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Abstract
We investigate state-level age-specific mortality trends based on the United States Mortality Database
(USMDB) published by the Human Mortality Database. In tandem with looking at the longevity expe-
rience across all the states, we also consider a collection of socio-demographic, economic, and educational
covariates that correlate with mortality trends. To obtain smoothed mortality surfaces for each state,
we implement the machine learning framework of Multi-Output Gaussian Process regression (Huynh &
Ludkovski, AAS, 2021) on targeted groupings of 3–6 states. Our detailed exploratory analysis shows that
the mortality experience is highly inhomogeneous across states in terms of respective Age structures. We
moreover document multiple divergent trends between best and worst states, between Females and Males,
and between younger and older Ages. The comparisons across the 50+ fitted models offer opportunities
for rich insights about drivers of mortality in the U.S. and are visualized through numerous figures and an
online interactive dashboard.

Keywords: Mortality modeling; multi-output Gaussian Processes; U.S. state mortality; U.S. mortality database

1. Introduction
The United States Mortality Database United States Mortality Database (USMDB) provides a
high-quality complete dataset regarding Age- and Year-indexed mortality experience across the
50 U.S. states and the District of Columbia. First published in 2019, USMDB offers a novel oppor-
tunity for actuarial and statistical insights at sub-national granularity. Comparative analysis of the
U.S. states presents an interesting case study: while there are shared economic, cultural, health and
to some extent demographic characteristics, there is also a lot of heterogeneity. To handle this sit-
uation, we seek a modeling framework that captures and leverages similarities but does not lump
all states together. We moreover emphasize the need for a statistical approach. First, many of the
U.S. states are small: 15 states have population less than 2 million and six are under one million,
meaning that respective yearly deceased counts for a single Age are in the low hundreds. As a
result, single-population models for such states lack credibility. Second, in order to make mean-
ingful comparisons across states, joint modeling is necessary, otherwise, the inter-state differences
are not statistically coherent. Third, many of our goals are about deeper patterns of mortality,
including mortality improvement factors (i.e., annual changes in mortality rates) or mortality Age
structures. The respective raw quantities, such as raw year-over-year changes in mortality rates,
are much too volatile, and smoothing techniques are imperative.

With the above in mind, we design a custom statistical workflow for studying the USMDB. Our
approach is based on creating targeted groupings of a few states at a time. In the first step, we build
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collections of similar states, using a range of auxiliary state-level covariates that reflect economic,
demographic, and geographical state characteristics. In the second step, we employ data pooling,
modeling a group of similar states as a joint dataset that treats State as a factor level. To do so,
we use a (multi-output) Gaussian Process-driven stochastic mortality model. The resulting setup
“patches” together localized models to offer an overall view across 51 states; (To simplify notation,
we treat District of Columbia as the 51st state) it highlights regional similarities while sharpening
national inequalities. Methodologically, this offers a novel middle ground between a massive joint
model for all 51 populations at once and a collection of 51 single-population models.

After constructing state groupings and fitting a stochastic mortality model, we embark
on a detailed exploratory analysis, supplemented by an online interactive RShiny dashboard
(Ludkovski & Padilla, 2023). Among others, we visualize and discuss (i) rankings of states in terms
of their Age-linked mortality evolution in time; (ii) their recent mortality improvement factors;
(iii) their Age-structure of mortality rates; (iv) Age-structure of mortality improvement factors;
(v) patterns of above vis-a-vis state characteristics. We highlight several take-aways that are likely
to be new to the actuarial audience in terms of the aggregate behavior of the 51 states and respec-
tive “outliers." For example, we document that there is a wide range of mortality improvement
factors (i.e., annual changes in mortality rates) among states, with some improving and others
experiencing rising mortality. Similarly, we document a diversity of Age structures of state mor-
tality relative to the U.S. average and a spectrum of Age patterns in yearlymortality changes.While
we do not have any insights about the causal drivers of these patterns, we cite some related liter-
ature that attempts to put together a more complete sociodemographic story. To our knowledge,
this is one of the first papers to present a detailed side-by-side comparison of so many inter-
related mortality models. It is also one of the few analyses fully dedicated to the USMDB state
dataset.

Remark 1. The impact of the COVID-19 pandemic on U.S. mortality has been severe. Inclusion
of such dramatic outliers into a stochastic mortality model is fraught since the underlying assump-
tion is of a statistically stationary behavior across the training dataset. Moreover, it is not clear
whether (or how) to upweigh or downweigh the latest experience when smoothing for mortal-
ity trends. For these reasons, we choose to exclude latest data and concentrate on pre-pandemic
analysis. See also Remark 4 below.

1.1 Related literature
Our analysis of variations within U.S. mortality connects to several non-actuarial strands of extant
literature. Demographers have been highlighting growing geographical disparities in mortality
within U.S. since the late 20th century, see Ezzati et al (2008), Wilmoth, et al. (2011), Currie &
Schwandt (2016), primarily focusing on dispersion of life expectancy (LE) at birth, e0. These works
highlight the emergence of a geographic belt whereby “the 13 worst-off states were geographically
contiguous in 2004” (Fenelon, 2013), spanning Appalachia and the South. Within the economics
literature, the starting point for investigating mortality disparities originated with Chetty et al.
(2016) who documented strong correlation between income, geography, and LE at Age 40, e40.
Chetty et al. primarily worked with county-level data aggregated into commuting zones and docu-
mented gaps of 10–14 years in LE across different parts of the U.S.. Boosted by the study of “deaths
of despair” in mid-life U.S. adults by Case & Deaton (2021), many researchers have documented
growing gaps in adult mortality and life expectancies across both education and income (Becker
et al., 2021; Bosworth, 2018; Case & Deaton, 2021; Sanzenbacher et al., 2021). We especially high-
light the SOA-sponsored report by Barbieri (2020) which ranks counties by socioeconomic index
scores (SIS) and then compares mortality by SIS deciles.

These macro-effects translate into state-level differences through several channels. First, states
intrinsically vary in their socio-demographics, for example in the proportions of racial sub-groups
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and poverty levels. Second, states have enacted over time different policies that impact mortality.
This includes anti-smoking campaigns (Couillard et al., 2021 find correlation between tobacco
taxes and mortality and Fenelon, 2013 attributes cigarette smoking prevalence as explaining
more than half of geographic differences in mortality), public health policies such as Medicare
expansions, and environmental policies such as pollution mitigation. Third, migration patterns,
for example increased concentration of college-educated persons along the coasts, have been
amplifying regional differences by making states more heterogeneous over the past few decades.
Moreover, migrants tend to have better underlying health characteristics, which improves the
observed mortality profile of receiving states and leads to higher observed mortality in sending
states Ezzati et.al (2008).

Beyond the above factors that create dependence between state characteristics and mortality
rates, there is also “a portmanteau of ‘place’ effects,” cf. Couillard et al. (2021). These include the
rural/urban differences in mortality, climate effects, and other, yet to be pinpointed spatial factors.
The analysis in Couillard et al. (2021) parallels in several ways our work below, with three critical
differences. First, Cuillard et al. are looking at midlife mortality, studying aggregate mortality for
ages 25–64. In contrast, we provide a much more granular, Age-specific analysis. Second, Cuillard
et al. concentrate on the working adults, where effects such as deaths of despair (which have seen
marked state-level differences Case & Deaton, 2021) are important; in contrast, we focus on the
older ages 60–84. Third, Couillard et al. (2021) take raw mortality data as-is, without imposing
any statistical analysis; this is sufficient for their age-aggregated approach but is inadequate for
our deeper investigation, especially for mortality improvement factors. In sum, our work comple-
ments (Couillard et al., 2021) by providing an updated, age-specific, statistically smoothed analysis
of state-level mortality.

Another recent analysis on the spatial disparities in U.S. mortality is by Vierboom et al.
(Vierboom & Preston, 2020; Vierboom et al., 2019). In Vierboom et al. (2019), the authors use
cause-specific mortality (working with 9 top-level mutually exclusive and exhaustive cause cate-
gories) across metropolitan areas and geographic regions, binning into 5-year Age intervals. The
main finding is that spatial inequality rose between 2002 and 2016 and that areas that had lower
mortality enjoyed larger gains. Such divergent trends were especially noticeable between large
coastal metropolitan areas and rural Appalachia and South, and within lung cancer/respiratory
diseases, as well as drug/alcohol abuse. Vierboom et al. focus on studying LE at birth e0 for ages
30–85 and work with county-level data aggregated into 40 spatial units (the 9 census divisions
plus Appalachia, broken out into Metro, Suburb, Small Metro, and Rural strata). The companion
study (Vierboom & Preston, 2020) investigates spatial inequality in e65 (LE at 65) for the same 40
spatial units; see also an earlier analysis in Dwyer-Lindgren et.al (2016) using 5-year Age bins.

Li & Hyndman (2021) investigate state-level mortality through a two-level forecast recon-
ciliation method: building single-state and national-level Lee-Carter models and then adjusting
the results so that the sum of the state projections adds up to the national estimate. They pri-
marily focus on out-of-sample performance, examining projections as much as 10 years into the
future.

Several articles have recently introduced explicit consideration of spatial mortality patterns in
order to handle the sparsity of death counts in small spatial units. Gibbs et al., Gibbs et al. (2020)
use conditional auto-regressive priors with a county-specific linear Age trend in order to borrow
information across neighboring U.S. counties. In a follow-up publication, Hartman et al. (Shull
et al., 2025) construct a single multivariate spatio-temporal model to fuse data across both space
and Age bins; parameter inference is done via Integrated Nested Laplace Approximations. Cupido
et al. (2021, 2020) apply a spatial filtering approach to infer the latent spatial dependence in U.S.
county-level mortality. Boing et al. (2020) build a hierarchical model that teases out the relative
importance of states versus counties versus census tracts, showing that the latter is the primary
driver of mortality variability. The consistent take-away is that taking into account spatial rela-
tionships offers better predictive power and supports the intuition that “individuals living closer
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together likely have more similar lifestyles than individuals living hundreds of miles apart” (Gibbs
et al., 2020). In turn, similar lifestyle habits and environmental factors drive mortality.

1.2 Contributions
Within this landscape, our contributions can be traced along two dimensions. Methodologically,
we propose a new technique for studying USMDB data, namely through creating custom, tar-
geted groupings of a handful of states at a time. Our approach builds on Ludkovski et al. (2018),
Huynh & Ludkovski (2021), Huynh et al. (2020), Huynh & Ludkovski (2024) and allows fusion of
mortality data from similar states, while avoiding the need to directly model all 51 states jointly,
a statistically daunting task. Instead, we advocate grouping states based on their geographical
neighbors and a collection of socio-economic covariates. Such targeted groupings simultaneously
improve computational efficiency and statistical efficacy. To this end, we compute a weighted
Euclidean distance between state-wise principal component analysis scores obtained from the
collected state covariates. Notably, we propose a nearest-neighbor-like setup, creating a separate
group for each state, in contrast to a partitioning method where states are a priori clustered and
multi-population models are independent fit for each cluster. Our motivation comes from spatial
regression, where localized modeling (like LOESS) is generally more robust than top-down par-
titioning (piecewise regression). Hard partitions based, e.g., on pre-specified geographic regions,
are difficult to justify or validate, and we therefore prefer data-driven, transductive (i.e., tailored
to the state being modeled) groupings.

On a broader level, our approach breaks new ground in developing a meso-scopic framework
for studying many inter-related subnational populations – situated between single-population
methods and a macroscopic all-in joint modeling. This setup offers the ability to fuse informa-
tion and draw meaningful comparisons through the built-in coherence in the mortality estimates,
while avoiding the full specification of the co-dependence among dozens of populations. Our tech-
nique to adaptively group and patch similar populations would be useful for further settings, such
as studying other sub-national jurisdictions (counties, provinces, federal states), or for grouping
countries, e.g., within Europe.

Empirically, we provide a novel exploratory analysis about the relative experience of smoothed
Age-specific mortality across U.S. states. We augment existing literature that focuses on either
life expectancy or aggregate mortality (both metrics effectively averaging across many ages) with
an explicit consideration of mortality as a function of Age. Moreover, we investigate the recent
dynamics of mortality through inferred mortality improvement (MI) factors. We not only rank
and compare states against each other but moreover correlate our projections with the collected
external covariates. In sum, we confirm several previous aggregate analyses (such as strong corre-
lation between mortality and income/obesity/geographic region) and also document several new
insights, such as a heterogeneity of improvement factors as a function of Age, and the strong dis-
parities betweenMale and FemaleMIs. These statistical findings provide a starting point for future
investigations in other disciplines, such as demographics and economics, that are best equipped
to identify their societal causes.

Our goal in this project is to compare mortality across U.S. states. Experiments during the writ-
ing of this paper indicate that our results are largely invariant to the specific mortality modeling
framework. Therefore, one could for instance use the developed state groupings within a Li & Lee
(2005) multi-population Age-Period-Cohort setup rather than with multi-output GPs. Indeed, we
do not claim to provide the best model for USMDB and leave full benchmarking (e.g., via quanti-
tative assessment of the quality of out-of-sample predictions) to future work. Instead, our aim is
to enable meaningful smoothing and nowcasting of Age-specific mortality state-by-state, with the
emphasis on pooling states for the purpose of their relative comparisons.
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Remark 2. The division of the US into states is not very meaningful actuarially, since many states
are too large or too heterogeneous to provide direct insights into mortality disparities. For the lat-
ter purposes, one ought to concentrate on covariates such as socio-economic status or race that are
known to correlate with US mortality drivers. Nevertheless, non-actuarial researchers and popu-
lar media frequently compare mortality by state, which was indeed an impetus for the creation
of USMDB. Our analysis seeks to provide a stochastic mortality perspective on USMDB, docu-
menting its features and presenting a rigorous comparative assessment of time and age structure
of mortality among the states.

The rest of the paper is organized as follows. In Section 2, we summarize the raw data pro-
vided by the USMDB and introduce the stochastic model of Multi-Output Gaussian Processes and
methodology used to create smoothed mortality surfaces. Section 3 describes the state grouping
algorithm. Section 4 presents results regarding state-level mortality relative ranks. Sections 5 and
6 in turn analyze the respective improvement factors and correlation with state-level covariates.
Section 7 concludes. Several Appendices present further plots, tables, and covariate definitions. To
promote analysis of USMDB, the visualizations below are augmented with the publicly available
RShiny tool (Ludkovski & Padilla, 2023). The dashboard replicates some of the shown figures and
offers a starting point for other researchers to directly explore the outputs of our models across
states, genders, and years.

2. Data and statistical model
2.1 Dataset
Built by the HMD team, the United States Mortality Database (USMDB) United States Mortality
Database (USMDB) contains a complete historical set of state-level life tables for every calendar
year during 1959–2019 for all 50 U.S. states and the District of Columbia (D.C.). The USMDB
covers ages 0–110+ and includes separate datasets for the Male and Female populations. The raw
data contain birth and death counts from theU.S. vital statistics system and incorporate the census
counts and population estimates from the U.S. Census Bureau.

Our objective is to estimate and smooth historical mortality rates and then forecast short-term
calendar trends through analyzing and estimating mortality improvement factors. Throughout
this paper, we thus focus on the following subset of the USMDB: (a) Calendar Years 1990–2018;
(b) Males and Females, considered separately; and (c) Ages 60–84. This subset of older ages and
recent years is the most relevant for actuarial applications. Omitting data from the 20th century
is in line with the data-driven machine-learning framework we employ, so that long-past mortal-
ity experience is not only less relevant but potentially misleading for our model construction, in
particular due to nonstationary mortality improvement patterns. We omit very old Ages since the
population data underlying USMDB are only available up to an open age interval at 85+ years
(Barbieri, 2020).

Due to operating on raw data, nearly all of the works cited above consider aggregated mor-
tality across Age groups, e.g., bins of 10 years (Becker et al., 2021), or 5 years (Dwyer-Lindgren
et al., 1980; Shull et al., 2025; Vierboom et al., 2019), or look at life expectancy at a given age
(e0, e50, e65, etc.) (Barbieri, 2020; Boing et al., 2020; Chetty et al., 2016; Vierboom & Preston, 2020;
Wilmoth et al., 2011). This fundamentally obscures the non-constant relative impact of Age, which
is well documented. Indeed, multiple studies conclude that spatial and socio-economic inequali-
ties decline with age: “health disparities narrow with age” (Vierboom et al., 2019) and “the gap [in
probabilities of dying by SIS deciles] declines progressively after age 55 years and becomes small
(less than 10 percent) at ages 85 and above” (Barbieri, 2020). At the same time, most references
disaggregate mortality by other, say socio-economic or cause-of-death, factors, or into smaller
spatial units. In contrast, we follow the USMDB to fully disaggregate into 1-year bins by Age, but
otherwise consider aggregated mortality across all individuals in the state.
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Table 1. Sample rows from the USMDB datasetD
USMDBD for Males

State (s) Age (xa) Year (xt) Mortality Rate Log-mortality (y)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CA 60 1990 0.014 −4.248
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CA 60 1991 0.014 −4.261
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
...

...
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CA 84 2017 0.070 −2.664
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CA 84 2018 0.072 −2.631
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AR 60 1990 0.014 −4.262
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AR 60 1991 0.013 −4.327

Let S = (si)1≤i≤51 represent the 51 U.S. states (throughout we count D.C. as the 51st “state”).
The information regarding each state s ∈ S provided by the USMDB is organized as follows:

(i) Independent variables: calendar year xt and age xa. The pair (xa, xt) refers to the set of persons
from state s aged a ∈ {60, . . . , 84} during year t ∈ {1990, . . . , 2018}.

(ii) Dependent variables: The death counts D(a,t) along with the total number of persons lived
(exposed to risk) E(a,t) at a given age-time cell (xa, xt). We record the log-mortality rate

y(a,t) := log
[

# of Deaths during (xa, xt) age-time Interval
# of Exposed to Risk during (xa, xt) age-time Interval

]
≡ log

[
D(a,t)

E(a,t)

]
. (1)

To simplify notation, when the age and calendar year are clear from the context, we drop the
superscript (a, t). While death counts are generally highly accurate, exposed-to-risk are based
on census estimates and systematically undercount undocumented immigrants.

In summary, the USMDB provides 5 inputs, (s, xa, xt ,D, E)≡ (state, age, year, deaths, exposed-to-
risk) and the associated output y≡ log-mortality, see Table 1. The complete dataset is denoted as
D, with Ds ⊂D representing the subset of rows associated with state s ∈ S .

2.2 Multi-population Gaussian process models
Multi-population modeling aims to identify and capture mortality dependence patterns among
several populations in order to fuse data and achieve coherent forecasts. We follow Huynh
et al. (2020) and Huynh & Ludkovski (2021) in implementing a Multi-Output Gaussian Process
(MOGP) to model USMDB longevity data. The MOGPmodel quantifies mortality uncertainty by
probabilistically smoothing raw data and simultaneously generates stochastic out-of-sample fore-
casts by projecting mortality surfaces across the Age and Year dimensions. For multi-population
analysis, MOGP imposes a cross-population correlation structure on top of the Age-Period pat-
tern in each population. The data fusion employed in MOGP improves model fit, reduces model
risk, and provides insights into the discrepancies among mortality trends across populations.

2.2.1 Gaussian process regression
First, we describe the mechanics of the Single-Output Gaussian Process (SOGP) model; see
Ludkovski et al. (2018) for more details. Fix an arbitrary state l ∈ S . We are given a sample of
n= 29× 25= 725 observed log-mortality rates. Mortality is described as a function of age and
time:

• x := (x1, . . . , xn) where xi := (xia, xit) for a ∈ {60, . . . , 84} and t ∈ {1990, . . . , 2018}.
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• yl(x)≡ yl := (y1l , . . . , y
n
l ) where y

i
l , i= 1, . . . , n denotes the observed log-mortality rate pro-

vided by the USMDB for a state l ∈ S at age xia during year xit .

Observation Likelihood.We assume that the relationship between yil and xi can be described
with a latent black box function fl( · ) and white noise term,

yil = fl(xi)+ εil ; i= 1, . . . , n. (2)

The observation noise is Gaussian with εl = (ε1l , . . . , ε
n
l )∼N (0,�l := diag(σ 2

l )). We assume
that the observation likelihood is population-dependent but constant in age and year, σl =
StDev(εil ) ∀i. The underlying function fl(xi) intuitively represents the true mortality rate which
would materialize in the absence of random idiosyncratic shocks. While a Poisson observation
likelihood is appropriate for small populations, typical death counts for the considered age groups
are at least in the high hundreds, making the Gaussian approximation (which is methodologically
much preferred for GPs) highly accurate.

Distribution of the Latent Process.A priori, for any sample x ofm≥ 1 observations, the finite
dimensional distributions (fdds) of fl(x)= (fl(x1), . . . , fl(xm)) are postulated to follow a multivari-
ate Gaussian law fl ∼ GP

(
ml, Cl

)
with prior (parametric) mean function, ml( · ), and covariance

matrix Cl(·, ·),
ml(x) := E[fl(x)]=

(
μl(x1), . . . ,μl(xm)

)
and Cl(x, x′) := E

[(
fl(x)−ml(x)

)(
fl(x′)−ml(x′)

)]
.

Assuming that εil s are independent across x
is and from f , it follows that

yl ∼N (ml, Cl + �l) , �l = σ 2
l I,

since Cov(yil , y
j
l)=Cov

(
fl(xi), fl(xj)

)+ σ 2
l δ(xi, xj), where δ(xi, xj) is the Kronecker delta.

Mean and Covariance Structure. We assume functional representations for the mean and
covariance functionsml( · ), Cl(·, ·) which represent the prior beliefs about the dataset. Recall that
all the observed properties of a stochastic process with Gaussian fdds are characterized by ml( · )
and Cl(·, ·).
(i) The GP Mean function describes the prior trend in log-mortality rates. We use a paramet-

ric prior mean function,ml(xi)= β0,l +
∑p

j=1 βj,lhj(x), where hj(x)s are given basis functions
and the βj,ls are unknown coefficients to be estimated. Letting β l =

(
β0,l, . . . , βp,l)T , h(x)=(

h1(x), . . . , hp(x)
)
, we use the shorthand ml(x)= h(x)β�. Below, we postulate a linear trend

in the Age dimension:

ml(xi)= β0,l + βa
1,l · xia. (3)

The choice (3) is used to de-trend the data according to an exponential increase in mortality
as a function of Age (the so-called Gompertz Law of Mortality) in our segment of interest
xa ∈ {60, . . . , 84}.

(ii) The GP Covariance kernel captures the dependence of the response surface fl on the varying
Age and Year dimensions xa, xt . The GP kernel characterizes the smoothing process by quan-
tifying the influence of inputs on the likelihood of the output. Our kernels are distance-based,
capturing the logic that the mortality experience should be similar at neighboring data points,
and separable across the Age and Period coordinates.
We concentrate on a common family of covariance functions known as the Matérn class,
equipped with automatic relevance determination. The Matérn-5/2 kernel defines the covari-
ance between arbitrary univariate inputs x, x∗ ∈R as:

C(M52)(x, x∗;θ) :=
(
1+

√
5

θ
|x− x∗| + 5

3θ2
|x− x∗|2

)
· exp

{
−

√
5

θ
|x− x∗|

}
. (4)
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This kernel is parameterized by the length scale (hyper)parameter θ , to be estimated. To
construct the overall dependence structure we use a multiplicative Age-Period-Cohort (APC)
structure, so that the covariance between two mortality table entries xi ≡ (xia, xit), xj ≡ (xja, x

j
t)

is

C(APC)
l (xi, xj) := η2 · C(M52)(xia, x

j
a;θl,a) · C(M52)(xit , x

j
t ;θl,t) · C(M52)(xic, x

j
c;θl,c), (5)

where xc := xt − xa is the Birth Cohort (i.e., year of birth of an individual who is xa-old in
year xt), and η2 is the process variance hyperparameter, scaling covariances to capture the
typical amplitude of the response. Observe that there are three length scale hyperparameters
θl,a, θl,t , θl,c, jointly estimated together. The last cohort term in (5) is essential to capture
well-known generational effects, such as the special 1918 and 1939 cohorts. The product
structure is analogous to the Age-times-Year terms in the classical Lee-Carter framework.
See Ludkovski & Risk (2024) for a further discussion of appropriate GP kernels for mortality.

2.2.2 GP posterior
The GP paradigmmodels input-output relationships by algebraically conditioning its prior distri-
bution on the training data. The resulting posterior yields a probabilistic projection regarding the
latent log-mortality surface at desired input vector x∗, given the information in the USMDB. Note
that x∗ can refer to in-sample cells (historical smoothing) or out-of-sample cells (future forecasts),
both obtained from exactly the same formulas below.

Given a prior distribution fl ∼ GP(ml, Cl) and a training set T = (x, yl), we calculate the
posterior distribution yl,∗|T ≡ yl(x∗)|T at predictive cells x∗. Observe that (yl, yl,∗) follows the
Multivariate Normal distribution (MVN)[

yl
yl,∗

]
∼N

([
ml(x)
ml(x∗)

]
,
[
Cl(x, x)+ �l Cl(x, x∗)
Cl(x∗, x) Cl(x∗, x∗)+ �l,∗

])
. (6)

Applying MVN conditioning expressions, the Universal Kriging equations (Rasmussen &
Williams, 2006, Section 2.7) below provide both the estimated mean-function coefficients β l =(
β0,l, β1,l)T in (3) and the posterior distribution of yl,∗ p

(
yl,∗|yl

)∼N
(
ml,∗(x∗), C∗(x∗, x∗)

)
with

the posterior mean-variance

ml,∗(x∗) :=E[yl,∗|T ]= h(x∗)T β̂ l + Cl(x∗, x)(Cl(x, x)+ �l)−1(yl −Hβ̂ l); (7)

β̂ l :=
(
HTD

)−1HT (Cl(x, x)+ �l)
−1 yl; (8)

C∗(x∗, x∗) :=Cov(yl,∗|T )= Cl(x∗, x∗)+ �l+
+ (h(x∗)T − Cl(x∗, x)D)T(HTD)−1(h(x∗)T − Cl(x∗, x)D

)
(9)

where the matrix Cl(x, x∗)i,j = Cl(xi, xj,∗) represents the covariance between inputs in the training
set and predictive locations x∗, H = (

h(x1), . . . , h(xn)
)
and D := (

Cl(x, x)+ �l)−1H.
The predictive distribution of mortality rates at different age and time coordinates represented

by x∗ yield the estimated mortality surfaces. Note that (7) can be applied both in-sample (for x∗s
that are in the training set) to obtain smoothed historical experience, as well as out-of-sample,
to predict mortality into the future using exactly the same algebraic expressions. In parallel, the
GP model also outputs confidence intervals around ml,∗(x∗) based on the posterior covariance
C∗(·, ·), depicting the confidence of the model in its own projections.

2.2.3 Shared covariance structure
Assume that we have selected a collection of L⊂ S states and that each state-specific mortality
surface fl, 1≤ l≤ L, follows a GP fl ∼ GP(ml, Cl).We proceed to create a joint model for the vector
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f = (f1, . . . , fL) through correlating its components. The motivation is that similar states should
share alike mortality rates. Therefore, we impose a shared covariance structure which captures the
dependencies between mortality rates across states.

To jointly model L outputs, we need to specify the mean and covariance kernel of the joint GP
f . More specifically, let 
xi ≡ (xia, xit , xi1, . . . , x

i
L) where x

i
l = I{population = l}; then we take

f ∼ GP(m, C) where f (x)= (
f1(
x), . . . , fL(
x)

)
, (10)

m ∈R
Ln×1 is the mean vector whose elements represent the mean functions of each population

l ∈ L, {ml(
x)}Ll=1, and C ∈R
Ln×Ln denotes the covariance matrix across the entire system.

Intrinsic Coregionalization Model (ICM). Directly specifying the cross-covariances of each
output pair fl, fl′ becomes unwieldy for L> 3, so instead we rely on coregionalized kernels
(Huynh & Ludkovski, 2021) which assume that each output fl, 1≤ l≤ L is a linear combination of
Q independent latent GPs u= (

u1(x), . . . , uQ(x)
)
with shared covariance kernel C(u)(·, ·). In our

case, we use the C(u) = C(APC) APC kernel from (5).
Let a∗

q = (a1,q, . . . , aL,q)T , 1≤ q≤Q, be the vector containing the q-th factor loadings across
all populations L. Then f (x)=∑Q

q=1 a∗
quq(x), or for the l-th population,

fl(x)= al,1u1(x)+ . . . + al,QuQ(x). (11)
The switch from L separate GPs toQGPs (u1, . . . , uQ) is similar to a PCA or singular value decom-
position approach and allows to reduce the number of hyperparameters in the cross-population
covariance matrix from L(L−1)

2 to Q× L:

C(x, x′)=Cov
(
f (x), f (x′)

)=Cov

⎛
⎝ Q∑

q=1
a∗
quq(x),

Q∑
q=1

a∗
quq(x

′)

⎞
⎠

=
⎛
⎝ Q∑

q=1
a∗
qa

∗T
q

⎞
⎠⊗Cov

(
uq(x), uq(x′)

)≡ B⊗ C(u)(x, x′).

The L× L coregionalization matrix B := AAT with entries Bl,k =∑Q
q=1 al,qak,q has rank Q.

Hyperparameters. The modeling task is ultimately to learn the covariance structure, i.e., the
mean and kernel functions based on the training data. The overall set of the ICM MOGP hyper-
parameters is 	 = ((θj)j∈{a,t,c}, (al,q)l=1,...,L,q=1,...,Q, (β0,l, β1,l, σ 2

l )l=1,...,L). In our results below, the
R package kergp Deville et.al (2015) is used to carry out the respective Maximum Likelihood
estimation through Kronecker decompositions, see Huynh & Ludkovski (2021, 2024) for more
details. Once 	 is estimated, ICM MOGP inference reduces to evaluating the linear-algebraic
formulas in (7)–(9).

3. Model grouping
TheMOGPmodel from the previous section works on a group of states. In this Section, we discuss
how to construct such groups. The goal of grouping is to maximize data fusion andmaintain com-
putational tractability. On the one hand, joint models lead to more accurate longevity modeling
than individual-state models. This is especially noticeable for the smaller states where state-level
data are very noisy and trends are hard to decipher. Moreover, a joint model facilitates mak-
ing comparisons about the relative experience of states. On the other hand, directly modeling
all 51 states is computationally intractable within the MOGP framework and is unlikely to per-
form well anyway. The respective model would have hundreds of hyperparameters and is likely to
suffer from unstable inference and identifiability issues. Furthermore, as discussed in Ludkovski
et al. (2018), fusing information from different populations through a MOGP can be expected to
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Figure 1. Raw data (black circles, covering years 1990–2018) and smoothed/projected mortality curves (for years 1990–
2020) for two representative states based on three different groupings: (i) a single-state SOGP model; (ii) MOGP-GEO with
geographic groupings based on U.S. Census regions in Appendix A.1; (iii) proposed MOGP-PCA.

improve predictions only when these populations are similar. Thus, it makes little sense to group,
say, Massachusetts (East Coast, urbanized, wealthy state) with Alabama (South, rural, poor). To
account for spatial relationships described in the Introduction, we would like whenever possible to
group neighboring states following the maxim “Everything is related to everything else, but near
things are more related than distant things” (Tobler, 1970). This operationalizes the hypothesis
that neighboring states often share similar economic and demographic characteristics and thus
have cognate mortality trends and experiences (see also the aforementioned spatial-based analysis
of U.S. counties in Gibbs et al. (2020), Shull et al. (2025).

With the above in mind, we seek to create groups of 3–6 similar states, with a preference for
geographic contiguity. Our groupings Os are state-specific, i.e., are not mutually exclusive across
ss. The grouping algorithm determines which states are alike, so as to incorporate the “right
information” to provide more accurate predictions and reduce predictive uncertainty, exclud-
ing irrelevant information. A secondary concern is making sure that groupings provide enough
“critical mass," namely a large enough aggregate population.

3.1 Motivation
To motivate the issue of how to group states, we briefly discuss two GP-based alternatives. First,
we recall the base case of constructing a Single Output GP (SOGP) model state-by-state. This
can be done using the methodology in Ludkovski, et al. (2018) and yields independently fitted
GP models. Specifically, we fit 51 SOGP models utilizing the kernel (5) with hyperparameters
θa, θt , θc, σ 2, η2, β0, β1. Second, we construct MOGP models based on a geographic partitioning,
namely the nine U.S. Census regions, see Appendix A.1. These regions are 3–9 states in size and
are purely geographically aligned. From a statistical perspective, the widely varying group size
and the large size of some groups (e.g., the South Atlantic region includes 9 states with a total
population of over 50 million) are challenging and slow down ICMMOGP performance.

Fig. 1 displays estimated mortality experience at Age 65 in two states as a function of year for
the above two choices, as well as the proposed state-characteristic grouping from Section 3. These
smoothed mortality estimates are contrasted with the raw mortality rates shown as black circles.
For the latter, we observe that the observation noise is much higher in the right panel of Fig. 1
compared to the left panel. This matches the intuition that the noise in mortality data is roughly
proportional to the underlying exposed population. Since Arizona’s population is 7 million com-
pared to about 20 million in New York, we expect triple the respective observation variance. The
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Table 2. The 18 selected state covariates in C. See Appendix A.3.1 for definitions of each covariate
Economic covariates Demographic covariates Geographic covariates

Educational Attainment (EA) Non-minority Pop’n (NMP) Average Temperature (TP)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Percent Change in GDP (GDP) Percentage Elderly (ED) Average Rel. Humidity (RH)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Median Income (MI) Without Health Insurance (HI) Average Dew Point (DP)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Regional Price Parities (RPP) Obesity Rate (OR) Population Density (TPD)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Poverty Rate (PR) Political Preference (PP)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Urbanization Percentage (UP) Percent Religious (R)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Land in Farms (LF) Share of Immigrant Pop’n (IP)

estimated standard deviation of this noise is the hyperparameter σl = 3.42% for N.Y. Females, and
σl = 5.09% for Ariz. Males.

All three GP forecasts are statistically unbiased and carry out viable non-parametric penalized
curve fitting. In particular, the in-sample (for years 1990–2018) estimated mortality rates closely
match each other. At the same time, there are non-trivial differences among the models when
it comes to out-of-sample prediction, best understood as differences in mortality improvement
factors. Fig. A.1 in the Appendix highlights some of the discrepancies. In general, we find that
single-state models tend to produce more extremeMI and tend to over-smooth the data, while the
MOGP-GEOmodels occasionally overfit. For example, in Fig. A.1 Vermont Males andMinnesota
Females’ geographic groupings lead to a negative MI estimate, while the PCA-based grouping
projects a positive MI. The take-away is that better MOGP groupings can help maximize stability
and interpretability. Moreover, the ideal group size is 3–6 states, enabling sufficient information
borrowing from similar states without making the groups too big. Larger groups are challenging
for modeling the MOGP cross-covariance described in Section 2.2.3 and affect computational
time which is cubic in L.

3.2 Covariates
As documented in prior studies and confirmed in our results below, there is a strong correlation
between economic and demographic variables and observed state-level mortality discrepan-
cies. Hence we use various state characteristics to compute a customized similarity metric
that drives our group selection. We work with a diverse set C of 18 non-mortality state-level
covariates, chosen to be a representative collection of (1) economic, (2) demographic, and (3) geo-
graphic characteristics. The respective state-level data are obtained from several sources, including
(FRED https://fred.stlouisfed.org; US Census Bureau https://www.census.gov, and U.S. Bureau of
Economic Analysis (BEA). https://www.bea.gov). These sources do not distinguish between the
Male and Female subpopulations, hence all the covariates are shared among the genders. Table 2
lists the covariates we work with; Appendix A.3.1 provides a complete description. Our covari-
ates overlap with and are broadly similar to the 20 used in Chetty et al. (2016, Table 8) (who
grouped them into Health Behaviors, Healthcare, Environmental, Labor Market, Social Cohesion,
and Other Factors), the six used in Couillard et al. (2021) and the 11 covariates in Barbieri
(2020).

Rather than manually combining the above covariates, many of which are highly correlated, to
identify which states are similar, we opt for a statistical solution of principal component analysis
(PCA). Thus, we apply PCA to the 51× 18 matrix C, to identify the main sources of differ-
ences across states. Use of PCA to summarize covariates is also advocated in Barbieri (2020).
Fig. 2 and Table A.1 report the PCA results, where we focus on the first three PCA components
PC1, PC2, PC3 that together explain over 66% of the variance in C and allow us to succinctly
summarize the drivers of heterogeneity.
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Figure 2. State-wise PCA factor loadingsPk(s), k= 1, 2, 3.

The PC1 component can be interpreted as an economic or wealth factor: the most expensive
states (N.Y., Cali.) display the highest PC1 loadings, while states like Miss. and La. have lower
PC1 loadings. As confirmation, cf. Table A.1 in Appendix A.3.2, most of the economic covari-
ates from C are positively correlated with the first PC component. The PC2 component can be
interpreted as a climate-related factor, with the Southern-most warmest states having highest PC2
loadings. Lastly, PC3 component loosely corresponds to the Sun Belt states: the Southwest plus
Texas, Georgia, and Florida. The population in these states is rapidly growing due to internal
migration and immigration.

Table A.1 in the Appendix shows the correlation between each covariate and LE at birth, e0,
as constructed by the CDC Center for Disease Control and Prevention (CDC). Similar statistical
association between income (MI), poverty rate (PR), and age-specific mortality is documented in
Li & Hyndman (2021). Other observed correlations are harder to explain, for example between
state Religious Percentage and its LE. This supports our motivation to use statistical, rather
than causal, ways to capture similarity. A further alternative, which however could be deemed
as circular logic, would be to use past mortality trends to identify which states are similar.

3.3 Grouping by covariate similarity
The PCA factor loadings obtained above are used to construct groupings of states for the MOGP.
We first define a distance metric D(s1, s2) between any two states s1, s2 ∈ S . We then group s
with its most similar states according to D(s, ·), aiming for geographical closeness to help with
interpretability. The groups are constructed in a stepwise agglomerative manner, with 3–6 states
per group. Note that since the covariates are the same across genders, all the groupings pertain
both for Males and Females.

Distance between States. We use PCA components from previous section to define a dis-
tance between states. To this end, we compare the respective factor loadings Pk(s), generating
a Euclidean metric weighted by the eigenvalues associated with each PCA component:

D(s1, s2)2 := λ1
(
P1(s1)−P1(s2)

)2 + λ2
(
P2(s1)−P2(s2)

)2 + λ3
(
P3(s1)−P3(s2)

)2, (12)

where λk is the eigenvalue associated with PC component k= 1, 2, 3, see Table 3. The intuition is
to prioritize the first factor that explains the majority of the observed variability in our covariates.

Identifying Similar States. Fix a state s ∈ S . We construct the set Ns of nearest neighbors of s
as follows:

(i) Compute the geographical neighbors of s, O1(s)= {s∗:s and s∗ are geographically
contiguous}. That is, O1 ≡O1(s) is the collection of states which share a physical
boundary with s.

(ii) Add to Ns the state s1 that minimizes the PCA-based distance to s in O1, s1 =
arg mins∗∈O1 D(s, s∗).
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Table 3. Summary of principal component analysis for state
covariates

PC1 PC2 PC3

Standard deviation 2.53 1.70 1.59
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Proportion of variance 0.36 0.16 0.14
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Eigenvalue λk 6.486 3.424 2.548

Figure 3. The ten most similar statesNs for s=Cali. (left), Idaho (middle), and Mich. (right).

(iii) Update the neighborhood definition to include s1:

O2 ≡O2(s∪ s1)= {s∗:s∗ is geographically contiguous with either s or s1}.
(iv) Repeat steps (ii) and (iii) with sn = arg mins∗∈On D(s, s∗) for n= 2, . . . , 10.

Fig. 3 visualizes the results from running the above algorithm on a few representative states
and until |Ns| = 10. The y-axis shows the distance D(s, sn) between the target state s ∈ S and
the “neighbor” added in round n. We observe the common "zig-zaggging" pattern, indicating
that there are states which are further apart geographically, yet closer with respect to D; see, for
example, Michigan and Iowa, or Idaho and North Dakota. Indeed, N.Dak. is the closest to Idaho
in terms ofD(s, ·) even though they are not geographically neighboring.

Proposed Grouping Os for s ∈ S . By construction, the neighborhoods Ns = {s, s1, s2, . . .} are
contiguous; given the above non-monotonicity in Fig. 3, we adjust them to take into account
D-similarity. We start with s, s1, s2 ∈ Os; that is, the first three states from Ns are in the group
of s. Next, let s′3 = arg mins∗∈Ns\(s1,s2) D(s∗, s) be the next closest state to s in terms of D(·, s). We
include s′3 ∈ Os, if and only ifD(s′3, s)<maxi=1,2 D(si, s); so that we create a group of 4 states if s′3 is
a better (closer) fit in distance to s than either of the two neighbors s1, s2 already in the group. The
above procedure enforces a high degree of geographic contiguity (at least two states are guaranteed
to be contiguous with s) but also allows to add one more state that is not geographically close but
is very similar to s in terms of the PCA loadings. As an example, Iowa is added to Mich.’s group
(Fig. 4, right), and N. Dak. is added to Idaho’s group (middle panel), while Cali. stays in a group
of 3 (no further state is closer than s3 =Wash. in that case, left panel).

As a final step, we ensure that all groups have sufficient underlying population to yield credible
estimation. To this end, we augment additional states (in order of their distanceD) until the group
Os has a total population of at least 5 million. This is particularly relevant for the Mountain West
region, where Idaho, Montana, Wyoming, North and South Dakota (all with populations under
1.5 M) tend to group together.

Remark 3. Alaska and Hawaii lack natural geographical neighbors. See Appendix A.4 for the
methodology (and results) used to calculate AK and HI groupings.

A sample of the resulting 51 groupingsOs (one for each s) are shown in Fig. 4; the full list ofOss
is in Appendix A.4. The colors correspond toD(s∗, s), i.e., how close a given state is to its selected
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Figure 4. Selected state groupingsOs, s= Cali. (left panel), Idaho (middle), and Mich. (right).

neighbors. We note that closeness in terms of D varies; there are many very similar (in terms of
PCA factor loadings) states in the Midwest, while California’s neighbors are all much less similar
to it.

Fig. A.3 in Appendix A.4 visualizes the size of the constructed groups. Recall that by default
|Os| = 3; groups of four arise when one of the two most similar (in terms ofD) states is not con-
tiguous with s, but farther away.Most of these cases arise in theMidwest andMid-Atlantic regions.
In addition, in Mountain West we have groups of 5 or 6 due to low state population counts.

The groups Os are constructed separately for each state. To get a sense of how similar are the
groups for different target states, we define the concept of reciprocity. StatesA and B are in positive
reciprocity (PR) if B ∈ OA andA ∈ OB, i.e., they are mutual members in the respective groups. The
states that do not experience any PR are La., Miss., R.I., S.Dak., Texas, andW.Va.. This means that
these states are quite different from all their geographical neighbors and are not getting selected
for their neighbors’ groups. The triple(

Arizona, Nevada, Utah
)

is the resulting Os for these three states which are both contiguous geographically and are very
similar across covariates, forming a mini-cluster. Similarly, the following pairs of states result in
the same constructed groups Os:(

Montana, Wyoming
)
;
(
Connecticut, New York

)
.

4. State mortality predictions
Following the grouping method in the previous section, we construct 51 MOGP models for the
51 states. For each state s, its fitted mortality surface is based on its group Os and hence borrows
strength from several other similar states. Since the various Os overlap, there is interdependence
throughout rather than a fixed regional dependence. For all MOGP, we use the ICM covariance
structure with rank Q= 3. We then use (7) to generate the MOGP-predicted mortality estimates
for years 1990–2020. Recall that the training USMDB data is up to 2018; thus, we report both
in-sample retrospective analysis of U.S. state mortality up to 2018 and prospective predictions for
2019 and 2020. Since our training set consists of pre-pandemic data, the 2020 predictions can be
viewed as a statistical baseline for how 2020 would have looked like without COVID-19.

In this Section, we analyze the relative mortality projections across calendar Years (Section 4.1)
and then individual Ages (Section 4.2). Section 5 then investigates themortality improvement fac-
tors (MI), obtained as the time-gradient of these mortality surfaces. While we primarily address
the MOGP posterior means, we also comment about the posterior credible intervals, see e.g.
Fig. 11.
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Figure 5. MOGP-PCA mortality rates for age 65 Males (left panel) and Females (right) and years 1990–2020. U.S. national
SOGP-smoothed rate is shown as dashed blue.

Figure 6. MOGP-PCA smoothed mortality rates for age 65 Males (left panel) and Females (right) and years 1990–2021. States
are ordered from left to right by their mortality in 2018.

4.1 Time structure
Fig. 5 shows the bulk behavior of state mortality rates across years 1990–2020 fixing the Age,
namely at age 65. As a baseline, we also compute and show the fitted national-level U.S. mortality
rate. This curve (dark blue dashed lines in the plot) is generated by fitting a SOGP model to the
aggregated U.S. mortality experience. As expected, it lies in the core of the state curves and is close
to the population-weighted average of the state-level mortality projections. See also Fig. A.4 in
Appendix A.5 for Age 75 counterpart, and the interactive RShiny widget (Ludkovski & Padilla,
2023) where users can select any other desired Age. Notice that the mortality trend before 2010 is
universally positive, while in the past decade mortality has been either stagnating or deteriorating.
We also observe that although there is a strong common trend,mortality evolution has been rather
variable across states. There are several outlying curves in Fig. 5, notably D.C. and Hawaii, as well
as many “cross-overs” where states change relative ranks over time. This heterogeneity increased
during the 2010s compared to 2000s, and there are also more cross-overs in the Male populations
compared to Females. Moreover, the spread among states is very substantial: e.g., from just over
0.75% inferred mortality in 2020 for 65-year old Females in N.Dak. and Conn., to 1.45% in Miss.
and Okla. – a ratio of 1.88 at the right edge of the right panel.

A more in-depth visualization is provided by the heatmaps in Fig. 6 where columns denote
states and rows denote years; darker gradient corresponds to lower mortality. The states are sorted
in increasing order of their mortality as of 2018. The expected behavior as we move up across a
column is a smooth transition from red to blue/purple corresponding to improving mortality
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Table 4. Top-5 and bottom-5 states ranked by MOGP-PCA-projectedmortality rate in 2020 at ages 65 and 75.
The best and worst states are in the first rows

Best States Worst States

Males Females Males Females

Age 65 Age 75 Age 65 Age 75 Age 65 Age 75 Age 65 Age 75

Vt. Colo. Minn. Hawaii Miss. Miss. Miss. Ky.
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Utah Hawaii Colo. Cali. Ala. Ala. Okla. W.Va.
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Minn. Vt. Conn. Ariz. Ark. Ky. W.Va. Miss.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Conn. Conn. Utah Fla. W.Va. Okla. Ky. Okla.
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Colo. Cali. Cali. Conn. Ky. Tenn. Ala. Ala.

Figure 7. State rankings in terms of age 65 mortality rate across years 2000, 2010, and 2020.

throughout 1990–2020. While this occurs for some states (notably D.C. is displaying this pattern,
having gone from one of the biggest laggards to being middle-ranked by 2020), for many columns
the pattern is much more checkered. Note the colored stripes that indicate different historical
mortality paths for states that nowadays have similar rates. Only a few states, such as Utah, Colo.,
and Hawaii show a consistent positive mortality trend throughout the past three decades.

Relative ranks of states are of great interest. By looking at the first few/last columns of the
heatmaps in Fig. 6, we can read off the states with the worst/best mortality. Table 4 summa-
rizes which states are projected to have the highest (worst) and lowest (best) mortality in 2020.
Northeast and Pacific states have the overall best mortality, and the Southern states are at the
bottom. There is a lot of consistency between the genders as well, with Miss., Ala., and Ky. being
among the bottom-5 in all four columns on the left of Table 4. We caution against reading too
much into the precise rankings: our fitted models yield predictive standard deviations of latent
log-mortality on the order of

√
C∗(x∗, x∗) ∈ [0.04, 0.1] (depending on size of the state), which

corresponds to standard errors of about 0.2%–0.3% on the original scale of mortality rates. For
example, Colo.’s Male mortality in 2020 is projected to be 1.304% (ranked fifth) but with a 95%
predictive interval of [1.141%, 1.489%] which would be anywhere within the top-20. There is a
complex correlation between the projections of different states which makes relative ranks less
volatile, but the upshot is that it is not statistically possible to decide whether a given state is in
top-5 or top-10. Nevertheless, these rankings echo Chetty et al. (2016) regarding life expectancy
for individuals in the bottom income quartile, who have singled out Tenn., Ark., Okla. as the worst
performers and Cali. and Vt. as the top-ranked states.

To better visualize the relative ranks of states across time, Fig. 7 shows a bump chart ranking
states by their fitted/projected mortality rates in 2000, 2010, and 2020 at Age 65. We observe that
all states experienced a decrease in their mortality rates between 2000 and 2010. However, for the
2010s the picture is largely reversed. In fact for Males, only Maine and New York are projected to
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Figure 8. MOGP-PCA projectedmortality rates (on the log scale) across ages 60–85 for year 2020. The dashed blue line shows
the fitted SOGPmodel for the U.S. nationwide mortality.

improve between 2010 and 2020. For Females, the picture is mixed; 16 states (AL, AR, DC, FL,
HI, IN, KY, LA, MO, MS, NM, OH, OK, TN, UT, WV) are projected to have a worse Female Age
65 mortality in 2020 compared to 2010, while the rest are improving. Our analysis corroborates
the county-level findings in Shull et.al (2025) who report an improvement in mortality between
2000 and (approximately) 2014, followed by a recent deterioration in county-level rates popularly
attributed to deaths of despair.

Moreover, Fig. 7 indicates a certain split among Female mortality: laggard states, primarily
in the South, have deteriorating Female mortality in 2020 compared to 2010, while the best-
performing states in the Northeast andWest continue to experience improvingmortality. In other
words, there is a divergent pattern where states with low (Female) mortality are doing relatively
better compared to states with higher mortality, with this pattern aligning with regional partitions.
Similar age-aggregated conclusions appear in Fenelon (2013), Chetty et al. (2016).

Remark 4. The COVID-19 pandemic caused a major spike in US mortality in 2020 and 2021, as
well as generated lingering mortality “aftershocks” (including possibly initiating a new structural
break in future mortality improvements). It requires several years of post-pandemic data to dis-
entangle the respective short-term and long-term impacts on mortality. In the considered MOGP
models, the range of year-dependence is 3-6 years, so such analysis would become feasible in the
near future, though not quite yet. Specialized GP kernels, such as those that incorporate change
points (Saatçi et al., 2010) could be applied, but are beyond the scope of our work. As it stands,
including 2020–2023 in our analysis would degrade all the model fits and “bake in” pandemic
excess deaths trend for future projections.

4.2 Age structure
To complement our discussion of the temporal pattern of mortality, we next discuss its structure
in Age. Fig. 8 presents theMOGP-smoothed age structure of mortality forMales and Females. The
online RShiny app (Ludkovski & Padilla, 2023) shows an interactive version of this Figure for any
user-specified Year. Given that mortality increases exponentially in Age, we plot log-mortality
rates, which are roughly linear, matching the prior mean function in (3). We observe that in bulk
the Age structure is very consistent across states, meaning that there is a high correlation between
relative mortality experience at different Ages. Consequently, state-level mortality rankings are
largely age invariant. For example, Connecticut Male mortality is the lowest in the nation at Age
60 and is 4th, 5th, and 4th lowest at Ages 65, 70, 75, respectively (Females similarly rank 3rd, 3rd,
4th, and 5th at those ages). At the other end of the spectrum, Mississippi has the highest Male
mortality across all ages and is in the worst-5 for all ages for Females as well.
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Figure 9. Left: mortality rates for Males in 2020 expressed as a ratio of U.S. national average, as a function of age for 6
representative states. right: ratio of second-worst to second-best state mortality at four different ages, as a function of year.

Although the overall shape in Fig. 8 is cylindrical, implying a fixed spread between log-
mortality of the best and worst state, as a function of Age, the individual behavior of states relative
to the U.S. average exhibits highly heterogeneous patterns. The right panel of Fig. 9 (also avail-
able interactively) shows those ratios for Males in 2018 for a selection of representative states. For
some states, younger Ages are doing better than average, while older Ages are worse off, see e.g.,
Wisconsin where Male mortality at Age 60 is 84% of national average, while at Age 80 it is 103%
of national average. For other states, younger Ages do relatively worse than old Ages; this is the
pattern for Tenn. and S.C. in Fig. 9. Male Tennesseans aged 60 have mortality that is 37% above
U.S. average, while those aged 80 are only 21% above average. Yet other states have no discernible
trend: Delaware Males are within 8% of U.S. average rates across all ages.

In all, we observe distinct clusters of state mortality age structure: the increasing pattern of
Wisc. is repeated for AK, ID, IA, ME, NE, NH, RI, UT, VT, VA; the decreasing pattern of S.C. and
Tenn. is repeated in AR, DC, KY, LA, MS, NV, OK, and WV. CA, CO, CT, MA, MN, MT, NJ, NY,
ND, OR, SD, WA, and WY have a largely Age-invariant negative gap to national average (doing
better at all ages), while IN, KS, MO, NC, OH, PA, and TX have a largely Age-invariant positive
gap to national average (doing a bit worse at all Ages). Finally, there are a couple of idiosyncratic
outliers like Florida, where younger ages are worse than average but older ages are much better
than average. The above reveals a novel structural affinity among state mortalities.

We moreover document a widening gap between mortality rates of best/worst states across
time. Thus, the spread between states in Fig. 8 has been increasing over the past two decades,
something already observed in Fig. 5 at Age 65. The right panel of Fig. 9 shows the ratio of mortal-
ity of the second best state vs. the second worst state (we remove the best and the worst to stabilize
this metric, akin to winsorizing) at four representative Ages and across years. As expected, the rel-
ative spread in mortality is lower for older ages because the underlying rates themselves increase
in Age (so the absolute spread is in fact growing in Age). However, the noteworthy pattern is that
the dispersion dramatically increased since ∼2005. In 2020, the Female mortality in the worst
states at Age 60 is estimated to be more than double compared to the best states, see the right edge
of the right panel in Fig. 9, while thirty years ago it used to be only 50% higher. At Age 70 the ratio
is more than 75% in 2020 compared to 45% in 2000.

Fig. A.5 in Appendix A.6 provides another visualization that addresses two further aspects.
First, the figure shows the relative ranks of states at two different Ages, complementing the Year
structure in Fig. 7. We observe that several states have drastically different ranks at Age 65 versus
Age 75. For example, D.C. Female mortality in 2018 ranks 47th at Age 65 but 10th at Age 75;
Ariz. moves from 15th to 7th and Cali. from 8th to 3rd at those ages. In the opposite direction, Vt.
drops from 5th to 24th and Maine drops from 20th at Age 65 to 31st for Age 75. Second, Fig. A.5
compares the rankings based on the MOGP setup versus those from the single-population SOGP
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models. While for most states the rankings are very stable across the models (showcasing that all
our results are indeed data-driven), for about a dozen states there are sizable changes. In particular,
the SOGP rankings for some of the smaller states are often significantly different. For example,
at Age 65, Vt. Females rank 5th best across the MOGP models, but are only 9th based on SOGP
smoothing; Mont. ranks 22nd according toMOGP but 12th according to SOGP. At Age 75, SOGP
suggests that R.I. is 26th rather than 15th according to MOGP. This illustrates our previous point
about credibility and the need to borrow information from “neighbors” to achieve model fit. As
discussed in Section 3.1, the SOGP estimates can be unstable when the raw data is very noisy.

5. Mortality improvement
In this section, we study mortality improvement (MI) factors, i.e., the relative change in mortality
rates across years. The most common metric is a year-over-year change expressed in annualized
percentage terms (such that lower mortality corresponds to a positive improvement),

MIs
(
xa, xt

)= 1− exp
(
m∗,s(xa, xt)−m∗,s(xa, xt−1)

)≡ em∗,s(xa,xt−1) − em∗,s(xa,xt)

em∗,s(xa,xt−1) , (13)

where the posterior meanm∗,s( · ) is defined in (7).
We find that the Matérn-5/2 kernel in (4) is not ideal for MI analysis. As can be seen in

Appendix A.7, the respective surface tends to have high-level fluctuations (see spurious “bands”
around age 70–75, and many “speckles” in the heatmap), which are not noticeable when looking
atm∗,s( · ) but become significant when considering MI. This feature can be understood by recall-
ing that the smoothness of a GP as determined by the behavior of its kernel C(x, x′) as x′ → x.
Matérn-ν kernels yield fits that are ν − 1/2 times differentiable, so theM52 kernel in (4) leads to
a predictive surface that is exactly twice differentiable.

To remedy this issue, we refit our MOGP models using the following separable Squared-
Exponential kernel (15) across (Age, Year, Cohort):

Cl(xi, xi∗) := η2C(SqExp)(xia, x
i
a,∗;θl,a) · C(SqExp)(xit , x

i
t,∗;θl,t) · C(SqExp)(xic, x

i
c,∗;θl,c) (14)

where

C(SqExp)(x, x′;θ) := exp
{

− (x− x′)2

2θ2
}
. (15)

The SqExp kernel yields infinitely differentiable fitted mortality surfaces, which are thus smoother
temporally and yield more interpretable time gradients.

Remark 5. The conceptual aim of MI is to understand the Year trend in mortality. In prac-
tice, there are period effects, i.e., “common shocks,” such as heat waves, that correlate observed
mortality at different Ages and same Year. By “over-smoothing” through the SqExp kernel, we
remove short-term temporal fluctuations, focusing on the more durable time structure of mor-
tality. Fig. A.2 in the Appendix further illustrates how the SqExp kernel smoothes the temporal
trends relative to Matérn-5/2.

Fig. 10 visualizes the model-based MIs at Age 65 and Year 2020 across the 51 states. Recall that
the training USMDB data is up to 2018, so that we show theMOGP-PCA forecast for theMI trend
two years into the future, on the eve of the pandemic. The results display a lot of heterogeneity in
state-level MIs, with some states experiencing improvements (blue shades) and others stagnation
(gray) or deterioration (negative improvement rate, orange). Notably, the statistical significance
of estimated MIs is not high; the MOGP provides standard errors of about ±1%, so for many
states and Ages it is impossible to conclusively decide whether its MI is positive or negative, see
right panel of Fig. 11. At the 95% posterior significance level, only AZ, NV and UT definitely have
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Figure 10. MOGP-based annualized mortality improvement factors in 2020 and age 65.

positive MI for Females (and only AZ for Males) at Age 65, while Females in 9 states (and Males
in 14 states) have conclusively negative MI at Age 65.

There are notable regional patterns in Fig. 10; for example, the Sun Belt states experience a pos-
itive MI while most of the South experiences deteriorating mortality. There are several “outlier”
states in the Southwest: Nevada and Arizona have exceptionally positive mortality improvement,
while NewMexico has negative MI across both genders. Table 5 summarizes the top- and bottom-
5 states in terms of MI at x∗ = (65, 2020) across genders. Comparing with the previous section,
the MI pattern implies that the Sun Belt is catching up to the lower-mortality Northeast states;
at the same time, Midwest and Southern states are falling behind, amplifying the national dis-
crepancies. This can be linked to the causal analysis in Chetty et al. (2016) who report that (based
on raw data and aggregating all working ages) “Hawaii, Maine, and Massachusetts had the largest
gains in LE [between 2001 and 2014] (gaining> 0.19 years annually) whenmen and women in the
bottom income quartile were averaged. The states in which low-income individuals experienced
the largest losses in LE (losing > 0.09 years annually) were Alaska, Iowa, and Wyoming,” and an
earlier similar conclusion for changes in LE between 1983 and 1999 in Ezzati et al. (2008).

As seen in Fig. 10, MI for Females tends to be higher compared to Males. At Age 65 (resp. 75)
Females have higher MI than Males in 32 (resp. 37) out of 51 states, see the left panel of Fig. 11
and the RShiny dashboard. This predicts a widening gap in Male-Female mortality. Moreover,
the mortality trends are often flipped between genders: for instance, at Age 65, only in 8 states is
Male MI positive, whileMI > 0 for Females in 13 states. This difference is even more stark at Age
70 where 39 states have positive Female MI (of which 9 are positive with more than 95% posterior
probability), but only 20 states (and just 2 with 95% credibility) have positive Male MI. That being
said, the association between MIs across genders is not very strong, cf. the right panel of Fig. 11
which compares Male and Female MIs at Age 65, furthermore showing the respective posterior
90% credible intervals.

Next, we investigate the age structure of annualized mortality improvement rates. Fig. 12
displays MI for Males and Females between ages 60–84, sorted according to MI at Age 65.
Looking across Ages, we see a mixed pattern of improvement/deterioration for nearly all
columns, exceptions being Females in the Southwest and Pacific (UT, NV, AZ, CA, WA, TX) who
improve at all ages, as well as a few states (KS, NE, SD, TN, and MA) where Males have negative
MI for all ages.

The most common pattern in Fig. 12 is a deterioration of mortality (orange gradient) for ages
below 70 and positive MI (blue gradient) for ages above 75. This means that the Age-slope of
the mortality curves is flattening. One explanation could be generational (i.e., a cohort effect),
reflecting better cumulative health of the older baby boomers (who are 65–75 in 2020) compared
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Table 5. Top-5 andbottom-5 states in terms ofMOGPPCA-SqExp-based projected annualmortality improve-
ment at age 65 in year 2020. The best and worst states are in the first row

Best MI Worst MI

Males Females Males Females

Age 65 Age 75 Age 65 Age 75 Age 65 Age 75 Age 65 Age 75

Ariz. Vt. Nev. Colo. D.C. D.C. D.C D.C.
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Nev. Utah Ariz. Nev. Wyo. N.Mex. Hawaii S.Dak.
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Utah Colo. Utah Alaska Mont. Hawaii W.Va. Hawaii
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Colo. Ky. N.Dak. Or. Kan. Md. Ark. N.Mex.
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Figure 11. Left panel: state-wise mortality improvement factors across genders at ages 65 and 75. MIs are computed based
on the SqExp MOGP-PCAmodel (14). Right: Male vs FemaleMIs at age 65, together with the respective 90% posterior credible
intervals. The states are sorted according to the Male MIs.

Figure 12. MOGP-basedmortality improvement rates in 2020. States are sorted by MI at age 65.

to their younger counterparts. For Females, we also often observe a convex shape, with Ages ≤ 67
and ≥ 80 deteriorating, and Ages around 70–75 improving.

Some states exhibit idiosyncratic age structure of MI. For example, Males in Ariz., Nev., Va.,
and Texas are experiencing strong mortality improvement at younger ages, and mortality deterio-
ration at older ages, the opposite pattern to above. That could reflect inter-state migration patterns
between the working-age and retiree populations. In a few states (OR, OK, WI, RI, CT Males, NE
Females), the MI factors are very close to zero throughout, indicating static mortality experience.
It is an open problem for demographers and social scientists to discuss and identify the full context
and causes of all these new findings.
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Figure 13. MOGP-PCA smoothedmortality rates at age 65 for both genders in year 2018 against four selected state covariates.

Figure 14. MOGP PCA-SqExp MI factors at age 65 for both genders in year 2018 against three selected state covariates.

6. Explanatory covariates
To gain further insights into the drivers of mortality, we document the relationship between our
predicted mortality rates/improvement factors and state characteristics from Section 3.2. To this
end, we compare 22 variables (18 covariates, 3 PC factors, and life expectancy at birth from Center
for Disease Control and Prevention (CDC)) against three different MOGP-PCA model outputs:
(a) 2020 mortality predictions, (b) 2020 MI factors, (c) 2020 vs 2010 improvement ratio. We use
the SqExp kernel (14) for computing improvement factors and the M52 kernel (4) for computing
mortality rates.

Fig. 13 displays the relationship between predicted mortality rates in 2020 and several covari-
ates, namely educational attainment, poverty rate, obesity rate, and PC1 scores. To visualize the
nonlinear dependence, we include a regression curve estimated using LOESS regression. The lat-
ter excludes several outliers at the extreme left/right of the plots: D.C. often has markedly different
covariates (due to it being a 100% urban region), see e.g., Figs. 13a and 14a, and so doesMississippi
(Figs. 13b,13c and 14b).

First, we observe that the smoothed curves are essentially parallel for theMale and Female pop-
ulations, implying that the impact of different state covariates (which are shared across genders)
is very similar for both genders. Second, we observe a strong correlation between economic vari-
ables and mortality rates. Recall, as suggested in Section 3.2, that the states’ PC1 factor loadings
are correlated with economic prosperity. Therefore, the relationship observed in Fig. 13a implies
that mortality levels are positively correlated with the state’s economic well-being, wealthier states
having lower mortality. This matches the finding in Chetty et al. (2016) regarding the strong pat-
tern between economic prosperity and longevity, see also the claims made in Becker et al. (2021),
Sanzenbacher et al. (2021), Couillard et al. (2021) (who all fit linear relationships to age-aggregated
data).
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Additional related insights are in panels (b)-(d) of Fig. 13. Fig. 13b shows that U.S. states with
higher educational attainment tend to experience lower mortality; Fig. 13c–d show that higher
state-wide poverty rates and higher obesity rates are associated with higher mortality. Of note,
the above patterns are often nonlinear. For example, the positive association between state obe-
sity rate and mortality is substantially weakened for states with obesity rate below 30% (left edge
of Fig. 13d). Likewise, lower mortality associated with higher education no longer follows once
over 35% of the state’s population has Bachelor’s degrees (right edge of Fig. 13b). These facts
can be interpreted as one-sided risk drivers: states that have a lot of obese individuals (or few
college-educated individuals) suffer higher mortality, but having “exceptionally” non-obese or
highly educated populace is not associated with lower mortality.

Next, we analyze the relationships between our 22 variables and the annual improvement fac-
tors in 2020 along with the relative aggregate improvement in mortality rates during the decade
of 2010s. We find that for most variables there is little significant correlation between them and
latest state MI. We do document several interesting patterns in Fig. 14. We observe a positive
relationship between MI and urbanization and a negative relationship between MI and poverty
(panels a and b). This implies that rural and poorer states tend to exhibit worse mortality trends,
also observed in Couillard et al. (2021). Furthermore, Fig. 14c shows that decadal MIs are posi-
tively associated with a higher life expectancy. This reinforces our discussion on divergence: states
that do well (high LE) keep improving, and states that do poorly (low LE) are deteriorating. As a
result, the gap between “best” and “worst” performing states increased during the final decade, see
Section 4. We note that none of the bottom-7 states by LE experience a positive MI in the 2010s.
Fig. 14b–c highlight that there is a bigger Female-Male MI spread for wealthier/higher-LE states,
while in respective bottom states Males and Females have been doing poorly (negative MI) almost
equally.

7. Conclusion
In this paper, we have developed multi-population GP models geared for an actuarial analysis of
Age- and Year-specific mortality rates across the 51 U.S. states. Our work complements existing
Age-aggregated studies in the economics literature, but goes much further, using the developed
statistical framework to study Age-specific trends. In particular, the MOGP framework allows
to analyze smoothed state-wide Mortality Improvement factors and the various age structures,
patterns that are impossible to adequately capture from raw data alone.

At a basic level, we confirm the well-known and well-documented features of U.S. mortality in
the late 2010s, such as deterioration of mortality for Americans in their sixties, and the vast gaps
between states based on economic and health characteristics. We also observe the familiar geo-
graphic patterns for Appalachia, Southwest, the Deep South, etc. Going deeper, we uncover novel
features of this heterogeneity, manifested through two channels. First, we note a lot of relative
shifts, as states move up and down the rankings. These shifts are highly Age-dependent. Second,
the Age structures exhibit very different behaviors, showing the limitations of using a single sum-
mary statistic like LE to explain state differences. In some states, Ages below 65 are doing relatively
the best, in others those in the 70s, in yet others, the eldest.

An important insight of our exploratory analysis is the growing divergence across states. We
document that the gaps between best and worst states are getting wider (Fig. 9), and that many
(but not all) of the “laggard” states are falling further behind (due to below-average MI) while
states with lowest mortality are often pulling even more ahead (Fig. 7). One exception to this is
the Southwest that is catching up andmoving up the ranks.We also record the divergence between
Male and Female mortality trends. We emphasize that our expertise is in actuarial modeling and
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hence all proposed explanations of our findings are just educated guesses to be confirmed by
subject experts, including demographers and economists.

Our analysis shows that the U.S. can be broken up into data-driven clusters of states that share
similar patterns both in mortality rates and in respective trends (MI). These clusters are loosely
geographical and include “Appalachia” (TN, KY, SC, AR), “Deep South” (AL, MS, WV, LA),
“Pacific” (CA, OR, CO), “Southwest” (UT, AR, NV), “Upper Plains” (MN, SD, ND), “Midwest”
(PA, OH, IN, MO, KS), “New England” (ME, VT, NH, RI), “North East” (MA, CT, NJ, NY). These
observations validate our proposed strategy of grouping into 3–6 similar and neighboring states.
We also identify states with truly idiosyncratic patterns, including D.C., Florida, New Mexico,
Hawaii, and Texas.

To conclude, let us outline three avenues for future research. First, one may consider additional
spatial scales. Looking at county-level data can help to understand further intra-state patterns,
especially in large states like California or New York, where there is a lot of intra-state hetero-
geneity. Looking at metropolitan area data can help to isolate urban/rural effects. Analysis across
these different spatial units can better tease out the impact of "place" in terms of different mortal-
ity drivers. For example, health policies (such as ACA rules and smoking regulations) are set by
state, while demographics vary more in terms of urban and rural locales.

Second, more in-depth analysis is warranted about Age-linked drivers of U.S. mortality. This
includes the role of income, racial characteristics, education, and especially health factors. One
approach would be to merge our analysis with cause-of-death data, linking to our earlier work
in Huynh & Ludkovski (2024) and isolating cause-specific state differences. For example, it
would offer a direct window to discuss deaths of despair effects, regional cancer patterns, or
cardiovascular trends which in turn correlate to wealth and urban/rural discrepancies. Another
approach would be along the lines of Hartman et al. (Shull et al., 2025), who apply spatial GLM
methodology.

Third, additional analysis could be done to improve the MOGP models themselves. For exam-
ple, in the present work we have assumed a constant observation noise σ 2

� for each state. More
realistically, we expect that observation variance is proportional to underlying exposure, so that
observations at older ages are more noisy since there are, e.g., many fewer 83-year-olds compared
to 63-year-olds. Development of heteroscedastic MOGP variants or extending to age-specific
noise terms would enhance the study’s scope. In a similar vein, our analysis was done inde-
pendently for Males and Females; building a joint MOGP across genders would help to achieve
coherence in mortality improvement factors, cf. Huynh & Ludkovski (2021).
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A. Appendix
A.1. Geographic Regions
We use U.S. divisions from U.S. Census Bureau (2013) when creating geographical groups for the
MOGP-Geo model:

1. New England (6 states): CT, ME, MA, NH, RI, VT;
2. Mid-Atlantic (3): NJ, NY, PA;
3. East North Central (5): IN, IL, MI, OH, WI;
4. West North Central (7): IA, KS, MN, MO, NE, ND, SD;
5. South Atlantic (9): DE, DC, FL, GA, MD, NC, SC, VA, WV;
6. East South Central (4): AL, KY, MS, TN;
7. West South Central (4): AR, LA, OK, TX;
8. Mountain (8): AZ, CO, ID, MT, NM, NV, UT, WY;
9. Pacific (5): AK, CA, HI, OR, WA.
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A.2. impact of state groupings and kernel choice

Figure A.1. Raw data (black circles) and predicted mortality rate (curves) for 4 representative states based on GP models
with 3 different groupings. Top row: Males; bottom row: Females.

Figure A.2. Comparing the year structure ofmortality at a given age across theMatérn-5/2 (4)–(5) and SqExp kernels (14)–(15)
for MOGP models. We show two panels with 2 representative states each. Left: District of Columbia and Kentucky: Females
Aged 65. Right: Males age 75 in Alabama and Delaware.
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A.3. State-Level Covariates
A.3.1. Data Sources
The 18 state-level covariates used in the PCA analysis described in Section 3.2 are based on 2018
data and described as follows:

Economic Covariates:

1. Educational Attainment (EA): Percentage of population aged 25+ with a bachelor’s degree or
higher. Source: https://www.census.gov.

2. Percent Change in GDP (GDP): Percent change in real GDP from 2017 to 2018. Here, GDP
represents the inflation-adjusted market value of goods & services produced by the labor and
property in the state. Source: https://www.bea.gov.

3. Median Income (MI): Real median household income computed by the U.S. Census Bureau
based on data from the Current Population Survey (CPS), the American Community Survey
(ACS), and other surveys. Source: https://fred.stlouisfed.org.

4. Regional Price Parities (RPP): Price indexes that measure the geographic price level differ-
ences. For example, an RPP of 120 means the prices within the state are on average 20 percent
higher than the U.S. average. Source: https://www.bea.gov.

5. Poverty Rate (PR): Poverty estimates are drawn from the Current Population Survey Annual
Social and Economic Supplement (CPS ASEC), conducted three times per year with a sample
of approximately 100,000 addresses. The Census Bureau determines poverty status by using
an official poverty measure that compares pre-tax cash income against a threshold. Source:
https://www.epi.org.

6. Urbanization Percentage (UP): Percentage of state population living within urban areas.
The Census Bureau classifies an urban area as “a densely settled core of census tracts
and/or census blocks that meet minimum population density requirements." Source:
https://www.census.gov.

7. Land in Farms (LF): Includes (a) agricultural land used for crops, pasture, or grazing; (b)
woodland and wasteland used in the farm operator’s total operation, and (c) land owned and
operated, as well as land rented from others. Source: https://www.nass.usda.gov (Page 6).

Demographic Covariates:

8. Non-minority Population (NMP): Percentage of state population classified as White alone.
Source: https://www.census.gov.

9. Percentage Elderly (ED): Percentage of state population aged 65+. Source:
https://www.census.gov.

10. Percent Without Health Insurance (HI): Based on data collected for ages below 65 by the CPS
ASEC and the American Community Survey (ACS). Source: https://www.census.gov.

11. Obesity Rate (OR): Percentage of state adult (≥ 18) population with body mass index of 30
or more, based on CDC Behavioral Risk Factor Surveillance System annual telephone survey.
Source: https://obesity.procon.org.

12. Political Preference (PP): Percentage of state-wide eligible voters identifying as
“Democrat/Lean Democrat” in the 2017 Gallup Daily tracking dataset. Source:
https://news.gallup.com.

13. Religious (R): Percentage of religious population in the state according to a com-
bined index based on four individual measures of religious observance. Source:
https://www.pewresearch.org which summarizes the national 2014 Religious Landscape
Study survey.

14. Share of Immigrant Population (IP): Percentage of state population that are non-
citizens. Based on the three-stage method by the Migration Policy Institute to assign
legal status to noncitizen respondents in the U.S. Census Bureau Survey Data. Source:
https://www.migrationpolicy.org.
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Geographic Covariates:

15. Average Temperature (TP): Area-weighted state-wide averages based on climate data from the
344 continental U.S. Climate Divisions. For each division, monthly temperatures and precip-
itation values are calculated from daily observations. The dataset is manually augmented for
AK and HI. Source: https://www.ncdc.noaa.gov.

16. Average Relative Humidity (RH): annual historical daily average of “water vapor in the air rel-
ative to how much the air can hold," computed based on Continental U.S. Climate Divisional
Dataset as for Average Temperature above. Source: https://www.ncei.noaa.gov.

17. Average Dew Point (DP): annual historical daily average of “the minimum temperature an
airmass can achieve given the amount of moisture in the air,” computed based onU.S. Climate
Divisional Dataset as for Average Temperature above. Source: https://www.ncei.noaa.gov.

18. Population Density (PD): Ratio of state population divided by total geographic area of the
state. Sources: https://www.census.gov/pop and https://en.wikipedia.org/areaofstate.

A.3.2. PCA Factor Loadings

Table A1. Factor loadings of the 18 covariates (rows, see Table 2) with respect to the first
three PCA components (columns). Values are highlighted according to the PCA loadings: | ·
| < 0.2, | · | > 0.7. The last column shows the correlation between state covariates and Life
Expectancy (LE) at birth in 2018 from CCenter for Disease Control and Prevention (CDC)

Component 1 Component 2 Component 3 LE correlation

EA 0.86 −0.23 −0.06 0.61
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GDP 0.20 −0.01 0.57 0.24
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MI 0.91 −0.04 −0.02 0.71
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RPP 0.89 −0.30 0.04 0.71
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PR −0.74 −0.38 −0.03 −0.79
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

UP 0.59 −0.45 0.43 0.48
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LF −0.24 0.14 0.64 0.04
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NMP −0.12 0.84 0.10 0.06
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ED −0.14 0.24 −0.53 −0.06
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HI −0.62 −0.03 0.57 −0.41
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

OR −0.78 −0.19 −0.15 −0.80
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PP 0.66 −0.45 −0.28 0.36
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R −0.78 −0.42 0.15 −0.75
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IP 0.18 −0.32 0.60 0.28
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TP −0.30 −0.80 0.15 −0.30
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RH −0.06 −0.20 −0.63 −0.10
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DP −0.31 −0.80 −0.17 −0.35
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PD 0.35 −0.51 −0.15 −0.00
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A.4. Groupings
A.4.1. Complete List of All Groupings

State s PCA groupingOs

Alabama Tennessee, Arkansas
Arizona Nevada, Utah
Arkansas Tennessee, Alabama
California Oregon, Washington
Colorado Utah, Nevada, Washington
Connecticut New York, New Jersey
Delaware Pennsylvania, Ohio
Florida Georgia, North Carolina
Georgia North Carolina, Florida
Idaho Wyoming, Montana, North Dakota, Nebraska
Illinois Wisconsin, Minnesota, Pennsylvania
Indiana Ohio, Michigan, Missouri
Iowa Wisconsin, Michigan
Kansas Nebraska, South Dakota, Missouri
Kentucky Tennessee, Arkansas, South Carolina
Louisiana Arkansas, Tennessee, Alabama
Maine New Hampshire, Vermont, Wisconsin
Maryland Virginia, Delaware, New Jersey
Massachusetts Connecticut, New York, New Jersey
Michigan Ohio, Pennsylvania, Iowa
Minnesota Wisconsin, Illinois, Oregon
Mississippi Alabama, Arkansas
Missouri Kansas, Tennessee, Indiana
Montana North Dakota, Wyoming, Idaho, Nebraska
Nebraska Kansas, Iowa, North Dakota
Nevada Arizona, Utah
New Hampshire Vermont, New York, Connecticut
New Jersey New York, Connecticut, Maryland
NewMexico Oklahoma, Missouri
New York New Jersey, Connecticut
North Carolina Georgia, South Carolina, Missouri
North Dakota Montana, Idaho, Wyoming, Nebraska
Ohio Indiana, Michigan
Oklahoma Arkansas, Tennessee
Oregon Washington, Nevada, Minnesota
Pennsylvania Delaware, Ohio, Michigan
Rhode Island Connecticut, New York, Delaware
South Carolina North Carolina, Tennessee
South Dakota North Dakota, Wyoming, Nebraska, Kansas
Tennessee Kentucky, Missouri, Oklahoma
Texas NewMexico, Arizona, Georgia
Utah Nevada, Arizona
Vermont New Hampshire, Maine, New York
Virginia Maryland, Delaware, Rhode Island
Washington Oregon, California, Colorado
West Virginia Kentucky, Tennessee, Arkansas
Wisconsin Iowa, Michigan
Wyoming Montana, North Dakota, Idaho, South Dakota, Nebraska
Washington D.C. Maryland, Virginia, New Jersey

Alaska and Hawaii.
To compute the grouping for s ∈{Alaska, Hawaii} that have no geographical neighbors, we first

identify which state out of the other 50 minimizes theD-distance:

s1 = arg min
s∗∈S

D(s∗, s)=
{
Wisconsin if s= Alaska;
Maryland if s= Hawaii.
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We then proceed as in Section 3.3, initializing with Ns = s1 ∪ s. The resulting groupings are
(Alaska, Iowa, Wisconsin) and (Hawaii, Maryland, District of Columbia).

A.4.2. Group Size
Fig. A.3 visualizes the sizes of |Os| across the U.S.. The “default” procedure is to group each state
with 2 other most similar states. A state s ∈ S ends up in a group of 4 if the latter are not geograph-
ically contiguous with it, that is a state is less similar to its neighbors than to other states that are
further away. There is no particular pattern regarding regions where this occurs. Due to the sparse
population of a cluster of states in Mountain West, these are in groups of 5 (6 for Wyoming) in
order to achieve a total population of at least 5 million for each Os.

Figure A.3. Size of final state groupings, |Os| ∈ {3, 4, 5, 6}.

A.5. State Mortality at Age 75

Figure A.4. MOGP-PCAmortality rates for age 75 Males (left panel) and Females (right) for years 1990–2020. SOGP-fitted U.S.
nationwide mortality shown in blue. Most states continue to experience mortality improvement at this age as of 2020.
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A.6. Comparison of SOGP and MOGP State Rankings

Figure A.5. Comparison of SOGP- andMOGP-based state rankings. We use Females at ages 65 and 75 in year 2018. The colors
correspond to the nine geographical divisions defined in Appendix A.1. States with lowest (highest) mortality are at the top
(resp. bottom).

A.7. Supplementary Plots for Mortality Improvement Factors

Figure A.6. MOGP-PCA mortality improvement factors in 2020 using the M52 APC kernel (5). Males (left panel) and Females
(right). States are sorted by MI at age 65.

Cite this article: Ludkovski M and Padilla D (2025). Analyzing state-level longevity trends with the U.S. mortality database,
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