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Abstract We define a new functional which is gauge invariant on the space of all smooth connections of
a vector bundle over a compact Riemannian manifold. This functional is a generalization of the classical
Yang–Mills functional. We derive its first variation formula and prove the existence of critical points.
We also obtain the second variation formula.
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1. Introduction

From the variational point of view, there are a lot of similarities between the theory of
harmonic maps and the theory of Yang–Mills connections.

Let (M, g) and (N, h) be two compact Riemannian manifolds and let F : M → N be
a smooth map. Harmonic maps are extremal of the energy functional

E(F ) =
∫

M

e(F )ϑg,

where e(F ) = 1
2‖dF‖2 is the energy density and ϑg is the canonical volume element [2].

M. Ara introduced and studied another problem of the calculus of variations. He defined
the so-called f -energy functional of F as

Ef (F ) =
∫

M

f( 1
2‖dF‖2)ϑg,

where f is a certain real smooth function, and he called a smooth extremal of Ef an
f -harmonic map [5,6].

We introduce and study a problem of the calculus of variations in an analogous way
to f -harmonic maps in [5]. Namely, we define the f -Yang–Mills functional YMf , which
is gauge invariant on the space of all smooth connections D of a vector bundle E over a
compact Riemannian manifold (M, g). The f -Yang–Mills functional is defined by

YMf (D) =
∫

M

f( 1
2‖RD‖2)ϑg,
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where ‖RD‖ is the norm of the curvature tensor of a connection D and f : [0,∞) → [0,∞)
is a function of class C2 such that f ′(t) > 0 for any t � 0. A critical point of YMf will
be called an f -Yang–Mills connection. We note that if f(t) = t, we obtain the classical
Yang–Mills functional [1] and if f(t) = exp(t) we obtain the exponential Yang–Mills
functional [4].

Using a similar method to that in [1], we calculate the first and the second variation
formulae of the functional YMf . Once we have obtained the first variation formula of
the functional YMf , the main result of the paper is the following existence theorem.

Theorem 1.1. Let (M, g) be an n-dimensional compact Riemannian manifold, let G

be a compact Lie group and let E be a G-vector bundle over M . Assume that n � 5 and
f ′′(0) �= 0. Then there exists a Riemannian metric g̃ on M which is conformal to g and
a G-connection on E such that D is an f -Yang–Mills connection with respect to g̃.

2. Preliminaries

Let P be a principal G-bundle over a compact Riemannian manifold (M, g), where G is
a compact Lie group. We denote by E the associated vector bundle to P by a faithful
representation ρ : G → O(r).

For any vector bundle F over M we denote by Γ (F ) the space of smooth cross-sections
of F and for each p � 0 we denote by Ωp(F ) = Γ (ΛpT ∗M ⊗ F ) the space of all smooth
p-forms on M with values in F . Note that Ω0(F ) = Γ (E).

A connection D on the vector bundle E is defined by specifying a covariant derivative,
that is, a linear map

D : Ω0(E) → Ω1(E),

such that D(fs) = df ⊗ s + fDs, for any section s ∈ Ω0(E) and any smooth function
f ∈ C∞(M).

A connection D is said to be a G-connection if the natural extension of D to tensor
bundles of E annihilates the tensors that define the G-structure. We denote by C(E) the
space of all smooth G-connections D on E.

Now let G(E) be the gauge group of the vector bundle E, that is, the group of all
automorphisms of E inducing the identity map of M . The gauge group can easily be
identified with the space of smooth sections of the bundle of groups P ×Ad G associated
to the adjoint representation, Ad, of G, which is the group of all automorphisms ϕ of
P satisfying ϕ(ua) = ϕ(u)a for any u ∈ P and a ∈ G. We note that there is a natural
action of the gauge group G(E) on the space of G-connections C(E) given by

Dϕ = ϕ−1 ◦ D ◦ ϕ, Dϕs := ϕ−1(D(ϕs))

for any s ∈ Ω0(E), ϕ ∈ G(E) and D ∈ C(E). We denote by g the Lie algebra of the Lie
group G. Related to G(E) is the infinitesimal gauge group or gauge algebra. This can
be regarded as the space Ω0(P ×Ad g) of smooth sections of the vector bundle P ×Ad g

which is identified with a subbundle of the bundle End(E) via the representation ρ,
denoted by gE . The identification is given by

P ×Ad g � [(u, A)] → u ◦ ρ(A) ◦ u−1 ∈ End(E).
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Given a connection on E, the map D : Ω0(E) → Ω1(E) can be extended to a gener-
alized de Rham sequence

Ω0(E) dD=D−−−−→ Ω1(E) dD

−−→ Ω2(E) dD

−−→ · · · .

For each G-connection D of the vector bundle E, the curvature tensor of D, denoted
by RD, is determined by (dD)2 : Ω0(E) → Ω2(E). It is easy to see that RD ∈ Ω2(gE).
On the other hand, it holds that

RDϕ

= ϕ−1 ◦ RD ◦ ϕ

for any ϕ ∈ C(E).
Let 〈· , ·〉 be the inner product on g defined by

〈A, B〉 = − 1
2 tr(ρ(A)ρ(B)) = 1

2 tr(ρ(A)t ◦ ρ(B))

for any A, B ∈ g, which induces a fibre metric on P ×Ad g and thus a fibre metric on
End(E) by

〈C, D〉 = 1
2 tr(Ct ◦ D)

for any C, D ∈ End(Ex) and x ∈ M .
If a vector bundle F over M admits a fibre metric 〈· , ·〉, we can define an inner product

on ΛpT ∗
x M ⊗ Fx by

〈ψ, ϕ〉 =
∑

i1<···<ip

〈ψ(ei1 , . . . , eip
), ϕ(ei1 , . . . , eip

)〉,

where {ei}n
i=1 is an orthonormal basis of TxM with respect to the metric g. We denote its

norm by ‖ · ‖. Integrating the above pointwise, the inner product over M gives an inner
product in Ωp(F ). Integration on M shall always be with respect to the Riemannian
volume measure. We then define the operator δD : Ωp+1(F ) → Ωp(F ), p � 0, to be the
formal adjoint of the operator dD.

3. The first variation formula

Now let f : [0,∞) → [0,∞) be a function of class C2 such that f ′(t) > 0 for any t � 0.
We define the functional YMf : C(E) → R by

YMf (D) =
∫

M

f( 1
2‖RD‖2)ϑg.

We note that if f(t) = t, the functional above is the classical Yang–Mills functional
and if f(t) = exp(t), the functional is the exponential Yang–Mills functional [4].

It is not difficult to see that
‖RDϕ‖ = ‖RD‖

for any ϕ ∈ C(E). Thus, the functional YMf is invariant under the action of the gauge
group G(E) on C(E).

In the following we shall calculate the first variation of the functional YMf .
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Theorem 3.1. The first variation of the functional YMf is given by the formula

d
dt

∣∣∣∣
t=0

YMf (Dt) =
∫

M

〈B, δD(f ′( 1
2‖RD‖2)RD)〉ϑg,

where B = d/dt|t=0D
t. Consequently, D is a critical point of YMf if and only if

δD(f ′( 1
2‖RD‖2)RD) = 0.

Proof. Let D be a G-connection D ∈ C(E) and consider a smooth curve Dt = D + αt

on C(E), t ∈ (−ε, ε), such that α0 = 0, where αt ∈ Ω1(gE). The corresponding curvature
is given by

RDt

= RD + dDαt + 1
2 [αt ∧ αt],

where we define the bracket of gE-valued 1-forms ϕ and ψ by the formula [ϕ∧ψ](X, Y ) =
[ϕ(X), ψ(Y )] − [ϕ(Y ), ψ(X)] for any vector fields X, Y ∈ Γ (TM). Indeed, for any vector
fields X, Y ∈ Γ (TM) and u ∈ Γ (E), we have

RDt

(X, Y )(u) = Dt
X(Dt

Y u) − Dt
Y (Dt

Xu) − Dt
[X,Y ]u

= Dt
X(DY u + αt(Y )(u)) − Dt

Y (DXu + αt(X)(u))

− Dt
X(D[X,Y ]u + αt([X, Y ])(u))

= DX(DY u + αt(Y )(u)) + αt(X)(DY u + αt(Y )(u))

− DY (DXu + αt(X)(u)) − αt(Y )(DXu + αt(X)(u))

− D[X,Y ]u − α([X, Y ])(u)

= RD(X, Y )(u) + DX(αt(Y )(u)) − αt(Y )(DXu)

− (DY (αt(X)(u)) − αt(X)(DY u)) − αt([X, Y ])(u)

+ αt(X)(αt(Y )(u)) − αt(Y )(αt(X)(u))

= RD(X, Y )(u) + (DX(αt(Y ))(u) − (DY (αt(X))(u)))

− αt([X, Y ])(u) + 1
2 [αt ∧ αt](X, Y )(u)

= RD(X, Y )(u) + (dDαt)(X, Y )(u) + 1
2 [αt ∧ αt](X, Y )(u).

Then we have

d
dt

∣∣∣∣
t=0

f( 1
2‖RDt‖2) = f ′( 1

2‖RD‖2)
d
dt

∣∣∣∣
t=0

1
2‖RDt‖2

= f ′( 1
2‖RD‖2)

〈
d
dt

RDt

, RD

〉∣∣∣∣
t=0

= f ′( 1
2‖RD‖2)〈dDB, RD〉,

where

B =
d
dt

∣∣∣∣
t=0

Dt ∈ Ω1(gE).
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Thus, we obtain

d
dt

∣∣∣∣
t=0

YMf (Dt) =
∫

M

f ′( 1
2‖RD‖2)〈dDB, RD〉ϑg

=
∫

M

〈B, δD(f ′( 1
2‖RD‖2)RD)〉ϑg.

�

Example 3.2. If we take f(t) = at+ b with a > 0, then a G-connection D is a critical
point of the functional YMf if and only if δDRD = 0. On the other hand, dDRD = 0
and thus D is a critical point if and only if the curvature tensor RD is harmonic. For the
case when a = 1 and b = 0, such a connection is called a Yang–Mills connection [1].

Example 3.3. If we take f(t) = exp t, then a G-connection D is a critical point of
the functional YMf if and only if δD(exp( 1

2‖RR‖2)RD) = 0. Such a connection is called
an exponential Yang–Mills connection [4].

For the case of the existence of Yang–Mills connections we have the following result of
Katagiri [3].

Theorem 3.4. Let (M, g) be a compact Riemannian manifold of dimension n � 5, let
G be a compact Lie group and let E be a smooth G-vector bundle over M . Then there
exist a Riemannian metric g̃ on M which is conformally equivalent to the original metric
g and a connection D0 on E such that D0 is a Yang–Mills connection with respect to g̃.

In the following we shall prove an existence theorem for critical points of the func-
tional YMf .

Theorem 3.5. Let (M, g) be an n-dimensional compact Riemannian manifold, let G

be a compact Lie group and let E be a smooth G-vector bundle over M . Assume that n �
5 and f ′′(0) �= 0. Then there exist a Riemannian metric g̃ on M conformally equivalent
to g and a G-connection D on E such that D is a critical point of the functional YMf .

Theorem 3.5 follows from Theorem 3.4 and the following result.

Theorem 3.6. Let (M, g) be an n-dimensional compact Riemannian manifold, let
G be a compact Lie group and let E be a smooth G-vector bundle over M . Assume
that n � 5 and f ′′(0) �= 0 and let D be a Yang–Mills connection. Then there exists a
Riemannian metric g̃ on M conformally equivalent to g such that D is a critical point of
the functional YMf .

Proof. First, we note that, due to Theorem 3.4, we can suppose that D is a Yang–
Mills connection with respect to the metric g. For a positive C∞ function σ on M we
define g̃ = σ−1g. If D is a Yang–Mills connection on the vector bundle E, then

δD
g RD = 0 ⇐⇒ δD

g̃ (σ(n−4)/2RD) = 0. (3.1)

We suppose that f ′′(0) > 0; the case when f ′′(0) < 0 is similar. Now, as f ′′(0) > 0 and
f ∈ C2, there exists a positive number ε such that f ′′(t) > 0 for any t ∈ [0, ε), and thus
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f ′ is invertible on the interval [0, ε), with the smooth inverse H : [f ′(0), f ′(ε)) → [0, ε).
Thus, we have the following relations:

H(f ′(t)) = t, (3.2)

H ′(f ′(t))f ′′(t) = 1, (3.3)

for any t ∈ [0, ε).
We define now the smooth function

F : [(f ′(0))2/(n−4), (f ′(ε))2/(n−4)) → [0, ε′)

by

F (y) =
H(y(n−4)/2)

y2 .

We shall prove that F is invertible on a certain interval. It is easy to see that

F ′(y) =
(n − 4)H ′(y(n−4)/2)y(n−4)/2 − 4H(y(n−4)/2)

2y3 ,

and thus we let y = (f ′(t))2/(n−4). Using the relations (3.2) and (3.3) we get

F ′((f ′(t))2/(n−4)) =
(n − 4)f ′(t) − 4tf ′′(t)
2f ′′(t)(f ′(t))6/(n−4)

for any t ∈ [0, ε). If we evaluate the above relation at 0, as n � 5 and f ′ > 0, then there
exists a positive number ε′′ � ε such that F ′((f ′(t))2/(n−4)) > 0 for any t ∈ [0, ε′′), and
thus

F : [(f ′(0))2/(n−4), (f ′(ε′′))2/(n−4)) → [0, ε′′′)

is invertible.
We remark that the metric g can be chosen such that ‖RD‖2

g < ε′′′. Indeed, for a
positive constant C we define the Riemannian metric g′ by g′ = Cg. Then the Yang–Mills
equation with respect to g′ is the same as that for g. Moreover, since ‖RD‖2

g′ = C−2‖RD‖2
g

and M is compact, we get ‖RD‖2
g < ε′′′ for C sufficiently large. Now, if we denote by Φ

the smooth inverse of F , we define the positive smooth function σ by

σ = Φ( 1
2‖RD‖2

g).

Finally, from equation (3.1) we have

0 = δD
g̃ (σ(n−4)/2RD)

= δD
g̃ ((Φ( 1

2‖RD‖2
g))

(n−4)/2RD)

= δD
g̃ (f ′( 1

2σ2‖RD‖2
g)R

D)

= δD
g̃ (f ′( 1

2‖RD‖2
g̃)R

D),

which proves that the Yang–Mills connection D is also a critical point of the functional
YMf with respect to the metric g̃. �
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4. The second variation formula

In this section we obtain the second variation formula of the functional YMf . Let (M, g)
be an n-dimensional compact Riemannian manifold, let G be a compact Lie group and
let E be a G-vector bundle over M . Let D be a critical point of the functional YMf

and Dt be a smooth curve on C(E) such that Dt = D + αt, where αt ∈ Ω1(gE) for all
t ∈ (−ε, ε) and α0 = 0. The infinitesimal variation of the connection associated to Dt at
t = 0 is

B :=
dαt

dt

∣∣∣∣
t=0

∈ Ω(gE).

Following [1], define an endomorphism RD of Ω1(gE) by

RD(ϕ)(X) :=
n∑

i=1

[RD(ei, X), ϕ(ei)]

for ϕ ∈ Ω(gE) and X ∈ Γ (TM), where {ei}n
i=1 is a local orthonormal frame field on

(M, g). Then we obtain the following result.

Theorem 4.1. Let (M, g) be an n-dimensional compact Riemannian manifold, G

a compact Lie group and E a G-vector bundle over M . Let D be an f -Yang–Mills
connection on E. Then the second variation of the functional YMf is given by

d2

dt2

∣∣∣∣
t=0

YMf (Dt) =
∫

M

f ′′( 1
2‖RD‖2)〈dDB, RD〉2ϑg

+
∫

M

f ′( 1
2‖RD‖2)(〈dDB, dDB〉 + 〈B,RD(B)〉)ϑg

=
∫

M

〈B,SD(B)〉ϑg,

where SD is a differential operator acting on Ω(gE) defined by

SD(B) = δD(f ′′( 1
2‖RD‖2)〈dDB, RD〉2) + δD(f ′( 1

2‖RD‖2)dDB) + f ′( 1
2‖RD‖2)RD(B).

Proof. As RDt

= RD + dDαt + 1
2 [αt ∧ αt] and α0 = 0, we obtain that

d2

dt2

∣∣∣∣
t=0

( 1
2‖RDt‖2) = 〈dDC + [B, B], RD〉 + 〈dDB, dDB〉,

where C := d2/dt2|t=0α
t. Thus, we obtain

d2

dt2

∣∣∣∣
t=0

YMf (Dt)

=
d
dt

∣∣∣∣
t=0

∫
M

1
2f ′( 1

2‖RDt‖2)
d
dt

‖RDt‖2ϑg

= 1
4

∫
M

f ′′( 1
2‖RD‖2)

(
d
dt

∣∣∣∣
t=0

‖RDt‖2
)2

ϑg + 1
2

∫
M

f ′( 1
2‖RD‖2)

d2

dt2

∣∣∣∣
t=0

‖RDt‖2ϑg
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=
∫

M

f ′′( 1
2‖RD‖2)〈dDB, RD〉2ϑg

+
∫

M

f ′( 1
2‖RD‖2)(〈dDC + [B, B], RD〉 + 〈dDB, dDB〉)ϑg.

On the other hand, since D is an f -Yang–Mills connection, we have
∫

M

f ′( 1
2‖RD‖2)〈dDC, RD〉ϑg =

∫
M

〈C, δD(f ′( 1
2‖RD‖2)RD)〉ϑg = 0.

Finally, one can prove that

〈[B ∧ B], RD〉 = 〈B,RD(B)〉.

Indeed,

〈[B ∧ B], RD〉 =
∑
i<j

〈[B ∧ B](ei, ej), RD(ei, ej)〉

=
∑
i<j

〈[B(ei), B(ej)] − [B(ej), B(ei)], RD(ei, ej)〉

= 2
∑
i<j

〈[B(ei), B(ej)], RD(ei, ej)〉

=
n∑

i,j=1

〈B(ei), [B(ej), RD(ei, ej)]〉

=
n∑

i=1

〈B(ei),RD(ei)〉

= 〈B,RD(B)〉.

and thus we obtain the second variation formula. �

The index, nullity and stability of an f -Yang–Mills connection D can be defined in the
same way as in the case of the Yang–Mills connection [1].

Corollary 4.2. Let D be an f -Yang–Mills connection for which ‖RD‖ is constant and
such that f ′′ = f ′. Then the stability of a Yang–Mills connection implies the stability of
an f -Yang–Mills connection.

Example 4.3. Let f(t) = exp t and suppose that D is a G-connection such that
‖RD‖ is constant. Then if D is a stable Yang–Mills connection, D is a stable exponential
connection.
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