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MULTIPLICATION FORMULAS AND SEMISIMPLICITY
FOR ¢-SCHUR SUPERALGEBRAS

JIE DU, HAIXIA GU* aAND ZHONGGUO ZHOU

Abstract. We investigate products of certain double cosets for the symmetric
group and use the findings to derive some multiplication formulas for the g¢-
Schur superalgebras. This gives a combinatorialization of the relative norm
approach developed in Du and Gu (A realization of the quantum supergroup
U(glmn), J. Algebra 404 (2014), 60-99). We then give several applications of
the multiplication formulas, including the matrix representation of the regular
representation and a semisimplicity criterion for g-Schur superalgebras. We
also construct infinitesimal and little ¢g-Schur superalgebras directly from the
multiplication formulas and develop their semisimplicity criteria.

§1. Introduction

The beautiful Beilinson-Lusztig-MacPherson construction [1] of quan-
tum gl,, has been generalized to the quantum affine gl,, [4, 9], to the quantum
super gl,,,, [12], and partially to the other classical types [2, 20] and affine
type C [19], in which certain coideal subalgebras of quantum gl,, (or affine
gl,,) are used to form various quantum symmetric pairs associated with
Hecke algebras of type B/C/D or affine type C. A key step of these works is
the establishment of certain multiplication formulas in the relevant g-Schur
algebras or Hecke endomorphism algebras. These formulas were originally
derived by geometric methods. When the geometric approach is not available
in the super case, a super version of the Curtis—Scott relative norm basis [8,
24], including a detailed analysis of the explicit action on the tensor space,
is used in deriving such formulas; see [12, 14, 15]. However, it is natural to
expect the existence of a direct Hecke algebra method involving only the
combinatorics of symmetric groups.
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In this paper, we will develop such a method. The multiplication formulas
require to compute certain structure constants associated with the double
coset basis, a basis defined by the double cosets of a symmetric group. Since
a double coset can be described by a certain matrix with nonnegative integer
entries, our first step is to find formulas, in terms of the matrix entries, of
decomposing products of certain double cosets into disjoint unions of double
cosets. We then use the findings to derive the multiplication formulas in
g-Schur superalgebras; see Theorem 4.1 and Corollary 4.2. This method
simplifies the calculation in [12, Sections 2-3] using relative norms.

The multiplication formulas result in several applications. The first
one is the matrix representation of the regular representations over any
commutative ring R; see Theorem 4.5. When the ground ring R is a field,
we establish a criterion for the semisimplicity of ¢-Schur superalgebras (see
Theorem 5.4), generalizing a quantum result of Erdmann and Nakano to
the super case and a classical super result of Marko and Zubkov [26] (cf. [6,
18]) to the quantum case. Finally, we introduce the infinitesimal and little g-
Schur superalgebras directly from the multiplication formulas (Theorem 6.1,
Corollary 6.3). We also determine semisimple infinitesimal g-Schur superal-
gebras and semisimple little g-Schur superalgebras (Theorem 6.4).

It should be interesting to point out that, unlike the traditional methods
used in [7, 10], our definitions do not involve quantum enveloping alge-
bras or quantum coordinate algebras and the semisimplicity proof is also
independent of the representation theory of these ambient quantum groups
or algebras. We expect that this combinatorial approach will give further
applications to various ¢-Schur superalgebras of other types in the near
future.

82. ¢-Schur superalgebras

Let W =6y, ,) be the symmetric group on r letters and let S =
{sk |1 <k <r} be the set of basic transpositions s; = (k, k+ 1). Denote
the length function with respect to S by £: W — N.

Let R be a commutative ring with 1 and let ¢ € R*. The Hecke
algebra Hpr =Hpr(W) is a free R-module with basis {7}, | w € W} and the
multiplication defined by the rules: for s € S,

Tws, if L(ws) > l(w);

(2.0.1) TwTs = {(q —1)Ty + qTys, otherwise.

The Hecke algebra over R = Z :=Z[v,v~!] and ¢ =v? is simply denoted
by H.
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Let W), denote the parabolic subgroup of W associated with
A= (A1, A2y ..., An) € A(N, r) where

A(N,r):{)\GNNHM =, Ai=r}.

Then W), consists of permutations that leave invariant the following sets of
integers

Ny ={1,2,.. , LNy ={ A+ 1, 0 +2, .. A+ A) ..

Let Dy := Dy, be the set of all shortest coset representatives of the right
cosets of Wy in W. Let Dy, =Dy N D;l be the set of the shortest W-W,
double coset representatives.

For A, € A(N,r) and d € D),,, the subgroup W/{l nNwW, = d='Wydn W,
is a parabolic subgroup associated with a composition, which is denoted by
Ad N p. In other words, we define

(2.0.2) W, = WENW,.

The composition AdNp can be easily described in terms of the
following N x N-matrix A= (a;;) with a;;=|N}n d(NF)|:if ) =
(a1,a2;j,...,an,;) denotes the jth column of A, then

(2.0.3) MNp= @M 2 Wy,
Putting j(\, d, 1) = (]N2 N d(Ng)])i,j, we obtain a bijection
(2.0.4) 7:{(Nd,p) | A, me A(N,r),deDy,} — M(N,r),

where M (N, r) is the set of all N x N matrices A= (a;;) over N whose
entries sum to r, ie., [A]:=3", ;a;; =r.

For A€ M(N,r), if 771(A) = (A, d, p), then \, g € A(N, r) and

N N
A=ro(4):= <Z aj, ..., Z aN,j> and
j=1

=1

N N
u=co(A):= <Zai’1, cey Zai:N>‘
i=1 i=1

For the definition of ¢-Schur superalgebra, we fix two nonnegative integers
m, n and assume R has characteristic # 2. We also need the parity function
~ 0 ifl<h<

(2.0.6) h= :
1 fm+1<

(2.0.5)

m;
h

<m+n.
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A composition A of m + n parts will be written

A=QAORNOY = A0 A0 A@P® AL D)

n

to indicate the “even” and “odd” parts of A. Let

Alm|n,r):=A(m+n,r)= U (A(m, 1) x A(n,12)).

r14+ro=r
For A= (A0 | (M) € A(m|n, ), we also write
(2.0.7) Wi =WyoWya) = Wyo X Wy,

where Wyo) <&y 5 oy and Wya) < S\ 41,... 1 are the even and odd
parts of W), respectively.

Denote the Hecke algebra associated with the parabolic subgroup Wy by
H, which is spanned by T, w € W). The elements in H

(2.0.8) [zy]y =2y U, Y] = Y0 Ty,

where, for i =0, 1,

no= Y, Tw no= Y, (97T,

’LUGWA(I-) U)GW)\(Z-)

generate Hy-modules R[zy|,, Rlyx],. Define the “tensor space” (cf. [16,
(8.3.4)])

(2.0.9) Tr(mln,r) = @ [zy]\ HR-
AEA(m|n,r)

By the definition in [16], the endomorphism algebra
Sr(m|n, ) =Endy, (Tr(m|n,r))
is called a g-Schur superalgebra whose Zo-graded structure is given by

Sr(mn,r); = @ Homy, ([zy)\ KR, [zy] Hr) (i=0,1).

A\, pEA(m|n,r)
A 4+16M) | =i(mod 2)

We will use the notation S(m|n,r) to denote the v2-Schur algebra over Z.
We now describe a characteristic-free basis for Sg(m|n, r).
For A\, u € A(m|n, ), let

(2.0.10) DS, ={d € Dy | Wioy "W, =1, Wiy N W0 = 1}
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This set is the super version of the usual Dy,. We need the following subsets
of the (m +n) x (m + n) matrix ring M,,4+,(N) over N:

M(m|n7 T) = {](Av d7 N) ‘ )‘) ne A(m‘nv T), de D())\u}v
(2.0.11) M(mln) = | M(m|n,r) € Mpsn(N).

r=0
Following [16, (5.3.2)], define, for A\, u € A(m|n,r) and d € D3,
(2.0.12) Twyaw, = [zyl\TaTp,w, = Tp,,ow,Talzy),,

where v = Ad N p, v/ = pd~' N A, and

TDﬂWn e Z Two (_q)—ﬁ(wl)Twl
wo€Do,w1€D1
for any D CW (n= A\ or p) with D; =D NW, ) (cf. [16, (5.3.2)]).
The element Ty, gw, is used to define an H g-module homomorphism gbﬁl\ u
on Tr(m|n,r):

¢§M([xy]ah) = duaTwyaw, h, Yo € A(m|n,r), h € H.

The first assertion of the following result is given in [16, 5.8|, while the
last assertion for the nonquantum case was observed in [23, Section 3.1].
Write ¢a:= ¢, if A=j(X, d, p).

LEMMA 2.1.  The set {¢pa| A€ M(m|n,r)} forms an R-basis for
Sr(m|n, r). Hence, Sg(m|n, r) = S(mn,r) ®z R. Moreover, there is an R-
algebra isomorphism

SR(m‘na T) = SR(n‘ma 7").

Proof. We only need to prove the last assertion. The Hecke alge-
bra Hpr admits an R-algebra involutory automorphism ¢ sending Ts to
—qT; = (q—1)—Ts for all s€S. Since ¢(z)) = ¢!y, - where wo,\
is the longest element in W) (see, e.g., [5, (7.6.2)]), we have ¢([zy],) =
(y0yam) = g 0N 0ny ) TF we denote by ([zy],Hg)? the
module obtained by twisting the action on [zy],Hg by ¢, i.e., ([xy] h) * B/ =
([zy]\h)@(R') for all h, h' € Hp, then the map

Py ([zyl\HR)? — [yz]\Hr, [zylyh = o([zy]\h)

is an H g module isomorphism. These ®) induce an H g module isomorphism
¢ : Tr(m|n, r)¥ — Tr(n|m, r). Now the required isomorphism follows.
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§3. Decomposing products of double cosets

Throughout the section, let W be the symmetric group and let n, r be
positive integers. We also fix the following notation in this section:

M = (mZ]) S M(?’L, T) with jil(M) = ()‘7 d, ,U,), dy = d,

var = AN = (M1, Ma1, -« s Mp 1y o s M, M2y - M)
j—1 n
(3.0.1) ¢ 0ij= Z Z Mpk + Z M1
k=1 h=1 k<i,l>]

Mij,k =M+Ep,—Epp if mppp>1,
My =M —Ep+ Eppre ifmpp =1

Moreover, to any sequence (ai, asg, ..., a,), we associate its partial sum

sequence (ai, ag, ..., an) with @; =a; + - - - + a;. Thus, N=AL A+t N

and m; ; is the partial sum at the (i, j)-position of vp;. We also note that

Oij = j—1+ m; where my ;= Zk@l}j ay,- In particular, o; 1 = myq = YR
The following result will be proved at the end of the section.

THEOREM 3.1. Maintain the notation in (3.0.1) with A= (A1, ..., An)
and, for 1<h<n, let P\ P ep, Fepr = rO(Mhik), where e; =
((5177;, ey 57171) Then

(Wt IWN) (WadpWy,) = U Wity Was
- ,
Mp41,k>1
(W IWN)Wadu W) = | Wynmidy- Wi
- ,
mh,k>1
We first describe some standard reduced expression for dp;.
Ifmm =0, or my 5 > 0 but Oi—1j = 777,2‘_173' (i.e., mg_1’j+1 = 0), set w; ; = 1;
if m;j > 0 and Oi—1,j > ﬁbi—l,]ﬁ let
Wi,j = (50171,]'802'71,]'*1 T 87711'—1,3'4—1)
(sUi—l,j+180'i—1,j T Smi717j+2> T
(3'1'1) (sai—l,j+mi,j*1SUi—1,j+mi,j*2 T Sﬁzi,j)

+ . + 1 ; R
and Wi 5 = Soi—1,j+1805-1,42 """ Soy_y j4+m;, ;Wi (and Wi = 1 if mij = O)'

Note that we may rewrite w;rj as
+ _
Wi = Soi_1,+1(Soi_1ySoi 1 =1 Sy j+1)
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SUi—l,j+2(Sﬁi—l,j-f—lsffi—l,j T 877%‘71,j+2) T
(3'1'2) Soi_15+m (So'i—l,j“‘mi,j_lsa'i—l,j+mi,j—2 e Sﬁzi,j)'
. 132
For example, if M = (% ! %) then
6 9 10 1 7 10
(Uij) = 10 11 11 5 (T?LU) =13 8 11 5
13 13 13 4 8 13

and

N~
[SAEN |

5 6 8
3 4 6/’

2 3
wa1 = (8685 - - $2)(8756 + -+ 83) = <7 )

w31 = 5108954 = ({1 186539 15), and wap =s9ss = ({3 §), wa2=1,
then wo1ws wapwse = (1331135158 ¢ 10 13 13), which is dy.

LEMMA 3.2. [12, Algorithm 2.1] Let M, dy and M,!, be given as in
(3.0.1). Then a reduced expression of dys is of the form

dy = (wo w31 - - - Wp1) (Wo w32 -+ - Wp2) « (W2 n—1W3p—1 - Wpp—1)-

If mps1 k> 1, then
/ / / / / / / / /
dM,;*k = (w2,1w3,1 T wn,l)(w2,2w3,2 T wn,Q) T (w2,n—1w3,n—1 T wn,n—l)?

where, for almost all i, j, w}; = wjj, except w;H_lj = w;fﬂj for j <k and
(3.2.1)

w;z,k = wl.z,k = wh,k(SUh—1,k+mh,kSUh,—l,k-i-mh,k—l T Smh,kJrl)?
w;H—l,k‘ = w;)z—f—l,k = (Sdh,kJrlSUh,k T Sﬁlh,k—ﬂ)(SU;L,k+280}L,k+1 T Smh,k+3) T
(Sah,k+mh+1,k*180h,k+mh+1,k*2 T Sﬁ%h+1,k)-
In particular, E(dM,jk) =L0(dar) + D jc Mht1,j = D jsg Mhj-

REMARK 3.3. (1) We display the factors w; ; of dys through a matrix

notation:
w21 W22 cc W2n-1
w31 w32 - W3n-—1
(3.3.1) dy = ) ) ) ,
Wnp,1 Wnp,2 - Wpn—1

) )
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where djs is simply a product of the entries down column 1, then down
column 2, and so on. Note that w; ; =1 whenever m; ; =0 or mj_, ;., =0.

(2) Note that a product of the form sp_18p-9 -+ s for h >k is in fact
the cycle permutation h - h —1—---—k+1— k — h. Thus, each w; ; is
a product of cycle permutations. Note also that the largest number permuted
(or moved) by the partial column product wy jws j - - - wp j is op—1,5 + mp ;.

LEMMA 3.4.
(1) For any nonnegative integers k,i, h with 0 <k <i<h<r,
Si(ShSh—1" " 8k) = (ShSh—1" " Sk)Si+1-
Hence, forO<k<i<hi<hy<---<h<r,
Si(ShyShi—1 " Sk)(ShaSha—1* " * Skt1) =+ * (ShyShy—1 * * * Skti—1)
= (ShyShi—1" " 8k)(ShoSho—1 " Ska1) =+ * (ShyShy—1 " * Skt1—-1)Siti-

(2) With the notation given in (3.0.1) and (3.1.1), if op—1j +mp; <1<
op; and l>my j + 1, then

Si(Wa,jw3,j + - Wnj) = (W2,jW35 * W j)S1430,  my ;-

(3) For any 1 <k<n, if 0 <x<mypy and assume Z?;ll Mp; + 2 < Ap,
then
S st a1 ) ()
= (wz,l ce wn,1) ce (w2,k—1 T wmk—l)sah,l,kﬂ-

Proof. The proof for the first two assertions is straightforward. We now
prove (3).
Consider the product [], of first ¢ columns of dj;:
II; = (wo,1 -+ Wh—1,1Wh 1 Wht1,1 - * - Wn1)

Tt (w2,t c o Wh—1,tWh tWh4-1t * wn,t)~
We claim for all ¢ < k that

(341) S . Ht = Ht + S

k—1 k—1 .
Oh—1,1+2 521 M ;+T Oh—1,t41F2 1 Mh,j T

Thus, taking t =k — 1 gives the assertion (3).
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We prove (3.4.1) by induction on t. If t =1, then z > 0 implies

k—1
l=0p_11+ Z Mmpj+x>0p-1,1+ Mp1-
Jj=1

As the largest number permuted by wa 1 - - - wp 1 is 0p—1,1 + mp 1, we have
(3.4.2) si(wa,1 -+ - wp 1) = (wa,1 -+ - Wy )81

Now we consider s;(wp41,1 - - - Wn,1). Assume wh+1 1# 1 (and so mpqq1 >
0). Since k> 1 and mp 1 + 1<l =0 11—|—Z 1mh7]+$<0h 11+ A\ =
Oh1, by (2), $1Wht1,1 = Whi11814myy,, and, by an inductive argument as
above,

SIWh+1,1Wh42,1 * * " Wn,1 = Wh4+1,1Wh421 " ** wn,181+2?:h+1 mi1*

But 143", mi1=0p_12+ Z 2 mp,; + . This proves (3.4.1) for
t=1.
Suppose now ¢t > 1 and (3.4.1) is true for ¢ — 1. That is, assume

e a2 ) (2w )

= (w1 wp1) - (Wap—q--- wn,t—l)sghfl’ﬁzf;} mp, j+a”

. k—1
Since op—1,4 + Zj:t Mpj + T > 0p_1¢ + mpy and

k-1
Ohyt = Oh— 1t+zmh,]>ah 1t+zmh]+x mp + 1,
J=t J=t

applying (2) with [ =op,_1,4 + Z t mp,j + x gives
si(Wat +  WhtWhitp - W) = (Wor - Wht)S(Wht1t -+~ Wnyt)
= (W ++ WhpWhitt =+ W) S1450 gy

where

n
I+ Y mig = on- 1t+th3+x—l— Z miy

i=h+1 i=h+1
k—1
= Op-14+1 T E mp; + .
j=t+1

This proves (3.4.1) for ¢ and, hence, (3).
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COROLLARY 3.5. For 0<x<mpyg, l=o0p_11+ 25;11 my,; with [+
x < op1, we have

w2,1 Tt W2 k—1 w2 k W2 k41 s W2,n—1
Wh—11 = Wh—1k—1 Wh—1k Wh—1k+1 *°° Wh—1n-1
Siqzdy = | Wh1 0 Whk—1 Wy Whktl 0 Whp—1 o |
Wh+1,1 "7 Whlk—1 Whtlk Whlk+1 - Whiln—1
Wn,1 o Wn, k—1 W,k Wh,k+1 te Wn,n—1

where w27k:sgh71,k+xwh7k. In particular, Si+18142** Si4m, Ay can be
expressed by the same matriz with w;‘lk:w;k, the element defined in

(3.1.2).

The next result is the key to establish the decomposition in Theorem 3.1
and the multiplication formulas in Theorem 4.1.

PROPOSITION 3.6. Maintain the notation as given in (3.0.1) and The-
orem 3.1, and let a = Z;:ll Mpt1,5, and b= Z?:kﬂ mp ;.

n
(1) If mpy1k =1 then, for At = AT =X+ e, — ept1 and 0 <p < mpq1k,
SRnt15%n42 " SxptadpM
=55 15%r 2 Sk pary, (St iy i)
= Sﬂ)‘\'hsthl T th7b+ldM;:k(Smh,k+1 e Smh,k+p)'

(2) If mpy >1 then, for \~ = AT =X —ep, + ent+1 and ¢ =my i — p with
0<p<mpyg (s00< g<mpy),

1502 SR, b0V
= SX;—HSX;-%Q T SX,:—&-adM,;k (smh,kflsﬁlh,k*Q T Sﬁlh,k*q)
=S SXh—s—a—ldM};k(smh,k—lsﬁ"bh,k—Q T smh,k_q)'
Here every product of the s;’s is regarded as 1 if its “length” is 0.

Proof. We only prove (1), (2) follows from (1) with a similar argument.
We first assume that p = 0. In this case, we want to prove
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(3.6.1) th+1sxh+z'"th+adﬂf::3X;_13X;_2"‘ng_bquk-

Since a =mp41,1 + -+ Mp41 k-1, repeatedly applying Corollary 3.5
(with h replaced by h + 1, noting my41, > 0) yields

S}\'h+183\'h+2 e th+adM

w21 v w2 k-1 wo W2 n—1
Wh,1 co Wh k-1 Wh, k co Wh,n—1
_ + +
= | Wh11 " Wppik—1 Whtlk 0 Whtln—1
Wh+2,1 *+°  Wh42k—1 Wh42k *°° Wh42n—1
Wn,1 te Wn, k-1 W,k e Wn,n—1

(Note that, if k=1, then a=0 and so left-hand side (LHS) of (3.6.1)
=dy. Note also that w,';l]:l if mpy1,;=0.) By comparing this
with the “matrix” of dM+ , we now show that multiplying dM+ by

-8 on the left will turn the product wj kwhﬂk into

SXN—15%r—2
Wh kWh1 k-
If b=0, then oy =0op—1% +mp and so wy kw;’LH k= Wh kWhi1k (cf.
Lemma 3.2). This proves (3.6.1) in this case. Assume now b > 0. Observe
that, for )ﬁzro(M,‘ltk), X;—Z >kmh]—/\h 1—1—2] L mp;+ 1. Let 1=

M1+ Z;ﬂ;ll mp,; and 1 <x <mypp. Then [+ <!+ 2+ mpp1p < Mg
By Lemma 3.4(3) (cf. (3.4.1)),

b

(3.6.2) 3l+xH2;1 = Hz_flsdhka'HE’
where IT; | is the product of the first kK — 1 columns of dM+ By (3.3.1) for
M,':k and noting (3.2.1),
SNE1SN -2 SRR, T,
= H?:_1 “Sop pSonk—1" " Sop_1 g+mp K+l

[ ] o]
aulk"'1Uh—1iﬂuhjﬂuh+ljﬂuh+lk"'QUnﬁ)

(363) (w2,n—1 o Whn—1Wh41n—1Wh4+2n—1 " " ° wn,n—l)‘
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Since the smallest number permuted by Sg, , Soy, 1—1 " Sop,_1 p+mp p+1
is Oh—1k +mpg + 1, while  the largest number permuted
by w21 - Wh—1,kWh k is Op—1,k + Mpk, it follows that
SoppSonp—1""" Sop_1ptmyp+1 commutes with woy -+ wp—1x and wp k.
Thus,

[ ] [¢]
SopkSopk—1 """ Sop_1x+mp r+1Wh kWhi1 k
= whyk(soh,k e SUhfl,k+mh,k+1)80h—1,k+mh,kSo'hfl,k+mh,k*1
[¢]
Sy, 1 Wh1 k
[
= wh,k(sah,ksUh,k—l T 8771h,k+1)wh+1,k
= Wh, kWh+1,k-
Hence, sy+ sy R d,,+ = LHS, proving the p =0 case.
T N = sk mng My, » P & p

Assume now p > 0. Then one can easily prove by Corollary 3.5 that
141 Sippdh = A0SRy, 441550, 442 S ptp-
Now the required formula follows from (3.6.1).
Proof of Theorem 3.1. Set D;[ =diag(A —ep41) + Eppt1. Then
ro(D;f) = A1 co(D;F) = A, and
V= v = (0, Az A L Mt = 1 Az, An).

Note that in this case dD; = 1. Observe that
(3.6.4)

D, NWy, = {1, th-i-l’ th+1sxh+2’ RN th-i-lsxh-i-Q v 8Xh+)\h+1—1}'

Putting d; = 53, 4155, 42 " SXy i for 0 <7< Apy1 — 1, the LHS becomes
U; Wy didpr W Since Ay = Zk;th >1 Mh+1k, the first decomposi-
tion follows from Proposition 3.6(1). The second decomposition can be
proved similarly.

84. Regular representation of the ¢-Schur superalgebra

We now use Proposition 3.6 to derive certain multiplication formulas in
S(m|n, r) and the matrix representation of the regular representation. For
any integers 0 < t < s, define Gaussian polynomials in Z = Z[v, v™!] by

[1=1].= e
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where [r]':=[1][2] - - - [r] with [{]=14+q+---+q~! (q=v?). Define
[r]' similarly with [i] = (v* — v7%) /(v — v ™).
For A € A(m|n, r), denote Py, to be the super Poincaré polynomial

(4.0.5) PW)\ — Z (q)é(wo)(qfl)é(wﬁ'

’LU()EW)\(O) ,W1 EW)\(I)

For 1 < h <m + n, define g, q;, vy, by

thla élh:q7 vp =1, lflgh’gm’
ah=—-q ', an=-1, vy=v"!, ifm<h<m-+n,

and let q; = v7. Recall the basis {#a}aem(min,r) given in Lemma 2.1.

THEOREM 4.1. For any A= (a;;) € M(m|n,r) and 1 <h<m+n, let
D:[, D, be the matrices defined by the conditions that D;{ — Eppy1, Dy —
Epi1p, are diagonal and co(D;") = co(D;, ) =r0(A), and assume D, D, €
M(m|n,r). Then the following multiplication formulas hold in S(m|n,r):

D ik Ght1,j Dok Oh,j
W) ppoa= 3 @G o e
ke[l,m+n] ’
apt1,k>1
D ik Qhyg D ick Bht,j
(2) ¢p-Pa= Z a7t T  langak + Hanir Pay, -
kE€[l,m+n] ’
ap,k>1

(Here [1,m+n]={1,2,...,m+n}.)

Proof. We only prove (1). The proof of (2) is symmetric.
Let A =r1o(A), p=co(A),d=dg and W, = W NW, =W, x W, (cf.
(3.0.1)), where W, = W, N W, for i =0, 1. Then A = co(D}), AT =
ro(Dyf) = A+ ej, — epy1, and AT 10 = D;.

Putting W,y = W, ) N W), we see from (3.6.4),

Dz/(h) NWy = {1, STl Sxpt15%, 420 a1 th+)\h+1—l}'

Since D,y N Wy € W,y whenever h > m, the element Tp , (i Wa used in
(2.0.12) can be written as Tp,, Wy = ZweDV/(mmWA(Qh-ﬁ-l)e(w)Tw-

By definition, to compute ¢D;¢A7 it suffices to write ¢D}J{¢A([my]”) as
(h*],

a linear combination of some Ty, aw,, where § =A We compute this
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within Sg(.,(m|n, r):

¢+ allzyl,) = dgadS u([29],) = de A (Twyaw,)
= ¢ A ([2y],\ TuTp,rw,) (by (2.0.12))
= Twew, TaTp,ow, = (Pw,) " Twew, Talzy],
= (Pw,) " '[ey)Tp,, o Talzy),,

_ A(w
(4.1.1) = (Pw,) ! E [xy]g(qh(_H)Tw)Td[xy]u'
we’Dy/(h)ﬁW)\

Note that d =da € Dy,. If a1 >0 and

Wp "= 5%, 115,427 SXH-Z;Z% aht1,51D

for some 0 < p < ap+1, then by Proposition 3.6(1), we have

=5~ 5~ Cege (s~ coss
wpd = 85, 55,1 SR, gy 41 (88401 S 040);

where dt = dA;k. Clearly, >°; y ant1,; = £(wp) —p. If we put Qpi1x=

~Zj<k Ah+1,j5

) , then

apt1,r—1

. L(wp) . o .
Z qh—l—f TwPTd - Qh'ﬂ’kT)\hT)\h*l o TAh*Zj>k ah,j+1Td+
p=0

. . ah+1,k71
(1 + Qh+1Tah7k+1 + -+ qh+1 Tah’kﬂ»l T Tah’k+ah+1’k71)'

Thus,

l(w
S eyl (@) T T ey,
wEDU/ﬁW,\

- Z Qthl’k[xy]ﬁTXthh—l o Txh_2j>k ah,]‘-i-le+
ke[l,m+n]
Ght1,k>1

(I (@n+1)Tay o1+ (@) 1 T, 01 Ty irang—1)
[yl
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Since

(I + (@r1) TG, 1+ (@r) " TG, 1 Ty vapg -1 [0,

= (1 +an1@e + - + (@rprGr) ™4[y,

= lan+1.klqnidn [ﬁﬁy]u
and

e T3, T o1 T ang = thj>k " [yl
it follows that
o prdallzyl,) = Py, > Qh+1,kqh2j>k " [ansr ke [yl Tus (2],
ani1p>1

- 73I/Vl,// --2j>k Qhp,j T
= > Qh+1,k4, [an+1 klanran Twearw,

apt1,k21 v

PWV// E ap, 4
= D> 5 @k loneaklanan b, ([0],),

v

apy1,521
. + .
where v = vy; with M = A;k or Wyn = ng N W,. Hence, noting

Pw,,  long + g laniir — g, lans + qs

Pw, lan ket lant1ely,  lantiklg,
we obtain
(4.1.2)
ek antr e ang [0k + ap [ant 1 klan 1,
bprda= Y @7 ’ Pur -
Dy - h+1 h [[athl,k]]Qk Ak
aht1,k>1

It remains to prove that

(4.13) lank 4 Ua,[ont1elan .
lant1k]as

= lank + 1] q,-

This can be seen in cases. For example, if h <m and k <m (resp., h >m
and k >m), then ¢,11 =1, dx =q (resp., qpr1=—q ', dx = —1), and so
ai = dp (resp., dn+19x = qp). Hence,

[[ah,k + 1]](1k [[athl,k]]Qthlk
[an+1,k] s

= [ank + 1q,-

https://doi.org/10.1017/nmj.2018.12 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2018.12

¢-SCHUR SUPERALGEBRAS 113

When hA<m and k>m, or h>m and k<m, we must have

ank +1=apt1k=1. Thus, [ank + 1]q, = [ank + g, ae = [antikla =
1= [ank + 1]q,. Finally, when h=m and k< m, we have q,=q; and

h1Gr = —q 'q=—1. But api1k = amyr,e =1, forcing [an41]an, a4, =
lan+1,k]lq, = 1. Hence,
lank + Uaklant1klan,
[ant1k]as

= IICLh,k + 1]](1h7

proving (4.1.3) and, hence, formula (1).

If n=0, then S(m|0,r) is the usual g-Schur algebra, which is defined
in [1] as a convolution algebra of the m-step flags of an r-dimensional space.
Similar multiplication formulas are obtained in [1, Lemma 3.4] by counting
intersections of certain orbits. Observe that, for h < m,

D i<k Ghtl D sk Chj
a4,

h+1 = ik quk O gk L Qi< i

h+1
COROLLARY 4.2. The multiplication formulas in Theorem 4.1 for
S(m|0, r) coincide with the ones in [1, Lemma 3.4).

We now make a comparison of these new formulas with ones given in [12,
Lemma 3.1], derived through the relative norm method.

The H-module T(m|n,r) is isomorphic to the tensor superspace
V(m[n)®" (over Z!) with an H-action defined in [12, (1.0.10)]; see [16,
Proposition 8.3]. In fact, the endomorphism algebra of V(m|n)®" has a
relative norm basis {Na} aers(mn,r) acting on the right. Matrix transposing
may turn the right action to a left action and result in a basis denoted
by {Ca}acm(mn,r)- The H-module isomorphism induces an algebra isomor-
phism (cf. [16, Corollary 8.4] and [13, Lemma 2.3])

Endy (V (m|n)®)® — S(mln, r), ¢4 — (~1)¢a,

where A = Zm<k<i<m+n,1<j<l<m+n @ij Ol
COROLLARY 4.3. Let

D ik Oht 1, w2 isk Ohyj _ Dok QR ik Ght1,j
finla, A =aq 77" a7 fa, A =at T a st

Then
(—)PEAL B (q, A) = fula, AB)  and

(71)D;+A+A;’kfhik(qa A) = gk(qa Aa h’)v
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where fr(q, A, h) and gr(q, A, h) are defined in [12, (3.0.1-2)]. In particular,
rewriting the multiplication formulas in Theorem 4.1 in terms of the (-basis
results in the formulas in [12, Lemma 3.1].

Proof. We have
(4.3.1)
ok, if h < m;
fhfk(q? A)= (—1)Zj<k Ami15 g i<k Omt15H2 5k amiif h=m:

(—1)2s<k Wt 2ok Ghg g~ 2g<k Wild - if > .

On the other hand (cf. [12, Lemma 5.1]), for the choice of + or —,

2A if h <m;
PO Ty, a+24 it h = m;
Dlsz +A+ Aik = i>m+1,5<k
FY ang £ anp1y +24 if h>m.
>k j<k

Adjusting the right-hand side of (4.3.1) by the corresponding sign for the
“+7 case gives fr(q, A, h). The “—" case is similar.

Theorem 4.1 and Corollary 4.3 give a new method to derive the key
fundamental multiplication formulas given in [12, Lemma 3.1].
By introducing the normalized basis {[A]} sers(mn,r)» where!

[A] = ()0 Wg, with d(A) = > aijari+ (=) aija,
i>k,j<l j<l
we may modify the formulas given in Theorem 4.1 to obtain further multi-
plication formulas for the [ ]-basis; cf. (the p=1 case of) [12, Propositions
4.4 and 4.5].

COROLLARY 4.4. Maintain the notation above and let ey, =0 for h #
m, and €py | = Zi>m’j<k a; ;. The following multiplication formulas hold in
Sr(mln,r):

) D= Y~ ans + 1,0 (AL,

ke[l,m+n]
ah41,k>1

where f}—:k = Zj)k ap 5 — (_1)h+h+1 Zj>k Ah+41,55

TThe element [A] is denoted by €4 in [12, (4.2.1)].
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@ DpNAl= S (O R s+ L [47)

ke[l,m+n]
a’h,k21

where fh_,k = ngk Ah41,5 — (_1)h+h+1 Zj<k @h,j-

The first important application of the multiplication formulas above is a
new realization of the quantum supergroup Uy (gly,),); see the argument
from [12, Section 5] onwards and, in particular, see [12, Definition 6.1,
Theorem 8.4].

We now seek further applications of these multiplication formulas.

We will show below that the formulas provide enough information for
the regular representation of the integral g-Schur superalgebra Sg(m|n, r).
We then use such a representation to determine the semisimplicity of ¢-
Schur superalgebras and to construct infinitesimal and little ones without
involving the quantum supergroup or quantum coordinate superalgebra.

We return to the general setting for Sr(m|n,r) defined relative to a
commutative ring R and an invertible parameter v € R or ¢ =v?. Base
change via Z — R, v — v, we may turn the multiplication formulas in
S(m|n, r) into similar formulas in Sg(m|n, r). In fact, these formulas can be
interpreted as the matrix representation of certain generators for Sg(m|n, r)
relative to the basis {[A]} 4err(mn,r)-

Let

M{mln)* = {A = (as) € M(min) | i3 = 0,1 < <m+n}.
For A€ M(m|n)* and j = (j1, jo, - - - » Jmtn) € Z™™, define

ST (CD)APOMIA LN, i A<
(4.4.1) A(j, r) = { reA(mn,r—|A))
0, otherwise,

where \ * j =Y _7"1"(~1)"\;j; is the super (or signed) “dot product”, A +

A=A+ diag(\) and M = 1n>ismsk>1 M jmi, for a matrix M. We also
m<j<l<m+n
let 1) = [diag())] for all X € A(m|n, r), the identity map on [zy],Hr. Then

IA[A] = 63 1o(4)[A]. For the zero matrix O, e; € A(m|n, 1) and p > 1, set

Ki=0(e;, 1), BY =(pEyps1)0,7), FY = (pEpi1)(0, 7).

Note that K; = Z/\GA(m\n,r) v(_l)uil,\ and E%L =0="r?

m*
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Let S, S} be the subsuperalgebra of Sg(m|n, r) generated respectively

by Fglp) , Eép)

spanned by all 1.

for all 1<h<m+n, p=>1, and S% the subsuperalgebra

The first assertion of the following is [12, Corollary 8.5].

THEOREM 4.5. The q-Schur superalgebra S = Sr(m|n, r) is generated
by K;, 1y, Egp),Fglp) forall 1< h,i<m+n,h#m+n, A€ A(m|n,r), 1 <
p<r, and Sgp= SES%S];. These generators have the following matrix

representations relative to the basis {[A]} ae v (min,r)-

(0) x;[A] = vV A]L 1,[A] = 6y o)Al
m—i—ni
®) a1 _ £ (v,4) ap + Vg
1 Al = A Ey—
(1) B, [A] Z Up H [[ ]]u2[ +ZVZ( hl

Vi
veA(mln.p) k=1
v<rowp, 41 (A)

Eh+1,l)]7
where  h#m,  fif (v, A) =350, an Ve — Dot Qi1 Ve + Doy Vil
and v <V means that v; < I/Z{ for all i;

m+n T T
In (n,A Qh+1,k + Vi
@ = S o I

Vg
VEA(m\n,p) k=1
v<rowy (A)

Ent11)],
where h#m and fn (v, A) = ngt Aht1,jV¢ — Ej<t h,jVe +
Doter ViV

o + (A
(3) Buld]= > (—)Zemock st oy ], 147,

k

[A=> " w(En -
U;21+1 l

Amt1,k21
where fo 1 (A) =3 j0) amj + 2o Gt
o ag I (A% _
(4) Fp[A] = Z (_1)E1>m,3<k @i,j Um+li [[am+1,k + 1HU%L+1 [Am,k]’
k
am,k‘>1

where fn_l,k(A) = ngk Am+1,5 + Zj<k (m,j-

Proof. The first assertion follows from [12, Corollary 8.5] (cf. [12,

Theorem 6.3]). Now the relations in (0) are clear. Since El(lp )[A]:
D+

B Lo A,  FPA = FP L[], and  BP 1) = (1) oDy,

F%p)lm(A):(—1)D’;P[D,;p], where the matrices D}jfpeM(mm,r) are

defined by the conditions that co(D,j;p):ro(A) and D}tp—th,hH,
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D;,, — pEny1, are diagonal, (1) and (2) follow from [12, Proposition 4.4]?

and [12, Lemma 5.1(1)] which tells Dip:(). The remaining (3) and (4)
follow from the h = m case of Corollary 4.4; see [12, Proposition 4.5].

Note that we have in Sp(m|n, r)

-1 -1
v KpK — K, "Kpt1
hk h+1 h
(4.5.1) EpFr — (—1)""FrEp = Op o o] .

h =Y

85. Semisimple ¢g-Schur superalgebras

The most fabulous application of the multiplication formulas is the
realizations of quantum gl, [1] and quantum super gl,,,, [12]. We now
use these formulas to construct certain modules from which we obtain a
semisimplicity criterion of g-Schur superalgebras. From now on, let F' be a
field of characteristic #2 and assume that v € F* and q=v?# 1. Since
every simple Sg(m|n, r)-supermodule is also a simple Sg(m|n, r)-module
(see e.g., [15, Proposition 4.1]), we will drop the prefix “super” in the sequel
for simplicity.

We first determine the semisimplicity for Sp(1]1, 7) (see [25] for the ¢ =1
case).

LEMMA 5.1. Assume that q # 1 is a primitive [-th root of unity.

(1) If ltr then Sp(1|1,7) is semisimple and has exact r nonisomorphic
irreducible modules which are all two dimensional.

(2) Ifl|r then Sp(1]1,7) is not semisimple and has exact v+ 1 noniso-
morphic irreducible modules which are all one dimensional.

Proof. Let Sp=Sp(1|1,r). We first observe that
M1, 7)={A A, A, AT |a€[0,7],b,ce (0,7 —1],d € [0,r — 2]},

where A, A;r, Az, Aélt denote respectively the following matrices

a 0 b 1 c 0 d 1
0 r—a/’ 0 r—b—-1)"° 1 r—c—1)"° 1 r—d—-2)°

Note that 1q := 1(qr—q) = [Aa] and Y, _ 14 is the identity element. So

Sp = @ Srl, and dim Sp = 4r.
a=0

2D+

hp» Dh.p are denoted there by Up, L.

https://doi.org/10.1017/nmj.2018.12 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2018.12

118 J. DU, H. GU AND Z. ZHOU
Since Srl, is spanned by [A] with co(A) = (a, r — a), it follows that
Srlg = span{lo, [A]]},  Srly =span{l,, [4, ]},
Srla = span{le, [Af], [A, ), [AZ ]}, Vae[l,r—1].
By Theorem 4.5(3) and (4), we have
EAf] =0, Pi[A7]=v " Vrlglo,  Eilo=[43], Filo=0,
P[4, =0, E[4,_]=0""[rl;-1l,, E11,=0, Fl,=[A_]

If 147, then v~ ("=D[r], = V" r],~1 # 0in F, and we see easily that L(1) :=
Srlp is irreducible. Similarly, L(r) := Sp1, is irreducible if [ {r.

If I | r, then L(1) is indecomposable and [AJ] spans a submodule L(1) of
L(1). Let L(0) = L(1)/L(1). Similarly, [A,_,] spans a submodule L(r — 1).
Let L(r) = L(r)/L(r — 1).

For a € [1,r — 1], applying Theorem 4.5 again yields

(1) EafA7]=0, FiA7] =0 O —af Lo + [47 4],
(5.1.1) (2) Pl =0, E[AL ] =0 a1 la — (AT,

(3) Ei[Az 4] =v"""a]1[AT),  Eila=[A]],

@) FAT =~ "I —a][A], File= (A

L(a+1) =span{[A]], ;1[A]]} and L(a)=span{[A,_,], E1[4,]}.

If {7, we claim that Spl, = L(a + 1) & L(a) is a direct sum of irreducible
submodules. Indeed, [a],-1 and [r — a], cannot be both zero in this case. So
L(a+1)NL(a) =0, forcing Spl, = L(a + 1) & L(a) as vector spaces. Since,

by (4.5.1),
(5.1.2)
-1 -1 r —r
4 Jr_K1K2 —K; K2 4 U —W +
EiF1[Adg] = (B1F1 + FiE)[Ag] = —————[Ad] = ——— [AJ],

and (v" —v7") /(v —v~1) # 0, every nonzero element in L(a + 1) generates
L(a+1). Hence, L(a+ 1) is an irreducible submodule. Likewise, L(a) is a
submodule. This proves that Sr1, is semisimple for all a € [1, 7 — 1]. Hence,
Sr is semisimple.

Assume now [ | r. Then, by (5.1.2), E1(F1[A]]) = 0. On the other hand,
F? =0 implies F1(F1[AS]) =0. Thus, F1[A}] spans a submodule L(a) of

https://doi.org/10.1017/nmj.2018.12 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2018.12

¢-SCHUR SUPERALGEBRAS 119

L(a+1). Similarly, E1[A, ;] spans a submodule L(a) (= L(a)) of L(a).
Moreover, (cf. [25, Theorem 1])

La+1)2Lla+1)/L(a), L(a—1)=L(a)/L(a).

Hence, L(a),0 < a <, form a complete set of all irreducible Sp-modules.

REMARK 5.2. The classification of irreducible modules for Si (1|1, ) in
the semisimple case is consistent with a classification given in [16, Theorem

7.5).

LEMMA 5.3. With the same assumption on Il as in Lemma 5.1, the
superalgebras Sp (2|1, 1) and Sp(1|2,r) are not semisimple for all r > 1.

Proof. By Lemma 2.1, it suffices to consider Sp = Sp(2|1,7). Let e =
1(r0,0)- Then, for P =Spe, Ends, (P) = F' and so P is an indecomposable
Sp-module. We now show the existence of a proper submodule of P if r > [.
Observe that P is spanned by all [A] with co(A) = (r, 0, 0). Such A will be
written as A, . where (a, b, c)t is the first column of A. We have two cases
to consider.

Case 1. If r=al +b with0<b<l—2 (i.e.,, l{r+1), then b+ 1 <[ and
ngﬂ)e: [Agi—1p+1,0] € P. We now claim that [Ag_1p+1,0] IS @ maximal
vector in the sense that Eép) [Agi—1p+1,0] =0 for all h=1,2 and p > 1. This
is clear if h = 2 since all aj41,1 = az = 0. Also, by Theorem 4.5(1), we have

B [Ag_10410] =0 for p>b+1 and, for p<b+1<1,

p—1 al—1

Egp) [Aai—1p+1,0] = El7.E1 [Aai—1,b41,0] = %E?I[Aaz,b,o] =0.

[Pl [pli
By the claim, we see that P’ := Sp[Agi—1p+1,0) = Sg[Aai—1,+1,0] is & proper
submodule of P since e € P'.

Case 2. If r=al—1 (and so a>2), then by Theorem 4.5,
FQ(Fgl)e) =Fo[A,_110] = [Ar—11-11] € P. Now, since r — [ + 1= (a — 1)I, we
have El[Arfl,lfl,l] = UT_ZIIT — 1+ 1]]q*1 [AT,ZJFLZ,QJ] =0and Eg [Arfl,lfl,l] =
Ul_l[[l]]q—l[Ar_l7l70] = 0. Hence, Eép) [A_1i—11]=0forall h=1,2 and p < L.
Similarly, by Theorem 4.5(1), E,(lp) [A;—11-11] =0for h=1,2and p > [. This
proves that Sp[A,_j;—11] = Sp[Ar—11-1,1] is a proper submodule of P.

Combining the two cases, we conclude that S is not semisimple whenever
r>1.
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The following result is the quantum analogue of a result of Marko and
Zubkov [26], which is stated in the abstract.

THEOREM 5.4. Let F' be a field containing elements q # 0, 1. Then the
q-Schur superalgebra Sp(m|n, r) with m,n > 1 is semisimple if and only if
one of the following holds:

(1) q is not a root of unity;
(2) q is a primitive Ith root of unity and r <I;
(3) m=n=1 and q is an lth root of unity with l{r.

Proof. The first two conditions imply that Hp is semisimple and so is
Sr. The semisimplicity under (3) follows from Lemma 5.1. We now show
that, if all three conditions fail, then Sr is not semisimple. By Lemmas 2.1
and 5.1, it suffices to look at the case for m>2andn>1and [ <.

Consider the subset

A(m|n, ) = {x e Amln, ) | A© = (A1, A2, 0,...,0), A1
= (Ams1,0,...,0)}

and let f= Z/\GA(mm,r)’ Iy and e=14.0 ). Then ef =e=fe and it
is clear that there is an algebra isomorphism Sg(2|1,r) = fSp(m|n,r)f.
By identifying the two algebras under this isomorphism, we see
that there is an fSp(m|n,r)f-module isomorphism Spg(2[1,7)1(.00) =
fSr(m|n,r)e. This fSp(m|n,r)f-module is indecomposable, but not irre-
ducible, by Lemma 5.3. Since Sp(m|n,r)e is indecomposable and its
image fSp(m|n,r)e under the “Schur functor” is indecomposable, but not
irreducible, we conclude that Sg(m|n, r)e is not irreducible (see [22, (6.2g)]).
Hence, Sp(m|n, r) is not semisimple.

REMARK 5.5. Semisimple g-Schur algebras have been classified by
K. Erdmann and D. Nakano [18, Section 1.3, Theorem (A)]. By Corol-
lary 4.2, we may also use this new approach to get their result; see
appendix A.

§6. Infinitesimal and little g-Schur superalgebras

We now give another application of the multiplication formulas. We first
construct certain subsuperalgebras of the ¢-Schur superalgebra Sg(m|n, r)
over the commutative ring R in which ¢ = v? # 1 is a primitive I-th root of
unity. (So [ >2.)
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Let sr(m|n,r) be the R-submodule spanned by all [A] with A€
M(m|n, r);, where

M(mn,r); ={(a;;) € M(m|n,r) |a;; <1Vi#j}.

We have the following super analogue of the infinitesimal ¢-Schur algebras
(cf. [3])-

THEOREM 6.1. The R-submodule sp(m|n,r) is a subsuperalgebra gen-
erated by Ep, Fp, 1\ for all1<h<m+n, A€ A(m|n,r).

Proof. Let s’z(m|n,r) be the subalgebra generated by [aE} 41 + D]
and [bEpy1 5, + D'], where D, D’ are diagonal matrices with aFEj 11 +
D,bEpi1+ D' € M(m|n,r); and 0<a,b<l. Observe from the multi-

plication formulas in Theorem 4.5 that if A € M(m|n,r); then Eéa) [A] =

[aEp p+1 + D][A] and ng) [A] = [bEh41,5 + D'][A], for some D, D', are linear
combinations of [B] with B € M(m|n, r);. This implies that s’3(m|n,r) C
sr(m|n, r). Now, by the triangular relation [12, Theorem 7.4]:

(<2) (<1)
11 [@iBniin+ Dingl 1] laijBrnir + Diny)
i<h<j 1<h<y
(6.1.1) = (=1)[A] + lower terms,

an inductive argument on the Bruhat order on M (m|n,r) shows that
every [A] with A € M(m|n,r); belongs to s’z (m|n, ). Hence, sg(m|n,r) =
s (m|n, r) is a subalgebra and, hence, a subsuperalgebra. From the argu-
ment above, we see easily that Ep, Fp,, 1) can be generators.

Remarks 6.2. By [14, Corollary 8.4], sr(m|n,r) is isomorphic to the
infinitesimal g-Schur superalgebra defined in [3, Section 3] by using quantum
coordinate superalgebra.

We now construct a subsuperalgebra ug(m|n, r). Let Z; :=7Z/IZ and let
~:Z — Z; be the quotient map. Extend this map to M (m|n,r), A(m|n,r)
by baring on the entries. Thus, we may identify the image M (m|n, r) with
the following set:

M(mln, 7) = {A* + diag(3a) | A € M(mln, )} = M(mln, ),

where A is obtained by replacing the diagonal of A with 0’s and 94 € Z"™+"
is the diagonal of A (i.e., A= A* 4 diag(d4)). For A= A% + diag(da) €
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M (m|n, r), define

4= Z [Ai + diag(\)] = Z § A% +diag(N)s
)\EA(Wﬂ’ﬂﬁ‘—\AiU )\EA(mJn,j—\AiU
A=0 4 A=0 4

and let 1y :Zdiag(A). Note that every £, is a homogeneous element with
respect the super structure on Sg(m|n, r).

We now have the super analogue of the little g-Schur algebra introduced
in [10].

COROLLARY 6.3. The subsuperspace ug(m|n,r) of sg(m|n,r) spanned
by &4 for all A€ M(m|n,r) is a subsuperalgebra with identity
Zmem Ldiag(z) and generated by Ep, Fp, 1y for all 1<h<m+n, A€

A(m|n, ).

Proof. In this case, with a proof similar to that for Theorem 6.1,
we see that ug(m|n,r) is the subalgebra generated by {.p, . ,+p and
ngh+1 .+D’> where D, D' are diagonal matrices with aEp, p4+1 + D, bEp41 5 +

D' € M(m|n,r). Note that by taking the sum of the triangular relations
(6.1.1) for every A* + diag()\) with A = 04, we obtain the required triangu-
lar relation for £ 4’s (cf. the proof of [12, Theorem 8.1]). The last assertion

(a) ()7
h

is clear as every EaEh hi1t+D OF EbEh-&-l .+ has the form E Iy or F;"1y.

We end the paper with the following semisimplicity criteria for the
infinitesimal/little ¢-Schur superalgebras; compare the nonsuper case [11,
Section 7] and [21].

THEOREM 6.4. The superalgebra sp(mn, r) or up(mn, r) withm,n > 1
1s semisimple if and only if one of the following holds:

(1) r<li;
(2) m=n=1,11r.

Proof. We first look at the “infinitesimal” case. We observe that, if
r<lor m=n=1, then sp(m|n,r)=Sr(m|n,r). The “if” part is clear.
Conversely, suppose sr(m|n, r) is semisimple. Since sp(1|1, r) = Sp(1]1, 7),
its semisimplicity forces [{r. Assume m>2,n>1 and [ <r. By the
proof of Lemma 5.3, we see that sp(2[1,7)e (e=1(00)) is indecom-
posable and contains the proper submodule sp (2|1, 7)[Agqpo] if 117 +1,
or sp(2|1,7)[Ar—i1;—11] if {|r+ 1. Hence, we can use the Schur functor
argument to conclude sg(m|n, r) is not semisimple unless r < [.
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We now look at the “little” case. If r <, then up(m|n, r) = Sp(m|n, r) is
semisimple. If m =n =1 and [ {r, then the simple module L(a) constructed
in the proof of Lemma 5.1 remains irreducible when restricted to ug(m|n, r).
This is seen from the last assertion of Corollary 6.3. Thus, sp(m/|n, ) as an
up(m|n, r)-module is semisimple. As a up(m|n, r)-submodule of sz (m/|n, r),
up(m|n, r) is semisimple. Conversely, if conditions (1) and (2) both fail.
Then r > [. If one of the m and n is great than 1, then ugp(m|n,r) is not
semisimple. To see this, it is enough to show that M =sp(2|1,r)e as an
ur (2|1, r)-module is indecomposable. Indeed, suppose M = M; & My where
M; are nonzero up(2|1, r)-submodules. Then, for any A € A(m|n, r), 1xM;
and 1)M>s cannot be both nonzero since dim 1yM = 1. This shows that M;
is a direct sum of some 1yM. Hence, M; is an s¢(2|1, r)-module, contrary
to the fact that M is an indecomposable (2|1, r)-module. If m=n =1,
then [ | 7. In this case, up(1|1, r) is clearly non-semsimple as up(1]1, 7)1 is
indecomposable, but not irreducible.

Acknowledgments. We thank the referee for several helpful comments.

Appendix A. A Theorem of Erdmann—Nakano

THEOREM A.1. [18, Section 1.3, Theorem (A)] Let F be a field of char-
acteristic p >0 containing elements q#0,1. Then the gq-Schur algebra
Sr(m, r) is semisimple if and only if one of the following holds:

(1) q is not a root of unity;

(2) q is a primitive lth root of unity and r <I;

(3) m=2,p=0,1=2 and r is odd;

(4) m=2,p>3,1=2 and r is odd with r < 2p + 1.

Proof. 1f ¢ satisfies (1) or (2), then Sp(m,r) is clearly semisimple.
Suppose now that ¢ is a primitive [th root of unity and r>1> 1.
By Corollary 4.2, an argument similar to those given in the proofs of
Lemma 5.3 and Theorem 5.4 shows that both Sp(m, 7)1, . o), m = 3, and
Sr(2,7)1(r0), [ 17 + 1, are indecomposable but not irreducible. In particular,
both Sp(2,1) and Sp(2, 1 + 1) are not semisimple if [ > 3. Since tensoring an
Sr(2, r)-module with the determinant representation gives an Sp(2, r 4 2)-
module, we see that Sp(2,r) is not semisimple for all » > 1 > 3. Hence, a
semisimple Sg(m, r) forces m = 2,1 =2 and 2|r + 1. It remains to determine
the semisimplicity of Sp(2,7) when r >1=2 and r odd (and so 2|r + 1).
We claim that, for »>1=2 with r odd, Sp(2,r) is semisimple if and
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only if either p=0 or p >3 but r < 2p + 1. Indeed, Sp(2, r) is semisimple
if and only if all ¢-Weyl modules A(X), A € AT(2,r), are irreducible. For
A= (A1, Ag) € AT(2,7), if ) € A()) is a highest weight vector, then A())

has a basis x)\,Fla:A,ng)m,\,...,F&Al_)@)a@\ and, for 1 <a< A — A, we
have
a
_s) [ A1 — A3 28 —2 _ AL — A
E§“)F§“)MZZF§“ S)[ ! 2; ° a} E§“ s):r:,\:[ ! . 2} Tz,
s=0 v v

where v = ,/q. Thus, the irreducibility of A()) is equivalent to
AL — A
11 [ 1 2] £0.
a
0<a<A1— A2 v

Since r = A1 + Ao is odd and [ = 2, we see that Ay — A2 is also odd and

Al — Ao _ 7/\17;\271 1
a Y ay ao],’

where a = 2a1 + ag with ag =0, 1. Obviously, [alo] =1. Thus, if p=0 or
v

Al —Ag—1

p =3 but r <2p+1 then ( 2 ) #0 for all (A1, Ay) € AT(2,7) and 1 <
a < A1 — Ag. Hence, Sp(2,r) is semisimple in this case. Conversely, if r >
2p 4+ 1, choose A so that Ay — Ay =2p+ 1 and a = 3. Then

()

Hence, A()) is not simple in this case and so Sg(2, r) is not semisimple.
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