twisted group of Lie type σLl(qσ) is defined over the field GF(q).

P 2.2. Let G be a simple group of Lie type σLl(qσ) of rank l defined over the
field with q elements, where q > 2. Then a Borel subgroup B of G is a large subgroup
of G.

P. We deal separately with the cases when G is twisted or not.

Case 1. Let G be a nontwisted group of Lie type. Then according to [1, 9.4.10],

|G| =
1
d

qN(qd1 − 1) · · · (qdl − 1), |B| =
1
d

qN(q − 1)l

and
|G : B| = (qd1 − 1) · · · (qdl − 1)/(q − 1)l,

where d is as in [1, 9.4.10], N = |Φ+| is the number of positive roots of the root system
related to G and d1 + · · · + dl = N + l [1, 9.3.4].

By assumption q ≥ 3. Assume that l = 1. Then q ≥ 4 is even, N = 1 and d1 =

N + l = 2. Hence

|G : B| = (q2 − 1)/(q − 1) = q + 1 and |B| = q(q − 1)/(q − 1, 2).

As q(q − 1) ≥ 3q and 3q > 2(q + 1), the assertion follows.
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Now let l ≥ 2. If l = 2 and q = 3, then either d = 1 and G � L3(3) or G2(3), or
d = 2 and G � PSp4(3). In the first case |B| = 22 · 33 or 22 · 36 and |G : B| = 22 · 13
or 24 · 7 · 13, respectively. Thus B is a large subgroup of G. If G � PSp4(3) then
|B| = 2 · 34 = 162 and |G : B| = 25 · 5 = 160 and the assertion holds again.

From now on we assume that l ≥ 3 if q = 3 and l ≥ 2 otherwise. We aim to show
that

(qd1 − 1) · · · (qdl − 1) <
1
d

qN(q − 1)2l.

We have (qd1 − 1) · · · (qdl − 1) < q
∑l

i=1 di = qN+l and claim that (q − 1)2l−1 > ql, which
then yields the assertion. First let q = 3. Then l ≥ 3, ( 4

3 )l > 2 and so 22l−1 > 3l as
required. Now suppose that q ≥ 4. Then (q − 1)2l > (q2 − 2q)l = ql(q − 2)l. Thus it
remains to show that (q − 2)l ≥ q − 1. This holds, as (q − 2)l ≥ (q − 2)2 = q2 − 4q + 4
and q2 ≥ 5(q − 1).

Case 2. Now let G be a twisted group of Lie type. We choose to retain the notation
of [1]. So G is isomorphic to one of the following groups:

2Al(q2), 2B2(q2), 2Dl(q2), 3D4(q3), 2E6(q2), 2F4(q2), 2G2(q2),

where q2 = 22m+1 (respectively, q2 = 32m+1) if L is of type B2 or F4 (respectively, of
type G2).

Let B be a Borel subgroup of T . Then by [1, 14.1.2],

|B| =
1
d

qN(q − η1)(q − η2) · · · (q − ηl),

where N is the number of positive roots in the root system related to Ll(q), d will be
indicated in each case and η1, . . . , ηl are the eigenvalues of the isometry τ of the vector
space spanned by the roots which is related to the symmetry of the diagram for Ll(q).
By [1, 14.3.2] we know |G| and can calculate the index |G : B| in all cases. We now
discuss all the possibilities.

Let G � 2Al(q2) be a unitary group. We distinguish between the cases l even and l
odd.

If l is even, then

d = (q + 1, l + 1), N =
l(l + 1)

2
, η1 = · · · = ηl/2 = 1, ηl/2+1 = · · · = ηl = −1.

So

|B| =
1
d

ql(l+1)/2(q − 1)l/2(q + 1)l/2

and

|G : B| =
l∏

i=1

qi+1 − (−1)i+1

(q − 1)l/2(q + 1)l/2
.
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Notice that (qm − 1)(qm+1 + 1) < qm+m+1. Thus

|G : B| <
q2+3+···+(l+1)

(q − 1)l/2(q + 1)l/2
=

q(l(l+1)/2)+l

(q − 1)l/2(q + 1)l/2
.

So it is enough to show that

ql ≤
1
d

(q − 1)l(q + 1)l, that is, q ≤
1

d1/l
(q − 1)(q + 1).

Since the ‘worst’ case is d = q + 1, it suffices to show that q ≤ (q − 1)(q + 1)1−1/l. Since
in fact q ≤ (q − 1)(q + 1)1/2 for q > 2, we are done.

If l ≥ 3 is odd, then

d = (q + 1, l + 1), N =
l(l + 1)

2
, η1 = · · · = η(l+1)/2 = 1

and
η((l+1)/2)+1 = · · · = ηl = −1.

So

|B| =
1
d

ql(l+1)/2(q − 1)(l+1)/2(q + 1)(l−1)/2

and

|G : B| =
l∏

i=1

qi+1 − (−1)i+1

(q − 1)(l+1)/2(q + 1)(l−1)/2
.

Similarly to the previous case, we obtain |G : B| < q(l(l+1)/2)+l/(q − 1)(l+1)/2(q + 1)(l−1)/2.
Thus it is enough to show that ql ≤ (1/d)(q − 1)l+1(q + 1)l−1. Again we take the
worst case d = q + 1, so it suffices to show that ql ≤ (q − 1)l+1(q + 1)l−2, that is,
ql ≤ (q2 − 1)l−2(q − 1)3. As q < q2 − 1, it suffices to show that q3 < (q2 − 1)(q − 1)3.
Since the latter holds for every q > 2, this case is concluded as well.

Let G � 2B2(q2) be a Suzuki group. Then d = 1, N = 4, η1 = 1 and η2 = −1. Thus

|B| = q4(q2 − 1), |G : B| = q4 + 1

and the assertion holds for every q.
Let G � 2Dl(q2) be an orthogonal group of minus type. Then d = (4, ql + 1), N =

l(l − 1), η1 = · · · = ηl−1 = 1 and ηl = −1. Thus

|B| =
1
d

ql(l−1)(q − 1)l−1(q + 1)

and

|G : B| =
(ql + 1)

∏l−1
i=1(q2i − 1)

(q − 1)l−1(q + 1)
.
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Then

|G : B| < ql−12l−1
l−1∏
i=1

q2i−1 = 2l−1
l−1∏
i=1

q2i = 2l−1ql(l−1) ≤ ql(l−1)(q − 1)l−1

as q > 2. Hence B is a large subgroup in that case.
Let G � 3D4(q3). Then d = 1, N = 12 and ηi = αi−1 with α , 1 a third root of unity,

for 1 ≤ i ≤ 3. Hence |B| = q12(q − 1)(q − α)(q − α2) = q12(q3 − 1) and

|G : B| = (q8 + q4 + 1)(q3 + 1)(q2 − 1) < 2q13 < q12(q3 − 1),

and the assertion holds for every q (including q = 2).
Let G � 2E6(q2). Then d = (3, q + 1), N = 36, η1 = · · · = η4 = 1, η5 = η6 = −1,

|B| =
1
d

q36(q − 1)4(q + 1)2

and

|G : B| = (q12 − 1)(q9 + 1)(q8 − 1)(q6 − 1)(q5 + 1)(q2 − 1)/(q − 1)4(q + 1)2.

Here

|G : B| < 2q11q82q72q5(q5 + 1) = 23q31(q5 + 1 and q5(q − 1)4(q + 1) > 23(q5 + 1),

which shows the assertion.
Let G � 2F4(q2). Then d = 1, N = 24, η1 = η2 = 1 and η3 = η4 = −1. So

|B| = q24(q − 1)2(q + 1)2 = q24(q2 − 1)2

and
|G : B| = (q12 + 1)(q8 − 1)(q6 + 1)(q2 − 1)/(q2 − 1)2.

Now let r := q2 = 22m+1 > 2. Then

|G : B| = (r6 + 1)(r3 + r2 + r + 1)(r3 + 1) ≤ (r6 + 1)2r3(r3 + 1) < r12(r − 1)2 = |B|

and B is a large subgroup of G.
Let G � 2G2(q2). Then d = 1, N = 6, η1 = 1 and η2 = −1. Then

|B| = q6(q2 − 1) and |G : B| = (q6 + 1)

and the assertion holds in all cases. �

We note that Proposition 2.2 cannot be extended to the case q = 2, but a
Borel subgroup is a large subgroup of G if G � 3D4(2) (as shown in the proof of
Proposition 2.2).

Next we consider the linear groups defined over GF(2). We have the following
general result.
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P 2.3. Let G be a special linear group of rank l ≥ 2 defined over the field
with q elements. Let V be the natural module for T and (V1, Vl) be two subspaces
of dimension one and l, respectively, such that V1 ⊆ Vl. Let Pi be the stabiliser of
Vi in T , for i = 1, l. If (l, q) , (2, 2), then R := P1 ∩ Pl is a large subgroup of G, and
ConG(R) = ConAut(G)(R).

P. Recall that the field and diagonal automorphisms of G act on the set of maximal
parabolic subgroups of type i, for 1 ≤ i ≤ l [1] and that the graph automorphisms
interchange the sets of maximal parabolics of type 1 and l. Since Pl acts transitively
on the one-dimensional subspaces of Vl, it follows that ConG(R) = ConAut(G)(R).

Then n := |G : R| is the number of flags (W1, Wl), where Wi an i-dimensional
subspace of V and W1 ⊆Wl. We have n = (ql+1 − 1)(ql − 1)/(q − 1)2. As

|G| =
1
d

ql(l+1)/2(ql+1 − 1) · · · (q2 − 1),

where d = (q − 1, l + 1), we get |R| = (1/d)ql(l+1)/2(ql−1 − 1) · · · (q2 − 1)(q − 1)2.
We have to show that |G : R| ≤ |R|. If l = 2 and q ≥ 3 then

|G : R| =
(q3 − 1)(q2 − 1)

(q − 1)2
= (q2 + q + 1)(q + 1) <

1
q − 1

q3(q − 1)2 ≤ |R|.

If l = 3 then

|G : R| =
(q4 − 1)(q3 − 1)

(q − 1)2
<

1
q − 1

q6(q2 − 1)(q − 1)2 ≤ |R|,

and if l ≥ 4 then

|G : R| =
(ql+1 − 1)(ql − 1)

(q − 1)2
< q2l+1 < ql(l+1)/2 < |R|,

completing the proof. �

Notice that the assertion of Proposition 2.3 is false for G � L3(2).

C 2.4. Let G be a simple group of Lie type. Then G has a proper large
subgroup H such that ConG(H) = ConAut(G)(H).

P. If T � 3D4(2) or if G is not defined over GF(2), then the assertion follows by
Proposition 2.2 and the remark after it. Therefore we may assume that G is defined
over GF(2).

If G is of type Al, l > 2, then the statement is a consequence of Proposition 2.3. If

G � B2(2)′ � A6 � L2(9), G � A2(2) � L3(2) � L2(7) or G �G2(2)′ � U3(3),

then we obtain the assertion by Proposition 2.2. If G is as listed in Table 2, then H is a
large subgroup of G such that ConG(H) = ConAut(G)(H) (the details are taken from [2]).
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T 2. Large subgroups H such that ConG(H) = ConAut(G)(H).

G H |H| |G : H|

D4(2) 34 : 23 · S 4 15 552 11 200
F4(2) [220]A6 · 2 754 974 720 4385 745
2F4(22)′ 2 · [28] : 5 : 4 10 240 1 755

If G is one of the remaining groups of Lie type with q = 2, that is, G is isomorphic
to one of the groups

Bl(2), Dl(2)(l ≥ 5), E6(2), E7(2), E8(2), 2Al(22), 2Dl(22), 2E6(22),

then it is easily verified that the large subgroup H of G given by [3, Table II] satisfies
ConG(H) = ConAut(G)(H). This completes the proof. �

It remains to consider the alternating groups.

P 2.5. Let G � An, n ≥ 5. Then G has a proper large subgroup H such that
ConG(H) = ConAut(G)(H).

P. The case G = A6 � L2(9) has already been handled in Proposition 2.2. Thus
we may assume that n , 6, in which case Aut(G) = S n. Let H be a point stabiliser in
G = An; then ConAn (H) = ConS n (H), and clearly H is large in G = An. This completes
the proof. �

Now Proposition 1.3 follows by Proposition 2.1, Corollary 2.4 and Proposition 2.5.
The following proposition will be used in the proof of Theorem 1.4

P 2.6. Let G be a simple nonabelian group. Then G has a proper
subgroup H such that |H| ≥ |G : H|β and ConG(H) = ConAut(G)(H).

P. In view of Proposition 1.3, it remains to consider the case G = O’Nan. By [2]
G has a (maximal) subgroup H � J1, |H| = 175 560, |G : H| = 2 624 832, such that
ConG(H) = ConAut(G)(H). Since |H| = |G : H|β, the proof is complete. �

R 2.7. The number β cannot be replaced by a larger constant in Proposition 2.6.
Indeed, let T := O’Nan and let A < T be such that ConT (A) = ConAut(T )(A). We show
that |A| ≤ |T : A|β. Set G = Aut(T ). By Frattini’s argument G = T NG(A), and so

|T : A| ≥ |T : T ∩ NG(A)| = |G : NG(A)|.

The list of maximal subgroups of G = Aut(T ) � O’Nan : 2 is determined in [7]. By
this list S := J1 × 2 is the largest maximal subgroup of Aut(T ) distinct from T . Thus
|T : A| ≥ |G : S | = 2 624 832, which implies that |A| ≤ |T : A|β as required.

As noted in Section 1, the following shows that Theorem 1.4 cannot be improved
by replacing β by a larger constant.

https://doi.org/10.1017/S0004972712000081 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972712000081


300 B. Baumeister and G. Kaplan [10]

P 2.8. Let T = O’Nan and G = Aut(T ). Then |Sec(M)| ≤ |G : M|β for each
maximal subgroup M of G.

P. Let M be a maximal subgroup of G. If M = T then Sec(M) = 1, so we
may assume that G = MT and M ∩ T < T . For g ∈G there exist u ∈ M, t ∈ T such
that g = ut and so (M ∩ T )g = Mg ∩ T = Mt ∩ T = (M ∩ T )t. This shows that
ConT (M ∩ T ) = ConG(M ∩ T ), and thus by Remark 2.7,

|M ∩ T | ≤ |T : M ∩ T |β = |MT : M|β = |G : M|β.

Since T/1 is a chief factor of G and T � M, 1 < M, we have Sec(M) = M ∩ T , so by
the above |Sec(M)| ≤ |G : M|β as required. �

3. Proofs of Theorems 1.2, 1.4, 1.5 and 1.6

We start with the proof of our classification-free result.

P  T 1.5. Suppose that (2) does not hold. Then there exist a nonabelian
chief factor K/L of G, and a large proper subgroup B/L of K/L such that ConK(B) =

ConG(B). We shall show that G/L has a maximal subgroup M/L such that |Sec(M)| ≥
|G : M|, so (1) fails. There is no loss of generality here in assuming that L = 1. By
Frattini’s argument, G = KNG(B). Since B is not normal in G we can choose M,
a maximal subgroup of G containing NG(B). Then M � K and K is minimal normal,
so Sec(M) = M ∩ K. But M ∩ K ≥ B and B is a large subgroup of K. Thus |M ∩ K| ≥
|K : M ∩ K| = |G : M|, which implies that |Sec(M)| ≥ |G : M|.

Conversely, suppose that (1) does not hold and let M be a maximal subgroup of G
with |Sec(M)| ≥ |G : M|. Let K/L be a chief factor of G satisfying L ≤ M and K � M.
Then G = KM, implying that |G : M| = |K : M ∩ K| and so |(M ∩ K)/L| ≥ |K : M ∩ K|.
Thus (M ∩ K)/L is a large proper subgroup of K/L. (Notice that K/L is nonabelian,
since otherwise M ∩ K/L CG/L, contradicting the fact that K/L is a chief factor.) In
order to see that (2) fails, it is left to show that ConK(M ∩ K) = ConG(M ∩ K). Let
g ∈G; then g = mk, where m ∈ M, k ∈ K. Thus (M ∩ K)g = (M ∩ K)k, and the proof is
completed. �

We proceed with a useful lemma.

L 3.1. Let G be a group, N EG, N = T m, where T is a simple nonabelian group.
Suppose that B ≤ T and ConT (B) = ConAut(T )(B). Let A := Bm be a subgroup of N.
Then ConN(A) = ConG(A).

P. By construction

Aut(N) = Aut(T ) wr S m = NAut(N)(A)Aut(T )m.

Since each g ∈G acts on N (by conjugation) like an element of Aut(N), the assertion
now follows from the assumption that ConT (B) = ConAut(T )(B). �
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Theorems 1.2, 1.4 and 1.6 can now be proved.

P  T 1.2. Let G be a group such that |Sec(M)| < |G : M| for all maximal
subgroups M of G. Suppose to the contrary that G has a chief factor K/L = T m, T is
a simple nonabelian group and T � O’Nan. By Proposition 1.3 there exists a proper
large subgroup B of T such that ConT (B) = ConAut(T )(B). Let A = Bm, a subgroup
of K/L. Then it is easily verified that A is a proper large subgroup of K/L, and by
Lemma 3.1, ConK/L(A) = ConG/L(A). Let H be the preimage of A in G; then clearly
ConK(H) = ConG(H), so condition (2) of Theorem 1.5 is not satisfied by G. Since
condition (1) of the same theorem is satisfied, we reach the desired contradiction. �

P  T 1.4. The only if part is known, as mentioned in Section 1. We prove
the if part. Let G be a minimal counterexample. Since the condition on the c-sections
of G is inherited by quotients of G, G/N is solvable for each 1 < N EG. Hence G has
a unique minimal normal subgroup N, and N = T m, where T is a simple nonabelian
group. Furthermore,

N = T m ≤G ≤ Aut(T ) wr S m = Aut(N).

By Proposition 2.6 there exists a proper subgroup H of T such that |H| ≥ |G : H|β and
ConT (H) = ConAut(T )(H). Define A = Hm, a subgroup of N. Then it is easily verified
that |A| ≥ |N : A|β, and by Lemma 3.1, ConN(A) = ConG(A). Frattini’s argument leads
to G = NNG(A). Notice that A < N forces that A is not normal in G. Let M be a
maximal subgroup of G containing NG(A). Then N � M and, since N is minimal
normal, Sec(M) � M ∩ N. Now M ∩ N ≥ A, implying that |M ∩ N| ≥ |N : A|β ≥ |N :
M ∩ N|β. But since G = MN we have |N : M ∩ N| = |G : M|. Hence |Sec(M)| ≥ |G :
M|β, the desired contradiction. �

P  T 1.6. Assume that the theorem is false and let G be a minimal
counterexample. Suppose first that G does not have proper nontrivial characteristic
subgroups. Then, since G is not a p-group, G = T m, where T is a simple nonabelian
group. Moreover, by assumption T � O’Nan. By Proposition 1.3 there exists S < T
such that ConT (S ) = ConAut(T )(S ) and S is large in T . Set H = S m, a subgroup of
G = T m. Then H is a proper large subgroup of G, and ConG(H) = ConAut(G)(H) by
Lemma 3.1. Therefore, G is not a counterexample in this case. Hence we may assume
from now on that G has proper nontrivial characteristic subgroups.

Let K be a minimal characteristic subgroup of G. Then K = T m, where T is a simple
group (T may be of prime order). Suppose that |G/K| is divisible by at least two
primes. Then, since G/K is not a counterexample, there exists K < H <G such that
H/K is large in G/K and ConG/K(H/K) = ConAut(G/K)(H/K). Let α ∈ Aut(G); then
α induces an automorphism α of G/K and (H/K)α = Hg/K for some g ∈G. Thus
Hα = Hg, and it follows that ConG(H) = ConAut(G)(H). Since H is large in G, we
deduce that G is not a counterexample.

It remains, therefore, to consider the case where G/K is a nontrivial p-group for a
prime p. If K is elementary abelian then K is a q-group for a prime q distinct from p.
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Now, either a Sylow p-subgroup or a Sylow q-subgroup of G is large in G. Since this
Sylow subgroup, say H, satisfies ConG(H) = ConAut(G)(H) by Sylow’s theorem, we
deduce again that G is not a counterexample. Finally, suppose that K is nonsolvable.
Let R be a nontrivial Sylow subgroup of K. By Frattini’s argument, G = KNG(R) and
so either K or NG(R) is a proper large subgroup of G. Denote this large subgroup
by H. If H = K then ConG(H) = ConAut(G)(H) = {H}. If H = NG(R), notice that for
α ∈ Aut(G) there exists u ∈ K such that Rα = Ru. Thus Hα = Hu, and it follows that
ConG(H) = ConAut(G)(H). This shows that G is not a counterexample in this case, as
well. The proof is now completed. �

References

[1] R. Carter, Simple Groups of Lie Type (Wiley, London, 1972).
[2] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups

(Clarendon, Oxford, 1985).
[3] A. Lev, ‘On large subgroups of finite groups’, J. Algebra 152 (1992), 434–438.
[4] S. Li and W. Shi, ‘A note on the solvability of groups’, arXiv:math/0509377v2 (2005).
[5] L. Shirong and Y. Wang, ‘On c-section and c-index of finite groups’, J. Pure Appl. Algebra 151

(2000), 300–319.
[6] Y. Wang, ‘C-normality of groups and its properties’, J. Algebra 180 (1998), 954–965.
[7] R. A. Wilson, ‘The maximal subgroups of the O’Nan group’, J. Algebra 97 (1985), 467–473.

BARBARA BAUMEISTER, Fakultät für Mathematik, Universität Bielefeld,
Postfach 10 01 31, D-33501 Bielefeld, Germany
e-mail: baumeist@math.uni-bielefeld.de

GIL KAPLAN, School of Computer Sciences,
The Academic College of Tel-Aviv-Yaffo, 2 Rabenu Yeruham st.,
Tel-Aviv 64044, Israel

https://doi.org/10.1017/S0004972712000081 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972712000081

