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Linear stability analysis of an ice sheet interacting with the ocean
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ABSTRACT. A linear stability analysis of a two-dimensional flow of an isothermal ice sheet interacting
with the ocean is considered. The set of boundary conditions determining motion of the grounding line
is adopted to describe hydrostatic equilibrium of ice in water and a cubic dependence of the mass
flow rate on ice thickness. The numerical analysis shows that the zero-growth (zero-eigenvalue) mode
found for linear bed slopes and constant accumulation rates indeed determines neutral equilibrium and
separates stable and unstable solutions. It is also argued that, provided some conditions of regularity of
the solutions are satisfied, finding only one stable and one unstable solution would be enough to ascertain
that the condition determining a zero eigenvalue also determines neutral equilibrium. This supports the
intuitive understanding of ice-sheet stability: ice sheets are stable on bed slopes that ensure that the
mass flow rate at the grounding line increases faster than the cumulative ice accumulation rate at the
surface when the grounding line is perturbed; and ice sheets are unstable otherwise.

1. INTRODUCTION

One of the largest ice sheets that are now retreating is the
West Antarctic ice sheet, which contains 3.8×106 km3 of ice,
equivalent to a 5–6m sea-level rise (Oppenheimer, 1998;
Vaughan and Spouge, 2002). Because of the Earth’s crust
isostatic response, the bedrock underneath the ice sheet is
below the sea surface and is sloping up away from the ice-
sheet centre. In order to get an insight into whether the
retreat has been caused by the ice sheet’s intrinsic instability,
Weertman (1974) used a simplified analysis that treated ice
as a plastic material and concluded that ice sheets that
flow into the ocean and then readjust their flow to become
ice shelves should be unstable when the bed is sloping up
along the flow and stable when it slopes down. Despite the
great insight provided by that work, many simplifications
and the use of a plastic model of ice have led to doubts
that the above conclusion is applicable to real ice sheets
and, if it is, to what extent. Thomas and Bentley (1978)
used another approach, where they derived the grounding-
line dynamics equation from the mass balance, together with
an estimate for the mass supply from the catchment area of
the grounded ice sheet. The velocity gradient appearing in
the mass balance was found by equating it to vertical strain
rate in the ice shelf. Calculations performed by Thomas and
Bentley (1978) supported the view that ascending slopes
imply instability, while descending slopes imply stability.
Salamatin (1989) followed Thomas and Bentley (1978)
in identifying the grounding-line dynamics equation, but
additionally introduced a constant correction factor for the
ice-shelf strain rate that accounts for the complexity of
the transition zone flow, and also used the velocity found
through the shallow-ice approximation.
The simplified nature of the above models has left space for

doubts in their conclusions. In particular, Hindmarsh (1996)
claimed that as the stress in the ice shelf is much smaller
than that in the ice sheet, the ice-shelf effects should be
disregarded. The controversy surrounding the ice-sheet/ice-
shelf junction was important to resolve, as the problem
of stability of ice sheets flowing into the ocean would
crucially depend on the boundary conditions used at the

grounding line for the ice sheet. The first attempt to find such
conditions in a more rigorous way was made by Chugunov
and Wilchinsky (1996), who concluded that the mass flow
rate is related to the ice thickness at the grounding line. As
the use of a sigma coordinate transformation in the ice shelf
leads to a third-order differential equation for the bottom
elevation, they also imposed additional conditions of its
smoothness at the grounding line in order to obtain a unique
solution to the problem. It can be argued, however, that
the need to impose these extraneous conditions may have
arisen due to the use of the sigma transformation together
with numerical solution of the problem, while in reality only
one condition for the bottom elevation at the grounding
line is required since the original mass-balance condition
contains only a first-order derivative. Assuming this to be
correct, Chugunov andWilchinsky (1996) still had to impose
an additional condition of continuity of the ice bottom slope
at the grounding line in order to find a unique value of the
parameter relating the mass flow rate and the ice thickness at
the grounding line. The physical condition for the ice sheet
to stay grounded, namely that the water pressure could not
lift it, was overlooked by the authors (below, this condition is
frequently referred to as the grounding condition). The reason
for this was that when the shallow-ice approximation is
considered, matching the ice-shelf and ice-sheet thicknesses
at the grounding line involves imposing the condition of
hydrostatic equilibrium at the grounding line for the ice-sheet
thickness. This usually automatically satisfies the condition
of grounding of ice in the rest of the ice sheet, as its upper
surface elevation at the grounding line is the lowest. As the
condition of hydrostatic equilibrium of the ice shelf arises
naturally when solving the Stokes equation (due to its small
aspect ratio) and solution of the transition-zone problem
determines a single solution valid in both the ice sheet and
the ice shelf, which is analogous to matching, the authors
erroneously assumed that solving the Stokes equations in
the transition zone would automatically satisfy all relevant
conditions. Generally, as the full system of Stokes equations
needs to be solved in the transition zone, the condition of
hydrostatic equilibrium of ice in water does not automatically
hold there. Chugunov and Wilchinsky (1996) found that
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deviation from hydrostatic equilibrium depended on the
imposed bottom slope at the grounding line that identifies a
particular solution. If a solution is chosen, then the ensuing
grounding condition is automatically satisfied for the far-
field solutions (shallow-ice approximation) that made the
issue difficult to recognize. The problem of existence of the
solution with zero bottom slope at the grounding line was
recently considered by Fontelos and Muñoz (2007).
In an attempt to avoid the issue of the complexity of the

ice-sheet/ice-shelf transition zone, Schoof (2007b) adopted a
rapid-sliding ice-sheet model and asserted that, as plug flow
prevails everywhere in the ice, a direct solution of a reduced
problem is possible in the transition zone. This approach in-
cluded considering two zones in the ice sheet, the main one
away from the grounding line, where the pressure gradient
was balanced only by the bottom drag, and a so-called ’shelfy
stream’ zone closer to the grounding line (Muszynski and
Birchfield, 1987), where increase of the thickness gradient
leads to the appearance of the longitudinal deviatoric stress
term in the momentum equation. The performed analysis de-
termined a unique solution of the problem (on a monotonic
bed) and a condition at the grounding line relating the mass
flux and the ice thickness. Despite its mathematical rigor, this
approach resulted in several physical inconsistencies. In par-
ticular, the found solution describes an upper surface slope
discontinuity at the grounding line that renders the solution
unphysical near the grounding line which was the area of
main interest. This issue was predicted earlier by Wilchinsky
and Chugunov (2000), who argued that flow in the transition
zone cannot be reduced even if there is free slip, due to the
jump in the normal condition at the bottom, i.e. from zero
vertical velocity on the ground to free floating in the ocean.
Furthermore, even if one assumes that the transition zone sin-
gularity does not affect the continuity of integral fields such
as velocity, thickness and longitudinal stress, then with the
typical ice-sheet characteristics used in the paper the theory
predicts that the typical thickness of the ’shelfy’ ice-stream
part is scaled to be around 40 times smaller (�30m) than
that of themain ice sheet, whichmakes the ’shelfy’ ice-stream
thinner than the ice shelf, and this cannot be expected in real
situations. Although this transition-zone thickness scale can
be increased by choosing different flow parameters (Schoof,
2007a), the theory was developed to work in all cases when
the ratio of the normal stress deviator to the hydrostatic pres-
sure, to which the scale is related, is small. This again is
in line with the conclusions of Wilchinsky and Chugunov
(2000) that existence of two-dimensional (with no lateral
drag) shelfy streams interacting with ice shelves is doubtful
as they would be thinner than the ice shelves themselves.
A simple explanation of this effect is that, given the same
typical ice thickness and its gradient determining the longi-
tudinal stress deviator around the transition zone, the upper
surface slope, and hence the pressure gradient, in the stream
would be ten times larger than that in the ice shelf, thereby
making the horizontal momentum terms unbalanced.
Acknowledging the lack of real progress in treating the

uniqueness problem, Wilchinsky (2007) stated the import-
ance of using the condition of ice grounding in closing the
transition-zone problem, and explored an unconventional
but physically intuitive approach. He argued that, firstly, if
one assumes that in real, physical ice sheets the stress is
continuous across the grounding line, then the condition of
bottom slope continuity at the grounding line is equivalent
to the condition of ice grounding there, regardless of the

material properties of the ice. Secondly, as the mathematical
solution of this problem with a jump in the bottom bound-
ary conditions is singular (i.e. it has infinite stresses at the
grounding line), using the grounding condition directly (i.e.
comparing an infinite ice normal stress to the finite water
pressure) becomes meaningless in the vicinity of the ground-
ing line and is unlikely to lead to a valid conclusion about the
uniqueness of the solution. The condition of bottom slope
continuity, however, can still be applied, since the bottom
slope remains finite even in the presence of the singular-
ity. Thirdly, consideration of an elasticity problem may yield
useful insights: in particular, it exemplifies how disregarding
the grounding condition gives rise to multiple solutions with
non-zero bottom slopes. It should be said, however, that the
validity of the comparison of ice-sheet flow with an elasticity
problem has been frequently questioned.
Nowicki and Wingham (2008) were the first to test the

grounding condition in their modelling of the transition-zone
problem with a finite-element technique using no-slip and
slip conditions at the bottom. As a sigma transformation was
not used, their calculations showed that, indeed, no add-
itional conditions except for the bottom elevation continuity
were required at the grounding line to solve the problem. The
condition of ice grounding was checked at the distance from
the grounding line where, for the adopted grid, the presence
of the singularity had ceased to affect the numerical solu-
tion convergence. This approach determined a continuous
range of solutions satisfying the grounding condition when
the mass flow rate was within a certain range. Many of these
solutions had a bottom slope discontinuity, which led to
questioning of the assumption of continuity of the ice bottom
slope at the grounding line. However, as the singular solution
involves an infinite normal stress at the grounding line, the
limits of this mass flow range, and therefore the number
of solutions, would crucially depend on how far from the
grounding line the grounding condition is applied.
To date, there is no rigorous solution of the uniqueness

problem; in this work we base our analysis on the assumption
that the solution is unique. In support of the conclusion of
Weertman (1974), Wilchinsky and others (1998) observed
that steady states cannot be reached on bottoms that slope
downwards while simulating glacier dynamics with the
derived grounding-line conditions. The same conclusion
was reached by Schoof (2007a), employing his rapidly
sliding ice-mass model. He compared the magnitude of the
ice accumulation rate with the ice mass flow rate at the
grounding line of perturbed solutions and asserted that, when
the former is larger than the latter, the ice sheet is unstable.
The latter condition was proposed by Schoof (2007b) while
disregarding the effect of the ice-sheet thickness evolution
on the ice mass flux.
Although the method of comparing the grounding-line

mass flow rate with the cumulative accumulation rate
in order to make conclusions about ice-sheet stability
is intuitively physical, it lacks a mathematically rigorous
justification. Therefore our aim here is to perform a linear
stability analysis of ice sheets with regard to surface and
grounding-line position perturbations, in order to obtain a
more rigorous stability criterion. The latter is in contrast
to this author’s previous study of ice-sheet stability, where
the grounding-line motion was disregarded (Wilchinsky,
2001) due to misinterpretation of the necessary conditions
of existence of the solution, as was discussed by Wilchinsky
and Feltham (2004).
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2. ICE-SHEET MODEL
Ice sheets accumulate ice through snowfall. They spread
under their own weight and drain into the ocean, where
they become ice shelves. A typical timescale for ice-
sheet and glacier motion varies from 10 to 10 000years
(Paterson, 1994). On these timescales the ice flow can be
modelled by fluid mechanics and laboratory experiments.
Glen (1955) showed that the power-law rheology of ice flow
has an exponent, n, close to 3. Other approaches to the
determination of n (e.g. Rémy and others, 1996; Lipenkov
and others, 1997; Salamatin and others, 1997) give n varying
from 1 to 3. In this work we consider a linear, Newtonian
rheology, and assume n = 1. We also assume that the ice-
sheet bed is stationary.
Ice flow in ice sheets is described by the Stokes equations

taking into account the incompressibility of ice. In order
to make the problem more tractable using analytical tools,
here we disregard any temperature effects, and study a two-
dimensional flow only. At the ice-sheet bed where the ice is
assumed not to melt, the no-slip condition is applied.
Ice sheets are characterized by a small ratio of the typical

ice thickness to the ice-sheet length: the aspect ratio, Δ,
usually ranges between 0.01 and 0.001. Therefore the Stokes
equations can be simplified by a lubrication approximation,
which determines the ice-sheet evolution equation (Fowler
and Larson, 1978;Morland and Johnson, 1980; Hutter, 1983;
Salamatin and Mazo, 1989). In order to scale the problem
in an efficient way, we briefly review this inference and the
problem scaling.
The ice-sheet geometry is sketched in Figure 1. Let us

denote the dimensional horizontal and upward vertical
spatial coordinates by (X ,Z ), time by T , horizontal and
vertical velocities by U and W , pressure by P , bed and
surface elevations by B and S, ice thickness by H = S − B,
gravitational acceleration by g , ice accumulation rate at the
upper surface by A, ice and water densities by ρi and ρw,
and ice viscosity by μ. Considering that the ice sheet is in
a quasi-equilibrium state, we equate the vertical velocity
scale to the accumulation-rate scale [W ] = [A], as the latter
would be balanced by the ice descent at the ice divide,
provided the upper surface is stationary. The horizontal
velocity scale is then determined from the mass balance,
[U] = [W ]/Δ, where Δ = [Z ]/[X ] is the ice-sheet aspect
ratio. The pressure scale is hydrostatic, [P ] = [Z ]ρig , and the
time scale is enough for an ice particle to reach the bottom,
[T ] = [Z ]/[W ]. To make our scaling in an efficient way,
we choose the horizontal scale to be exactly equal to the
steady-state ice-sheet length, L0, and the ice accumulation
scale to be exactly equal to the mean accumulation rate,
[A] = (1/L0)

∫ L0
0 A dx.

If we denote our non-dimensional variables by lower-case
letters, we can reduce the Stokes equations to the form

∂p
∂x

= η

[
∂2u
∂z2

+ O
(
Δ2

)]
,

∂p
∂z

+O
(
ηΔ2

)
= −1, (1)

where η = μ[A]/
(
Δ4ρig[X ]2

)
. The stress-free conditions at

the upper surface imply

∂u
∂z

= O
(
ηΔ2

)
, p = O

(
Δ2

)
. (2)

The mass conservation integrated over the thickness yields

∂h
∂t
+

∂q
∂x

= a, q =
∫ s

b
u dz, (3)
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Fig. 1. An ice sheet interacting with the ocean.

where q is the horizontal mass flow rate. Balancing the terms
in Equation (1) implies that η is of order unity. Equating η = 1,
we can find the typical ice thickness, [Z ], when the ice-sheet
length, [X ], is known (Salamatin and Mazo, 1989). The ice-
sheet aspect ratio is then

Δ =
(

μ[A]
ρig[X ]2

)1/4
� 1. (4)

Neglecting terms of order Δ2 from Equations (1) and (2)
we obtain a linear, hydrostatic pressure, and a parabolic
horizontal velocity,

p = s − z, u =
1
2

∂s
∂x

[
(s − z)2 − h2

]
. (5)

Substitution of Equation (5)2 into Equation (3) yields the
evolution equation for the ice-sheet thickness:

∂h
∂t
+

∂q
∂x

= a, q = −1
3
h3

∂s
∂x
, 0 < x < xg(t ), (6)

where x = xg(t ) is the unknown grounding-line position that,
because of our scaling, is equal to unity if a steady-state
solution is considered.
Equation (6) is a parabolic, non-linear, second-order partial

differential equation. It requires an initial condition, two
boundary conditions and one more condition to determine
the grounding-line position, xg. The initial condition is
arbitrary. Here we take our coordinate system to originate
at the ice divide, where the mass flow rate is zero,

q = 0 at x = 0. (7)

Another boundary condition usually assumed for ice sheets
interacting with the ocean is that of hydrostatic equilibrium
of ice in water,

h = khw at x = xg, (8)

where k = ρw/ρi and hw is the water depth. Although
this condition is strictly valid only when shear stress can be
neglected in the vertical momentum balance, which is not
the case near the grounding line, numerical calculations by
Chugunov and Wilchinsky (1996) showed that to a certain
degree of accuracy this condition holds, if applied to the
above approximate grounded-ice-sheet model.
The second boundary condition imposed at the grounding

line has been a matter of controversy up to this time.
The common understanding is that it effectively arises
through the balance of stresses around the grounding line:
between the grounded and floating parts of the ice sheets
(Weertman, 1974; Thomas and Bentley, 1978; Salamatin,
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1989). Modelling the full stationary transition-zone problem,
Wilchinsky and Chugunov (2001) assumed the uniqueness
of the solution and arrived at the following relationship
between the mass flow rate at the grounding line and the
ice thickness there,

q = r3h3 at x = xg, (9)

where r3 = δ/(Δβ), δ = (ρw − ρi) /ρw ≈ 0.1 is the relative
difference between the water and ice densities (fraction of
ice above the water in hydrostatic equilibrium) and β is a
constant of order one. In dimensional terms, where Q is the
mass flow rate, this condition takes the form

β =
δρigH3

μQ
. (10)

Note that δρigH describes the typical normal stress deviator
in the ice shelf at the grounding line, while μQ/H2 describes
the typical shear stress in the grounded ice sheet. Therefore,
β effectively describes the ratio of the typical shear stress to
the normal stress at the grounding line. Numerical modelling
found β to be between 1 and 2 (Chugunov and Wilchinsky,
1996). Later, higher-resolution simulations by this author
(unpublished) showed that β may be closer to 2. If sliding
is present, then the scale used in terms of mass flow rate
overestimates the shear stress, and we expect β to be smaller
(Wilchinsky and Chugunov, 2000). As Δ normally ranges
between 0.01 and 0.001, while δ ≈ 0.1, then for β ≈ 2,
r3 ranges between 5 and 50 for an ice sheet with negligible
sliding. It may take even larger values if sliding is present.
Equation (9) was derived for a steady-state two-

dimensional flow. If the ice-shelf length is much shorter than
the ice-sheet length, then the boundary condition, Equa-
tion (9), still holds for an axisymmetric flow, as the stresses
across the grounding line are much larger than those along
it (Wilchinsky 1997), and the effect of the transverse normal
stress is negligible when the ice shelf is short. If small times-
cale perturbations in the sea-surface elevation are neglected,
then for a non-stationary ice-sheet motion time dependence
enters only through the mass balance at the free surfaces. In
this case, positioning the coordinate system onto the mov-
ing grounding line (cf. Fontelos and Muñoz, 2007) leads
to the appearance of additional terms in the surface mass
balance that can be evaluated as O

(
h(xg)Δs

)
(Wilchinsky,

1997), where Δs is the typical ice-thickness gradient in the
ice shelf near the grounding line. For a power flow law
rheology Δs ≈ 2−2n−1, where n is the power flow law
exponent (Wilchinsky and Chugunov, 2001). In our case of
a linear rheology, Δs ≈ 1/8, while from Equation (9) we
have hg(xg) ≈ r−1 � 0.6, so the correction to the boundary
condition due to non-stationarity is <10%. For a power flow
law fluid this estimate decreases significantly, therefore here
we assume that Equation (9) also holds for non-steady-state
solutions. In this case, with the chosen scaling, different
steady-state ice sheets are distinguished only by different
values of r , accumulation rate, a, and the bed elevation, b.
Due to our non-dimensionalization a steady-state solution
is always described by xg = 1 so the water depth at the
grounding line, hw(1), is no longer a free parameter. It can
be determined from the ice thickness at the grounding line,
Equation (8), (note that, due to our non-dimensionalization,
q(1) = 1) and the hydrostatic equilibrium condition,
Equation (9),

hw(1) =
1
kr

. (11)

It follows from Equation (9) that at the grounding line of a
steady-state ice sheet h = k−1, and the ice mass flux through
the grounding line, q/h, is given by r . We therefore call
parameter r the normalized grounding-line mass flux.
The conventional understanding of ice-sheet instability

then follows from Equation (6) integrated from the ice divide
up to the grounding line where Equation (9) is used:

∫ xg

0

∂h̄
∂t
dx =

∫ xg

0
a dx − q(xg), (12)

where h̄ is the ice-thickness anomaly relative to a steady-
state ice thickness and the mass flow rate at the grounding
line, q(xg), is given by Equation (9). If the cumulative
accumulation rate (first term on the right-hand side) is
smaller than the mass flow rate through the ice-sheet/ice-
shelf junction (second term on the right-hand side), then∫ xg

0
∂h̄/∂t dx < 0. This would imply stability if h̄ is positive

everywhere. However, the initial perturbation, h̄, may be
taken to be positive only in the vicinity of the grounding line
in order to ensure that the grounding line advances when the
bottom slopes down, while h̄ can be negative everywhere

else. In this case
∫ xg

0
∂h̄/∂t dx < 0 would imply instability.

Therefore such a stability criterion can be questioned, and
a more rigorous analysis must be performed in order to
determine the stability condition. Note, however, that if the
grounding-line position is close to its steady-state position
(xg + Δxg), then, due to the steady-state mass balance, the
right-hand side of Equation (12) is∼ [

a − b′dq/db
]
x=xg

Δxg.

Therefore, if we equate the above expression to zero and
denote all values at the grounding line by subscript ‘g’, we
obtain a necessary condition for neutral equilibrium in the
form

b′g = b
′
n(r , a) = ag(dq/db)−1g = −ag/

(
3rk

)
, (13)

where the last equality appears due to Equations (8), (9)
and (11) and because dhw/db = −1. If b′g < b′n then
the right-hand side of Equation (12) is negative, which
would correspond to stability according to the conventional
approach (Schoof, 2007b).

3. LINEAR STABILITY ANALYSIS
To find a time-dependent solution of Equation (6) as a
perturbation about a steady-state solution, h0, we expand
all the functions on the small parameter, ε, determining
the amplitude of the surface and grounding-line position
perturbations

h = h0(x) + εe−λt h1(x) + O
(
ε2
)
, (14)

xg = 1 + εe−λt xg1 + O
(
ε2
)

. (15)

3.1. The leading-order steady-state problem
After substitution of Equations (14) and (15) into Equa-
tions (6), (8) and (9) for the leading-order terms we derive

(
h30s

′
0

)′
+ 3 = 0, 0 < x < 1, (16)

s′0 = 0 at x = 0, (17)

h0 = 1/r , s′0 = −3r3 at x = 1, (18)
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where s0 = h0 + b and the primes denote derivatives. The
ice-thickness gradient and curvature at the grounding line
are

h′0 = −
(
3r3 + b′g

)
, at x = 1, (19)

h′′0 = −b′′g − 3r3
[
ag + 9r

4
(
1 +

b′g
3r3

)]
at x = 1, (20)

so that as r → ∞, h′0(1) ∼ −3r3 and h′′0 (1) ∼ −27r7,
determining high thickness gradient and curvature at the
grounding line for 5 � r3 � 50.
When the bed is a horizontal plane (b ≡ 0), the solution

of Equations (16–18) can be easily found (Vialov, 1958; Nye,
1959):

h0 =
[
r−4 + 6

(
1− x2

)]1/4
. (21)

3.2. The first-order perturbation problem
For the first-order problem in terms of the function f = h30h1,
we obtain

(
f ′ +

3b′

h0
f
)′
+
3λ
h30
f = 0, 0 < x < 1, (22)

f ′ +
3b′

h0
f = 0 at x = 0, (23)

f ′ − 3h′0
h0
f + xg1h

3
0s
′′
0 = 0,

f = xg1h
3
0
(
kh′w − h′0

)
at x = 1. (24)

The perturbation function is determined to order of a constant
factor, therefore we choose f (1)= 1 at the grounding line.
Excluding xg1 from Equation (24) and taking into account that
h′w =−b′ and f =1, we obtain the grounding-line conditions
in closed form,

f = 1, f ′ =
3h′0
h0

+
s′′0

kb′ + h′0
at x = 1. (25)

In this case the perturbation solution can be sought by solving
Equation (22) with two boundary conditions: Equation (23)
at the ice divide and any one from Equations (25) at the
grounding line, x = 1. The eigenvalue, λ, is then found
by satisfying the remaining condition at the grounding line,
Equation (25).

3.2.1. Zero-growth condition
Here we are interested in determining which values of the
bedrock slope at the grounding line and the normalized
grounding-line mass flux, r , determine stable and unstable
solutions. In order to do this we ask, firstly, which of these
values would determine λ = 0. Putting λ = 0 in the
perturbation equation (22), we can integrate it from the ice
divide (x = 0) with the help of the boundary condition,
Equation (23). The zero-growth solution then satisfies

f ′ +
3b′

h0
f = 0, 0 < x < 1, (26)

f ′ =
3h′0
h0

+
s′′0

kb′ + h′0
, f = 1 at x = 1. (27)

Considering Equation (26) as x → 1 and substituting the
two boundary conditions, Equations (27), into Equation (26)

leads to an equation relating b′g and r that ensures zero
perturbation growth (λ = 0),

3h′0
h0

+
s′′0

kb′g + h′0
+
3b′g
h0

= 0 at x = 1. (28)

With the help of Equations (19) and (20), this can be written
as

3r3
ag + 3kb′gr

3r3 + (1− k )b′g = 0. (29)

The physical solution to the above equation is given by Equa-
tion (13), which was derived using simple physical arguments
(Schoof, 2007b). The denominator in Equation (29) is then
zero if

0 < r4 =
(1− k )ag
9k

. (30)

For ag > 0 and k > 1 the right-hand side is always negative,
so that the denominator in Equation (29) is never zero,
and Equation (13) is always the solution of Equation (29).
Generally speaking, while a particular choice of b′g and r
satisfying Equation (13) ensures the existence of λ = 0, it
does not necessarily follow that this also describes the state
of neutral equilibrium, as lower, negative eigenvalues may
still exist at the same time. Proving with mathematical rigour
that the latter is not the case is outside the scope of this
work. However, in order to get some insight as to whether
Equation (13) may determine the neutral equilibrium that
separates stable and unstable solutions, we describe several
intuitive considerations.
Firstly we assume that a solution to the problem exists

and the eigenvalues are smooth functions of the independ-
ent problem parameters, namely r , k , the bedrock eleva-
tion, b(x), and the ice accumulation rate, a(x), together with
their derivatives; and that the eigenvalues do not bifurcate.
Furthermore, we consider only such families of solutions
whose independent parameters satisfy the following condi-
tions: each of the regions described by b′g > b′n, b′g < b′n and
b′g = b′n is connected, and any set of the problem parameters,
[b(x), r , k , a(x)], can be attained by continuous variation of
any other belonging to the same region.
If negative eigenvalues existed when one eigenvalue is

zero for a particular set
[
b0(x), r0, k0, a0(x)

]
, such that its

grounding-line values b′g0 and ag0 satisfy Equation (13), then
the continuous form of Equation (13) would imply that the ice
sheets from this family of solutions are always unstable when
one of their eigenvalues is zero. The latter is because any
other choice of

[
b1(x), r1, k1, a1(x)

]
whose grounding line

values [b′g1, ag1] satisfy Equation (13) (that determines λ = 0)
can be attained by a continuous variation of

[
b(x), r , k , a(x)

]
between these two sets of independent parameters in such a
way that

[
b′g, r , k , ag

]
always lies on the zero-growth surface,

since Equation (13) describes a connected region (Fig. 2).
The assumed absence of bifurcation will prevent the negative
eigenvalue from disappearing. This, in turn, will mean that
stable solutions would not exist in any case, since, in order
for them to exist, the most negative eigenvalue should
gradually become positive when the problem parameters
gradually vary. This is, however, not possible without it
becoming zero, and that will, in turn, mean that another
negative λ exists. Therefore, finding a stable solution for the
considered family may be sufficient to show that λ = 0
indeed describes a neutral equilibrium.
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Fig. 2. The zero-growth line, b′g = b′n(r ), for a = 1. Two points
(b2, r2) and (b, r ) that can be connected by a curve that does not
intersect the zero-growth line have eigenvalues of the same sign.

Furthermore, even if a stable solution is found only for
a particular set of parameters

[
b2(x), r2, k2, a2(x)

]
satisfying,

say, b′g2 < b′n (see Fig. 2), then any other solution with[
b(x), r , k , a(x)

]
satisfying b′g < b′n would also be stable

because it can be attained by continuous variation of[
b2(x), r2, k2, a2(x)

]
in such a way that

[
b′g, r , k , ag

]
does

not cross the surface b′g = b′n due to the connectedness
of this region. In this case the minimum eigenvalue would
stay positive. Similarly, if an unstable solution is found
when b′g > b′n, then all solutions satisfying this condition
would be unstable. In the latter case such a solution can
be found analytically for non-singular bed elevations and
accumulation rates (section 3.2.2) and, hence, all solutions
of the family satisfying the imposed conditions would
be unstable when b′g > b′n. Numerical, stable solutions
can also be found for linear bed profiles and constant
accumulation rates (section 3.2.3), so that we assume all
solutions belonging to the same family that satisfy b′g < b′n
are stable. As the analytical solution described in section 3.2
is also valid for linear bed profiles and constant accumulation
rates, we presume that the existence of these two stable and
unstable solutions may imply that Equation (13) separates
stable solutions from unstable solutions for many useful
scenarios.

3.2.2. An unstable solution
Our aim is to find an unstable solution. Let us choose
b′g = −3r3,b′(x) = O(1), a(x) = 1. In this case it follows
from Equations (19) and (20) that h′0(1) = 0, s′′0 (1) = −3r3,
so that Equation (25) becomes

f = 1, f ′ =
1
k

at x = 1. (31)

Let us now abstract from the physical problem and consider
k → 0. In this case, as f (1) = 1, f ′(1) = 1/k is possible only
if f changes significantly within 1− k � x � 1. This implies
f ′′ = O

(
k−2

)
, so Equation (22) implies λ = O

(
k−2

)
. If we

introduce Λ = k2λ, then Equations (22) and (23) take the
form

k2
(
f ′ +

3b′

h0
f
)′
+
3Λ
h30
f = 0, 0 < x < 1, (32)

f ′ +
3b′

h0
f = 0 at x = 0. (33)

If we consider only non-oscillating solutions, then as k → 0
we can find the outer solution valid away from the grounding

line to order k2 as zero. Now if we introduce an inner
coordinate, ξ = (1 − x)/k , then the perturbation problem
can be written as (the primes now define derivatives in ξ)

(
f ′ +

3b′

h0
f
)′
+ 3r3Λf = O(k ), 0 < x < 1, (34)

f → 0 as ξ → ∞, (35)

f = 1, f ′ = −1 at ξ = 0. (36)

As in these coordinates b′ = O
(
3r3k

)
, while h0 ∼ r−1, the

second term in the parenthesis of Equation (34) is negligible
in comparison with the first term provided

9r4k � 1. (37)

Note that b′n/b′g = 1/(9kr4), so Equation (37) implies b′g �
b′n as both are negative. Neglecting the second term in
Equation (34), we can find the inner solution that matches
the zero outer solution and satisfies boundary conditions,
Equation (36), as

f = e−ξ, Λ = −1/
(
3r3

)
. (38)

Therefore, an unstable solution exists that also satisfies b′g >
b′n so b′g > b′n implies instability.

3.2.3. A stable solution
Finding a stable solution analytically is a complex task,
therefore here we resort to numerical solution of the per-
turbation problem, Equation (22), with boundary conditions
Equations (23) and (25). Only linear bed profiles and
a = 1 were considered and we used ρw = 1.025kgm−3 and
ρi = 0.9167kgm−3. Together with the leading-order prob-
lem, Equations (16–18), this set of equations was solved using
Mathematica 6.0. In particular, Equation (23) was solved
satisfying the ice-divide condition and f (1)=1 at the ground-
ing line. For an arbitrary λ the second grounding-line
condition, Equation (25)2, is not generally satisfied. If we
denote the difference between the calculated f ′(1) and that
given by Equation (25)2 by df ′, then the eigenvalues will be
determined by df ′ = 0. In Figures 3 and 4 we plot df ′(λ) for
the bed slope, b′ = −0.2. Figure 4 is a zoomed-out version
of Figure 3. The corresponding value of the grounding-line
mass flux, rn, that ensures zero growth is ∼3.3. The sought
eigenvalues are given by the intersection of the curves with
the line df ′ = 0. Three curves are shown: the solid curve is
determined by r = rn, the dashed curve by r being two times
larger and the dot–dashed curve by r being two times smaller.
As the solid line passes through the origin of the coordinate
system, this numerical solution found with the zero-growth
values of the parameters is adequate. From Figure 3 it can be
seen that an increase of r leads to stability, while a decrease
leads to instability. Furthermore, from Figure 4 it can be
seen that the eigenvalues shown in Figure 3 are the lowest
eigenvalues within the shown range. Therefore, if no eigen-
values that are even lower than the shown lower limit exist,
then a stable solution exists when b′g < b′n(r , ag). In order
to ascertain that no such lower eigenvalues exist, we can
perform an asymptotic analysis similar to that determining
the unstable solution.We consider only negative eigenvalues
with a large magnitude, λ → −∞. Firstly, by considering a
non-oscillating solution we can again determine a zero outer
solution. In the boundary layer near x = 1 the second term
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df’

b rn n’ ( )=–0.2

r=rn

r=2r
n

r= /2rn

Fig. 3. The dependence of the perturbation gradient error at the
grounding line, df ′, on λ. The sought eigenvalues are determined
by df ′(λ) = 0.

in Equation (22) is small and h0 ∼ 1/r , so we can find the
solution in the form

f = eζ(x−1), ζ =
(
−3λr3

)1/2
, (39)

which implies

f ′a (1) = ζ, (40)

where subscript ’a’ identifies the asymptotic value. If we
also assume that for the same value of λ, other, oscillating
solutions exist then in this case the second term is still
negligible and the difference between these two leading-
order solutions satisfies Equation (22) without the second
term as well as boundary conditions, Equation (23) and
f (1) = 0. Multiplying this equation by the solution difference
and integrating between 0 and 1, one can easily show that the
solution difference is zero, so that the leading-order solution
is non-oscillating and unique.
The form of Equation (40) implies that df ′ is monotonically

increasing as λ → −∞ and therefore will not cross the axis
while λ is increasing. Let us denote the normalized difference
between the exact and asymptotic values of the first-order
gradients as Dn = |f ′(1) − f ′a (1)|/f ′(1). For r = rn, the value
of Dn is plotted in Figure 5.
It can be seen that Dn gradually decreases. The decrease

is, however, slow, due to the large ice-thickness gradient
at the grounding line while the boundary layer thickness
is proportional to λ−1/2. Therefore, for the considered
discretized version of the problem, the zero-growth surface,
Equation (13), indeed describes neutral equilibrium and
separates stable and unstable solutions.

4. CONCLUDING REMARKS
We have considered a linear stability analysis of an ice sheet
interacting with the ocean. As the no-slip condition was
assumed at the bedrock, a cubic dependence of the mass
flow rate on the ice thickness at the grounding line was
adopted. Using simple arguments combined with analytical
unstable and numerical stable solutions we argued that a
zero-growth (zero-eigenvalue) mode is determined by a re-
lationship between the bed slope, the ice accumulation rate

df’

b rn n’ ( )=–0.2

r=rn

r=2r
n

r= /2rn

λ

Fig. 4. The same as Figure 3, but zoomed out. The eigenvalues
shown in Figure 3 are the lowest ones.

and the water depth at the grounding line. In dimensional
variables this relationship takes the form

dB
dX

= B′n = − μβρ2i
3(ρw − ρi)ρ2wg

A(Xg)
H2w (Xg)

, (41)

which describes neutral equilibrium and separates stable
and unstable steady-state ice-sheet solutions for many useful
scenarios. In a more generic form the above equation can be
written as (Schoof, 2007b)

dB
dX

= B′n = A(Xg)
(
dQ (B)
dB

)
X=Xg

. (42)

If the bed slope is higher than B′n, then the ice sheet is
unstable; and if it is lower, then it is stable. This supports the
conventional, intuitive understanding of ice-sheet instability,
as in the former case the cumulative ice accumulation rate is
larger than the ice mass flow rate at the grounding line of the
perturbed ice sheet and the ice sheet will advance through
a runaway mechanism; while in the latter case the opposite
applies.

Dn

λ

Fig. 5. The normalized difference between the exact and asymptotic
first-order perturbation gradients at the grounding line, Dn.
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