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Abstract

In this paper we examine the extremal tail probabilities of moving sums in a marked
Poisson random field. These sums are computed by adding up the weighted occurrences
of events lying within a scanning set of fixed shape and size. We also provide an alternative
representation of the constants of the asymptotic formulae in terms of the occupation
measure of the conditional local random field at zero, and extend these representations
to the constants of asymptotic tail probabilities of Gaussian random fields.
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1. Introduction

The maxima of moving averages in Gaussian random fields in dimension d > 1 was studied
in [19] and [21], with applications in imaging and signal detection. Two key techniques used
are (i) the Karhunen–Loève expansion with the volume of tube formula and (ii) the Euler
characteristic; see [1] for an overview, and [24] and [25] for more recent developments.

The maxima of moving sums in Poisson random fields, more commonly known as scan
statistics in the statistical literature, is also used widely in molecular biology, epidemiology,
geostatistics, and image analysis (cf. [4], [8], [9], and [11]), but the tail probability approxima-
tions are in comparison not as well developed for d > 1. While the tail probabilities of these
sums have been studied in [3], [14], and [15], restrictions to rectangular scanning sets have
been imposed for analytical convenience.

We set out here to study the tail probabilities of the maxima of moving sums for a wider choice
of scanning sets. A theory parallel to the study of tail probabilities in Gaussian or Gaussian-
like random fields in the classical framework of Pickands [16] and Qualls and Watanabe [18]
(see also [7] and [17]) is first developed. Motivated by recent developments in molecular
biology (see, for example, [8]), we consider a more general marked Poisson random field. This
generalization entails careful consideration of overshoots in special cases of scanning sets that
is not required in Poisson random fields. Albin [2] and Berman [5] studied tail probabilities
of stationary processes, but their limiting results are of a different type and do not apply here.
Kabluchko and Spodarev [13] considered scan statistics of Lévy noises and marked empirical
processes, with the scan over all cubic subsets of [0, 1]d .

The main results of this paper are Theorems 2.1 and 2.2. We illustrate their applications with
examples in Section 3. Theorem 2.1 provides an expression of the asymptotic tail probability
and the statement of the result requires a description of an induced local random field around
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the boundary of the scanning set. The proof of Theorem 2.1 is given in Section 4. Lemma 4.1
is the basic building block of Theorem 2.1, providing the extremal tail probability over a local
domain by using a change of measure approach. We then show how these building blocks can
be combined together to provide the tail probability of the maxima of the sums over the whole
domain, via an adaption of the Pickands–Qualls–Watanabe technique. Theorem 2.2 provides
an alternative representation of the asymptotic constants in terms of the occupation measure of
the local random field at zero. The proof is given in Section 5. We extend the representation
to Gaussian random fields in Section 6. These representations provide simple upper and lower
bounds of the asymptotic constants; see the examples in Sections 3 and 6. We consolidate the
technical details in the appendices.

2. Main results

For vectors t = (t1, . . . , td ) and u = (u1, . . . , ud), and real number b, we shall let t ≥ u

denote tj ≥ uj for all j and let t ≥ b denote tj ≥ b for all j . Let σk(·), k = d or k =
d − 1, denote the Lebesgue or Hausdorff measure of a k-dimensional manifold in R

d . For
any A ⊂ R

d , real number b, and t ∈ R
d , let #A denote the number of elements in A and

t + bA = {t + ba : a ∈ A}. Also, let ‖t‖ = (t2
1 + · · · + t2

d )1/2 and ‖t‖∞ = max1≤j≤d |tj |.
Let B be a bounded subset of R

d with boundary ∂B that can be expressed as a finite union
of smooth (d − 1)-dimensional submanifolds possibly with boundaries (see [22, p. 113] for the
definition), satisfying σd−1(∂B) < ∞. For example, if B = {t : ‖t‖∞ ≤ 1}, a cube of length 2
centered at 0, then ∂B is a union of 2d faces, each a smooth (d − 1)-dimensional submanifold
with boundary.

Let {ti : i ≥ 1} be a homogeneous Poisson point process on R
d with intensity λ > 0,

and let X1, X2, . . . be independent and identically distributed (i.i.d.) random variables having
distribution F and independent of the Poisson point process. Let X = {(ti , Xi) : i ≥ 1} denote
the marked point process. Letµ = E(X1) andM(θ) = E(eθX1). Assume that� = {θ : M(θ) <

∞} is an open neighborhood of 0. For any A ⊂ R
d , define the sum S(A) = ∑

ti∈A Xi . Let D

be a Jordan measurable (bounded) subset of R
d , and let c > µσd(B). We analyze here the tail

probability

pλ = Pλ

(
sup
v∈D

S(v + B) ≥ λc
)

as λ → ∞. (2.1)

Through an appropriate transformation, we can also look at the limiting probability of
pλ as one involving fixed Poisson rate λ0 > 0 and increasingly large scanning sets. Let
gλ = (λ/λ0)

1/d be the scaling constants. Then pλ = Pλ0(supv∈gλD S(v + gλB) ≥ λc). For
notational simplicity, the analysis here looks at pλ in terms of (2.1), but in terms of practical
use, the asymptotics in terms of increasing scanning sets is sometimes more appropriate.

We will now proceed with the description of a limiting local random field Y that is derived
from both the distribution F and the geometry of the boundary ∂B. Let θc > 0 and distribution
Fc satisfy

M ′(θc) = c

σd(B)
and Fc(dx) = eθcxF (dx)

M(θc)
, (2.2)

where a prime here denotes the first derivative. By (2.2), a random variable having distribution
Fc has mean M ′(θc)/M(θc) = c/[σd(B)M(θc)] and, hence, a marked Poisson process with
intensity λM(θc) and mark distribution Fc inside B will satisfy E∗[S(B)] = λc.

Consider the product space ∂B × R with measure induced from the (d − 1)-dimensional
Hausdorff measure on ∂B and Lebesgue measure on R. Let {vi : i ≥ 1} be a nonhomogeneous
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Poisson point process on ∂B × R with intensity 1 on ∂B × [0, ∞) and intensity M(θc) on
∂B × (−∞, 0). Let Z1, Z2, . . . be independent random variables (marks) conditioned on
this nonhomogeneous point process, with Zi ∼ F if vi ∈ ∂B × [0, ∞) and Zi ∼ Fc if
vi ∈ ∂B × (−∞, 0). Let Qλ be a probability measure under which X = {(ti , Xi) : i ≥ 1} is a
nonhomogenous marked point process with intensity λM(θc) and mark distribution Fc inside
B, and intensity λ and mark distribution F outside B. The measure Qλ describes the local
behavior of X near ∂B under the original probability measure Pλ in which X is homogeneous,
when conditioned on {S(B) ≥ λc}. Let ∂B(δ) = {u ∈ R

d : ‖u − t‖ ≤ δ for some t ∈ B}. For
any m > 0 and large λ, we can apply a λ-scaling transformation such that X under Qλ and
restricted to ∂B(mλ−1) tends to Z restricted to ∂B × [−m, m] as λ → ∞.

Let nt be the unit normal vector of t ∈ ∂B pointing away from B, and let a dot denote the
scalar or inner product of two vectors. Let

Y (j)(u) =
∑

{i : v
(j)
i ∈A

(j)
u }

Zi for j = 1, 2,

where

A(1)
u =

⋃
{t∈∂B : nt ·u>0}

t × [0, nt · u) and A(2)
u =

⋃
{t∈∂B : nt ·u<0}

t × [nt · u, 0). (2.3)

We define the limiting local random field by

Y (u) = Y (1)(u) − Y (2)(u), u ∈ R
d . (2.4)

Let
I (= Ic) = θcc − σd(B)[M(θc) − 1]. (2.5)

It follows from Theorem 2.1, below, that I = −limλ→∞ λ−1 log pλ and, hence, it is the large
deviation rate of the tail probability pλ. If there exists η > 0 such that F is concentrated on
±η, ±2η, . . . , then we say that F is arithmetic. The largest η with this property is called the
span of F ; cf. Section 5.2 of [10]. If such η does not exist then we say that F is nonarithmetic.
Let �·� denote the greatest integer function, and let a double prime denote the second derivative
of a function.

Theorem 2.1. Define xλ = θc(λc − η�λc/η�) if F is arithmetic with span η and xλ = 0 if F

is nonarithmetic. Let

Km =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
η

[
(1 − e−ηθc )−1 +

∑
�∈ηZ+

eθc� P
(

sup
0≤u≤m

Y(u) ≥ �
)]

if F arithmetic with span η,

θ−1
c +

∫ ∞

0
eθcy P

(
sup

0≤u≤m

Y(u) ≥ y
)

dy if F nonarithmetic.

(2.6)
Then

K = lim
m→∞ m−dKm is a well-defined positive and finite constant. (2.7)

Moreover, as λ → ∞,

pλ = Pλ

(
sup
v∈D

S(v + B) ≥ λc
)

∼ [2πσd(B)M ′′(θc)]−1/2e−λI+xλλd−1/2σd(D)K. (2.8)
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Remark 2.1. By Jordan measurability of D, as a → 0,

#

{
k ∈ (aZ)d :

d∏
j=1

[kj , kj + a) ⊂ D

}
∼ #

{
k ∈ (aZ)d :

d∏
j=1

[kj , kj + a) ∩ D �= ∅

}
. (2.9)

Relation (2.8) still holds if D is replaced by domains Dλ that depend on λ, provided that (2.9)
holds with D replaced by Dλ and a replaced by mλ−1, with limit λ → ∞ for all large m, and

lim
λ→∞ λ−1 log[σd(Dλ)] = 0. (2.10)

However, even without condition (2.10), the relation

Pλ

(
sup
v∈Dλ

S(v + B) ≥ λc
)

∼ 1 − exp{−[2πσd(B)M ′′(θc)]−1/2e−λI+xλλd−1/2σd(Dλ)K}
still holds.

We now provide an alternative expression of K which follows from a different proof of (2.8).
This representation is less intuitive when compared to (2.6) and (2.7), but it has the advantage
of being able to provide simple bounds for K . Let σ−1

d (·) denote the reciprocal of σd(·).
Theorem 2.2. The constant

K = χ−1
c E([(1 − exp{θc sup{Y (u) : Y (u) < 0}}]σ−1

d ({u : Y (u) = 0})), (2.11)

where χc = η−1(1 − e−ηθc ) when F is arithmetic with span η and χc = θc when F is
nonarithmetic.

3. Examples

We first discuss two interesting cases of Theorem 2.1. In Example 3.1 we consider F

to be degenerate at 1. Then (2.8) simplifies to (3.2), below, an extension of tail probability
relations in Poisson random fields obtained earlier by other authors to nonrectangular scanning
sets. In Example 3.2 we consider rectangular scanning sets on a marked Poisson random field.
We show here that an overshoot constant derived from F plays an important role in the tail
approximations. When F is degenerate at 1, that is, for Poisson random fields rather than
marked Poisson random fields, the overshoot constant is equal to 1 and disappears from the
resulting formula. We then show in Examples 3.3 and 3.4 how the alternative expression in
Theorem 2.2 leads to simple upper and lower bounds of K .

Example 3.1. Let F be concentrated at 1. Then S(v + B) counts the number of points ti lying
inside v + B. Since M(θ) = M ′(θ) = M ′′(θ) = eθ , it follows from (2.2) and (2.5) that

eI =
(

c

σd(B)

)c

e−c+σd(B). (3.1)

Substituting (2.2) and (3.1) into (2.8) and noting that F is arithmetic with span 1, we obtain

pλ ∼ (2π)−1/2σ
�λc�
d (B)c−�λc�−1/2eλc−λσd(B)λd−1/2σd(D)K as λ → ∞. (3.2)
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Example 3.2. Let B = ∏d
k=1[0, bk] with bk > 0 for all k. Since ∂B is a union of 2d faces,

with a pair of them orthogonal to each coordinate vector, by (2.3) and (2.4),

Y (u) =
d∑

k=1

[Y (1)
k (uk) − Y

(2)
k (uk)],

where Y
(1)
1 , . . . , Y

(1)
d , Y

(2)
1 , . . . , Y

(2)
d are independent one-dimensional compound Poisson pro-

cesses. The process Y
(1)
k , 1 ≤ k ≤ d, is constructed from a marked point process with intensity∏

��=k b� (the surface area of the face of B orthogonal to the kth coordinate vector) and mark
distribution F . The process Y

(2)
k , 1 ≤ k ≤ d, is constructed from a marked point process

with intensity M(θc)
∏

��=k b� and mark distribution Fc. If X is a random variable with
distribution Fc, we shall let F̄c denote the distribution of −X. We define F̄ in a similar
manner. First consider F nonarithmetic, and let Yk = Y

(1)
k − Y

(2)
k . Then, by (2.6) and as

P(sup0≤u≤m

∑d
k=1 Yk(uk) ≥ y) = 1 for y ≤ 0,

Km =
∫ ∞

−∞
eθcy P

(
sup

0≤u≤m

d∑
k=1

Yk(uk) ≥ y

)
dy

= θ−1
c E

(
exp

(
θc

d∑
k=1

sup
0≤uk≤m

Yk(uk)

))

= θd−1
c

d∏
k=1

∫ ∞

−∞
eθcy P

(
sup

0≤uk≤m

Yk(uk) ≥ y
)

dy. (3.3)

Since Y
(1)
k and Y

(2)
k are independent compound Poisson processes, it follows that Yk(uk) =∑Nk(uk)

j=1 Ukj , where Nk is a Poisson process with rate parameter (
∏

��=k b�)[1 + M(θc)] and
Uk1, Uk2, . . . are i.i.d. random variables independent of Nk such that

P(Uk1 ∈ du) = M(θc)F̄c(du) + F(du)

1 + M(θc)
. (3.4)

Let P∗ be a probability measure under which the distribution of Nk is unchanged, and let Uk1,

Uk2, . . . be i.i.d. random variables independent of Nk satisfying

P∗(Uk1 ∈ du) = F̄ (du) + M(θc)Fc(du)

1 + M(θc)
. (3.5)

By (2.2), (3.4), and (3.5),
dP∗
dP

Uk1 = exp{θcUk1}. (3.6)

Suppressing the notation k, let R� = U1 + · · · + U� and τy = inf{� ≥ 1 : R� ≥ y}. Define the
overshoot constant

νc = lim
y→∞ E∗(exp{−θc(Rτy − y)}), (3.7)

where E∗ denotes expectation with respect to P∗. See [23], [26]–[28], and Chapter 8 of [20]
for analytical expressions of νc and also of related constants for sample size calculations.
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By (3.5)–(3.7),∫ ∞

−∞
eθcy P

(
sup

0≤uk≤m

Yk(uk) ≥ y
)

dy

= θ−1
c +

∫ ∞

0
E∗(exp{θc(y − Rτy )} 1{sup0≤uk≤m Yk(uk)≥y}) dy

∼ νc E∗
(

sup
0≤uk≤m

Yk(uk)
)

∼ νcm[cσ−1
d (B) − µ]

∏
��=k

b�, (3.8)

noting that, by (2.2), under Fc, Ec(X1) = M ′(θc)/M(θc) = c/[σd(B)M(θc)], and by definition,
under F , E(X1) = µ. Substitute (3.8) into (3.3). Then, by (2.7) and (2.8),

pλ ∼ [2πσd(B)M ′′(θc)]−1/2e−λI+xλλd−1/2σd(D){νc[cσ−1
d (B) − µ]}d

×
(

χc

d∏
k=1

bk

)d−1

, (3.9)

where χc = θc for F nonarithmetic. Using similar arguments, (3.9) can also be shown to hold for
F arithmetic with span η, by defining νc in (3.7) with y → ∞ over ηZ and χc = η−1(1−e−ηθc ).

Example 3.3. If F has point mass at 1 then sup{Y (u) : Y (u) < 0} = −1 almost surely, and,
by (2.11) and Jensen’s inequality,

K = E(σ−1
d ({u : Y (u) = 0})) ≥ {E(σd({u : Y (u) = 0}))}−1. (3.10)

Let Ud = {t : ‖t‖ ≤ 1} be the d-dimensional unit ball, and let

Cd = σd−1(∂Ud)

σ d
d−1(Ud−1)

= dπd/2/
(d/2 + 1)

[π(d−1)/2/
((d + 1)/2)]d .

Then

E[σd({u : Y (u) = 0})] = Cd

∫ ∞

0
rd−1

∞∑
k=0

e−r(1+c) c
kr2k

(k!)2 dr

= Cd

∞∑
k=0

ck
(2k + d)

(k!)2(1 + c)2k+d

= Cd

(1 + c)d
f

(d−1)
d

√
c

(1 + c)
,

where fd(x) = xd/
√

1 − 4x2 and f
(d−1)
d is the (d − 1)th derivative of fd . A positive lower

bound of K follows from (3.10). Similar computations can also be carried out for kernels of
other shapes.

Example 3.4. Let � denote the random set of all u for which the sums in (2.3) are sums over
an empty set for both j = 1 and j = 2. For a more precise definition, let {(ti , yi) : i ≥ 1} be
a Poisson point process on ∂B × R with intensity 1 on ∂B × [0, ∞) and intensity M(θc) on
∂B × (−∞, 0). Then

� = {u : yi ≥ nti · u > 0 or yi < nti · u < 0 for all i}.
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By (2.4), � ⊂ {u : Y (u) = 0} and, hence, by (2.11),

K ≤
{

|η| E(σ−1
d (�)) if F has point mass at η,

χ−1
c E(σ−1

d (�)) otherwise.

The upper bound of K for F having point mass at η uses the property

sup{Y (u) : Y (u) < 0} = −|η| almost surely.

4. Proof of Theorem 2.1

A key idea here is a change of measure argument that allows us to obtain, in Lemma 4.1,
below, the tail probability of the maxima over a local domain. To obtain the global probabilities
in Theorem 2.1 from these local probabilities, we adapt the Pickands–Quall–Watanabe tech-
nique from the Gaussian random field literature. Hence, the characterization of the constant K

in Theorem 2.1 bears a striking resemblance to constants seen in the earlier papers on Gaussian
random fields though the distribution of Y (u) here is compound Poisson rather than Gaussian.
Hogan and Siegmund [12] provided a vital framework for this correspondence.

Lemma 4.1. Let Et,m,λ = {supt≤v≤t+mλ−1 S(v + B) ≥ λc}. Define xλ as in the statement of
Theorem 2.1. Then, for all t ∈ D,

Pλ(Et,m,λ) = Pλ(E0,m,λ) ∼ [2πλσd(B)M ′′(θc)]−1/2e−λI+xλKm as λ → ∞. (4.1)

Proof. By stationarity, Pλ(Et,m,λ) = Pλ(E0,m,λ). Let us first consider the case in which F

is arithmetic with span 1. Then

Pλ(E0,m,λ) = Pλ

(
sup

0≤v≤mλ−1
S(v + B) ≥ λc

)
= Pλ{S(B) ≥ �λc�}

+
∞∑

�=1

Pλ

(
S(B) = �λc� − �, sup

0≤v≤mλ−1
[S(v + B) − S(B)] ≥ �

)
. (4.2)

Let Qλ be a probability measure under which X is a nonhomogeneous marked point process
with intensity λM(θc) and mark distribution Fc inside B, and intensity λ and mark distribution
F outside B. Then

dQλ

dPλ

(X) = exp{θcS(B) − λσd(B)[M(θc) − 1]}. (4.3)

Let

Ba =
⋂

0≤v≤a

(v + B).

Since S(B \ Bmλ−1) and sup0≤v≤mλ−1 [S(v + B) − S(B)] are functions of the marked point
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process outside Bmλ−1 and, hence, independent of S(Bmλ−1) under Qλ, it follows from (4.3) that

Pλ

(
S(B) = �λc� − �, sup

0≤v≤mλ−1
[S(v + B) − S(B)] ≥ �

)
= exp{−λI + xλ + θc�} Qλ

(
S(B) = �λc� − �, sup

0≤v≤mλ−1
[S(v + B) − S(B)] ≥ �

)
= exp{−λI + xλ + θc�}

∞∑
k=0

Qλ(S(Bmλ−1) = �λc� − � − k)

× Qλ

(
S(B \ Bmλ−1) = k, sup

0≤v≤mλ−1
[S(v + B) − S(B)] ≥ �

)
.

(4.4)

It follows from the local central limit theorem that, for each � ∈ Z,

Qλ(S(Bmλ−1) = �λc� − � − k) ≤ [1 + o(1)] Qλ(S(B) = �λc� − �)

∼ [2πλσd(B)M ′′(θc)]−1/2 as λ → ∞, (4.5)

uniformly over k ≥ 0, with ‘≤’ replaced by ‘=’ if we look at (4.5) with k fixed. Hence, by (4.4)
and (4.5),

Pλ

(
S(B) = �λc� − �, sup

0≤v≤mλ−1
[S(v + B) − S(B)] ≥ �

)
∼ [2πλσd(B)M ′′(θc)]−1/2 exp{−λI + xλ + θc�}

× Qλ

(
sup

0≤v≤mλ−1
[S(v + B) − S(B)] ≥ �

)
. (4.6)

By (4.6) and the weak convergence of {S(λ−1u + B) − S(B) : 0 ≤ u ≤ m} under Qλ to
{Y (u) : 0 ≤ u ≤ m} as λ → ∞ (see (2.3) and (2.4)),

∞∑
�=1

Pλ

(
S(B) = �λc� − �, sup

0≤v≤mλ−1
[S(v + B) − S(B)] ≥ �

)
∼ e−λI+xλ [2πλσd(B)M ′′(θc)]−1/2

∞∑
�=1

eθc� P
(

sup
0≤u≤m

Y(u) ≥ �
)
. (4.7)

By a similar application of (4.3) and (4.5),

Pλ(S(B) ≥ �λc�) ∼ [2πλσd(B)M ′′(θc)]−1/2e−λI+xλ

0∑
�=−∞

eθc�. (4.8)

Substitution of (4.7) and (4.8) into (4.2) then proves Lemma 4.1 when F is arithmetic with
span 1. For F arithmetic with span η, we prove Lemma 4.1 by replacing the sums in (4.2),
(4.4), (4.7), and (4.8) by

∑
�∈ηZ+ ,

∑
k≥0,k∈ηZ

, or
∑

�≤0,�∈ηZ
. For nonarithmetic F , the sums

are replaced by corresponding integrals. The details are similar to the arguments provided
above and shall be omitted.
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We now proceed to the proof of Theorem 2.1. Let J = [0, 1]d ,

Ca = {k ∈ (aZ)d : k + aJ ⊂ D}, and Ca = {k ∈ (aZ)d : (k + aJ ) ∩ D �= ∅}.
Then {k+aJ : k ∈ Ca} and {k+aJ : k ∈ Ca} are lower and upper coverings of D, respectively,
by cubes of length a. We shall show via Lemmas 4.2 and 4.3, below, that

lim
m→∞ lim sup

λ→∞

[∑
u∈C

mλ−1
Pλ(

⋃
{w∈C

mλ−1 : w �=u}(Eu,m,λ ∩ Ew,m,λ))

λd−1/2 e−λI

]
= 0. (4.9)

The proofs of Lemmas 4.2, 4.3, and (4.9) will be given in the appendices. Let f (λ) =
[2πσd(B)M ′′(θc)]−1/2λd−1/2e−λI+xλ . Then, by Lemma 4.1,

Pλ(Eu,m,λ) ∼ Kmf (λ)

λd
as λ → ∞. (4.10)

Given ε > 0, let mε be large enough such that, for all m ≥ mε, the expression in the square
brackets on the left-hand side of (4.9) does not exceed ε for all large λ. Then, by (4.10), for all
m ≥ mε,

lim inf
λ→∞

[
λ−d(#Cm/λ)Km − ελd−1/2e−λI

f (λ)

]
≤ lim inf

λ→∞

[
pλ

f (λ)

]
≤ lim sup

λ→∞

[
pλ

f (λ)

]
≤ lim sup

λ→∞
[λ−d(#Cm/λ)Km]. (4.11)

Since D is Jordan measurable,

#Ca ∼ #Ca ∼ a−dσd(D) as a → 0. (4.12)

Noting that lim infλ→∞[pλ/f (λ)] and lim supλ→∞[pλ/f (λ)] are fixed real numbers and xλ is
bounded, it follows from (4.11) and (4.12) that m−dKm is Cauchy. Hence,

K = lim
m→∞ m−dKm

exists and (2.8) follows from (4.11).
We will now state Lemmas 4.2 and 4.3 before proving Theorem 2.1. To avoid repetitive

arguments, we will state and prove all subsequent results in this section and in the appendices
assuming that F is arithmetic with span 1. The modifications required to extend these results
to arbitrary F are straightforward and will not be discussed.

Lemma 4.2. We have

lim
r→∞ lim sup

λ→∞

[
Pλ(S(B) < �λc� − r, sup0≤v≤λ−1 S(v + B) ≥ �λc�)

λ−1/2e−λI

]
= 0.

Lemma 4.3. Let r ≥ 0 and L > 0 be given. Then

lim
k→∞ lim sup

λ→∞

[∑
{v∈(λ−1Z)d : kλ−1≤‖v‖∞≤L} Pλ(S(B) ≥ �λc� − r, S(v + B) ≥ �λc� − r)

λ−1/2e−λI

]
= 0.
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Proof of Theorem 2.1. By the arguments in (4.9)–(4.12), it remains for us to show that K is
positive and finite. By Lemma 4.2, there exists r large enough such that

Pλ

(
S(B) < �λc� − r, sup

0≤v≤λ−1
S(v + B) ≥ �λc�

)
≤ λ−1/2e−λI for all large λ. (4.13)

Moreover, by a modification of (4.8) (with
∑r

�=−∞ in place of
∑0

�=−∞),

Pλ(S(B) ≥ �λc� − r) = O(λ−1/2e−λI ). (4.14)

By adding up (4.13) and (4.14), and applying Lemma 4.1, we show that K1 < ∞. Then, by
(2.8), (4.11), and (4.12), K ≤ K1 < ∞.

Next, select ε small enough so that δ = [2πσd(B)M ′′(θc)]−1/2 ∑0
�=−∞ eθc� − ε > 0. By

Lemma 4.3 with r = 0 and L > supx,y∈D ‖x − y‖∞, there exists k large enough such that∑
{v∈(kλ−1Z)d : 0<‖v‖∞≤L}

Pλ(S(B) ≥ �λc�, S(v + B) ≥ �λc�) ≤ ελ−1/2e−λI (4.15)

for all large λ. Then, by stationarity, (4.8), and (4.15), noting that xλ ≥ 0,

Pλ(E0,m,λ) ≥ Pλ(S(u + B) ≥ �λc� for some u ∈ (kλ−1
Z)d , 0 ≤ u ≤ mλ−1)

≥
∑

{u∈(kλ−1Z)d : 0≤u≤mλ−1}

(
Pλ(S(u + B) ≥ �λc�)

−
∑

{w∈(kλ−1Z)d : 0<‖w−u‖∞≤L}
P{S(u + B) ≥ �λc�, S(w + B) ≥ �λc�}

)

≥
(

m

k

)d

δλ−1/2e−λI for all large λ,

and, by letting m → ∞ with k fixed, it follows from (2.7), (4.1), and xλ bounded that K > 0.

5. Proof of Theorem 2.2

The key trick here is a telescoping sum of (5.3) or (5.5), below, which removes the dependence
of the representation of K on the supremum of Y . To simplify the notation, we shall first consider
F having point mass at 1, select λ such that xλ = 0 (i.e. λc ∈ Z), and write S(v) in place of
S(v + B). Let

pc(t, k, dw) = Pλ

(
sup
v∈D

S(v) = λc, S(t) = λc − k, σd({v ∈ D : S(v) = λc − k}) ∈ λ−d dw
)
.

(5.1)
By the change of measure argument in the proof of Lemma 4.1, in particular (4.4) and (4.5),
and Lemmas 4.2 and 4.3, for any integer k ≥ 0, t lying in the interior of D and dw ∈ (0, ∞),

pc(t, k, dw) = e−λI+θck Qλ(S(t) = λc − k) Qλ

(
sup
v∈D

[S(v) − S(t)] = k,

σd({v ∈ D : [S(v) − S(t)] = 0}) ∈ λ−d dw | S(t) = λc − k
)

∼ [2πλσd(B)M ′′(θc)]−1/2e−λI+θck

× P
(

sup
u∈Rd

Y (u) = k, σd({u : Y (u) = 0}) ∈ dw
)
. (5.2)
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The second relation in (5.2) follows from the weak convergence of {S(λ−1u + t) − S(t) : 0 ≤
u ≤ m}, under Qλ and with conditioning on S(t) = λc−k, to {Y (u) : 0 ≤ u ≤ m}. Multiplying
pc(t, k, dw) by λd(e−θck − e−θc(k+1))/w and integrating over t ∈ D and w > 0, we obtain,
from (5.1) and (5.2),

(e−θck − e−θc(k+1)) Pλ

(
sup
v∈D

S(v) = λc, S(t) = λc − k for some t ∈ D
)

= λd(e−θck − e−θc(k+1))

∫
D

∫ ∞

0

pc(t, k, dw)

w
dt

∼ [2πσd(B)M ′′(θc)]−1/2e−λI λd−1/2σd(D)(1 − e−θc )

× E(σ−1
d ({u : Y (u) = 0}) 1{sup

u∈Rd Y (u)=k}). (5.3)

We then sum up over 0 ≤ k ≤ k0, let λ → ∞ followed by k0 → ∞, and compare against the
asymptotic relation

Pλ

(
sup
v∈D

S(v) = λc
)

∼ [2πσd(B)M ′′(θc)]−1/2(1 − e−θc )e−λI λd−1/2σd(D)K, (5.4)

which follows from a straightforward modification of Theorem 2.1, to obtain the expression
K = E(σ−1

d ({u : Y (u) = 0})).
Let us next consider more generally F arithmetic with span 1. Let k0 > 0, and when

the event {supv∈D S(v) = λc} occurs, let {ri : 1 ≤ i ≤ I } be a monotone rearrangement of
{λc − S(t) : t ∈ D, 0 ≤ λc − S(t) ≤ k0}. In other words, 0 = r0 < r1 < · · · < rI ≤ k0.
Define, for 0 ≤ k < � ≤ k0,

pc(t, k, �, dw) = P
(

sup
v∈D

S(v) = λc, λc − S(t) = k = ri and

� = ri+1 for some i, σd({v : S(v) = λc − k}) ∈ λ−d dw
)
.

Then, by the arguments in (5.2) and (5.3),

(e−θck − e−θc�) Pλ

(
sup
v∈D

S(v) = λc, ri = k, ri+1 = � for some i
)

= λd(e−θck − e−θc�)

∫
D

∫ ∞

0

pc(t, k, �, dw)

w
dt

∼ [2πσd(B)M ′′(θc)]−1/2e−λI λd−1/2σd(D)(1 − e−θc(�−k))

× E(σ−1
d ({u : Y (u) = 0}) 1{sup

u∈Rd Y (u)=k, sup
u∈Rd : Y (u)<0 Y (u)=k−�}). (5.5)

We then sum up (5.5) over all integers 0 ≤ k < � ≤ k0, let λ → ∞ followed by k0 → ∞,
and compare against (5.4) to obtain the more general expression (2.11). For F arithmetic with
span η, the arguments are similar, while for nonarithmetic F , we need to partition the range of
S(t), t ∈ D, into intervals of length ε, then let ε → 0. The details are omitted.

6. Extension of representation to Gaussian random fields

Let X(t), t ∈ R
d , be a stationary, mean zero, continuous Gaussian random field satisfying

E(X(t)X(t + s)) ∼ 1 − a‖s‖α as ‖s‖ → 0
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for some 0 < α ≤ 2 and a > 0. Let �c = (c2a)−1/α . It was shown in [6], [16], and [18] that

P
(

sup
t∈D

X(t) ≥ c
)

∼ (2π)−1/2c−1e−c2/2�−d
c σd(D)K̃ as c → ∞ (6.1)

for some K̃ > 0, which is expressed in terms of a continuous Gaussian random field Ỹ satisfying

E(Ỹ (u)) = −‖u‖α, cov(Ỹ (u), Ỹ (v)) = ‖u‖α + ‖v‖α − ‖u − v‖α. (6.2)

In particular,

K̃ = lim
m→∞ m−d

∫ ∞

0
ey P

(
sup

0≤u≤m

Ỹ (u) ≥ y
)

dy.

The key argument in the proof of (6.1) is the weak convergence

{c[X(t + �cu) − X(t)] : 0 ≤ u ≤ m} ⇒ {Ỹ (u) : 0 ≤ u ≤ m} for any m > 0, (6.3)

conditioned on X(t) = c−y/c for some y > 0. In Theorem 6.1, below, we apply the approach
of Section 5 to obtain a different representation of K̃ , one that involves only the occupation
measure of Ỹ near 0.

Theorem 6.1. We have K̃ = limξ→0
∫ ξ

0 E(σ−1
d ({u : − b < Ỹ (u) ≤ ξ − b})) db.

Example 6.1. By Theorem 6.1 and Jensen’s inequality,

K̃ ≥ lim sup
ξ→0

∫ ξ

0
{E(σd({u : − b < Ỹ (u) ≤ ξ − b}))}−1 db =

(∫
Rd

ft (0) dt

)−1

, (6.4)

where ft denotes the normal density of Ỹ (t), with means and variances given in (6.2). Let
Ud = {t : ‖t‖ ≤ 1}. Then, by (6.4),

K̃ ≥
(

σd−1(∂Ud)

∫ ∞

0
rd−1(4πrα)−1/2 exp

{
− r2α

4rα

}
dr

)−1

= d−1π(1−d)/241−d/αα


(
d

2
+ 1

)/



(
d

α
− 1

2

)
. (6.5)

In the case α = 2, Ỹ has a simple characterization from which K̃ = π−d/2 can be computed.
For d = 2, the second line of (6.5) is π−1(= K̃) and, for d = 3, it is (4

√
π)−1.

It is quite straightforward to improve upon (6.5). Consider 0 < α < 2 and select t �= 0.
Let fs | t (· | y) denote the density of Ỹ (s) conditioned on Ỹ (t) = y. Then, by a more refined
application of Jensen’s inequality,

K̃ ≥
∫ ∞

−∞

(∫
Rd

fs | t (0 | y) ds

)−1

ft (y) dy.

In principle, we can get even sharper computable lower bounds by conditioning on two or
more ts.

Proof of Theorem 6.1. Let ξ > 0, 0 ≤ v < ξ , Xsup = supt∈D X(t), and Ysup =
supu∈Rd Ỹ (u). Let k be a nonnegative integer, Ik = (Xsup+[v−(k+1)ξ ]/c, Xsup+(v−kξ)/c],
and Jk = [kξ − v, (k + 1)ξ − v). Define

gc,ξ,v(t, k, dw) = P(Xsup ≥ c, X(t) ∈ Ik, σd({u ∈ D : X(u) ∈ Ik}) ∈ �d
c dw).

https://doi.org/10.1239/aap/1253281058 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1253281058


Maxima of moving sums SGSA • 659

By (6.3), for any t lying in the interior of D and dw ∈ (0, ∞),

gc,ξ,v(t, k, dw)

∼ (2π)−1/2c−1e−c2/2
∫ ∞

−∞
ey P

(
Xsup ≥ c, X(t) ∈ Ik,

σd({u ∈ D : X(u) ∈ Ik}) ∈ �d
c dw | X(t) = c − y

c

)
dy

∼ (2π)−1/2c−1e−c2/2
{(∫ kξ−v

−∞
ey dy

)
P(Ysup ∈ Jk, σd({u : Ysup − Ỹ (u) ∈ Jk}) ∈ dw)

+
∫ (k+1)ξ−v

kξ−v

ey P(y ≤ Ysup < (k + 1)ξ − v,

σd({u : Ysup − Ỹ (u) ∈ Jk}) ∈ dw) dy

}
. (6.6)

Multiply (6.6) by (e−kξ − e−(k+1)ξ )/(�d
c w), integrate over t ∈ D and w > 0, then add over

0 ≤ k ≤ k0 for some positive integer k0 > 0. We obtain

k0∑
k=0

(e−kξ − e−(k+1)ξ ) P(Xsup ≥ c, X(t) ∈ Ik for some t ∈ D)

= �−d
c

k0∑
k=0

(e−kξ − e−(k+1)ξ )

∫
D

∫ ∞

0

gc,ξ,v(t, k, dw)

w
dt

∼ (2π)−1/2c−1e−c2/2�−d
c σd(D)

×
{
(e−v − e−v−ξ )

k0∑
k=0

E(1{Ysup∈Jk} σ−1
d ({u : Ysup − Ỹ (u) ∈ Jk})) + oξ (1)

}
, (6.7)

where oξ (1) → 0 as ξ → 0. Since Ysup ∈ Jk is equivalent to k = �(Ysup + v)/ξ�, by (6.1) and
(6.7), and letting k0 → ∞,

K̃ = lim
ξ→0

∫ ξ

0
E

(
σ−1

d

({
u : Ysup −

(
ξ

⌊
Ysup + v

ξ

⌋
− v − ξ

)
< Ỹ (u)

≤ Ysup −
(

ξ

⌊
Ysup + v

ξ

⌋
− v

)}))
dv,

and Theorem 6.1 is shown.

Appendix A. Proof of Lemma 4.2

By (4.6) with m = 1 and the weak convergence of S(λ−1u + B) − S(B) to Y (u) under Qλ,
as λ → ∞,

Pλ

(
S(B) < �λc� − r, sup

0≤v≤λ−1
S(v + B) ≥ �λc�

)
∼ [2πλσd(B)M ′′(θc)]−1/2e−λI+xλ

∞∑
�=r+1

eθc� P
(

sup
0≤u≤1

Y (u) ≥ �
)
. (A.1)
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Let x+ = max{x, 0} and x− = max{−x, 0}. It follows from (2.3) and (2.4) that

sup
0≤u≤1

Y (u) ≤ Z∗ =
∑

{i : v
(1)
i ∈A(1)}

[Z(1)
i ]+ +

∑
{i : v

(2)
i ∈A(2)}

[Z(2)
i ]−, (A.2)

where A(1) = ∂B × [0, d1/2) and A(2) = ∂B × [−d−1/2, 0). We can also express Z∗ =∑N
j=1 Vj , where N is a Poisson random variable with mean κ = 1 − F(0) + M(θc)Fc(0)

and V1, V2, . . . are i.i.d. random variables independent of N with g = E(eθ̃V1) < ∞ for some
θ̃ > θc. Since E(eθ̃Z∗

) = eκ(g−1), it follows from Markov’s inequality that P(Z∗ ≥ �) ≤
eκ(g−1)−θ̃�. Hence, by (A.2),

∞∑
�=r+1

eθc� Pλ

(
sup

0≤u≤1
Y (u) ≥ �

)
= O(exp{κ(g − 1) − (θ̃ − θc)r}). (A.3)

Since xλ is bounded, Lemma 4.2 follows from (A.1) and (A.3).

Appendix B. Proof of Lemma 4.3

Let Q̃λ(= Q̃λ,v) be the probability measure under which the marked point process X has
intensity λM(θc) on B1 = B∩(v+B), intensity λM(θc/2) on B2 = {B\(v+B)}∪{(v+B)\B},
and intensity λ elsewhere on R

d . We also require that, under Q̃λ, the marks have distribution
Fc on B1, distribution F̃ satisfying F̃ (dx) = eθcx/2F(dx)/M(θc/2) on B2, and F elsewhere
on R

d . Then

dQ̃λ

dPλ

(X) =
( ∏

{i : ti∈B1}
exp{θcXi}

)
exp{−λσd(B1)[M(θc) − 1]}

×
( ∏

{i : ti∈B2}
exp

{
θcXi

2

})
exp

{
−λσd(B2)

[
M

(
θc

2

)
− 1

]}
. (B.1)

Since M is convex and M(0) = 1, ζ = [M(θc) − 1] − 2[M(θc/2) − 1] > 0. We can thus
express (B.1) as

dQ̃λ

dPλ

(X) = exp

{
θc

2
[S(B) + S(v + B)] − λ[σd(B) + σd(v + B)][M(θc) − 1]

2

+ λζσd(B2)

2

}
,

and it follows from (2.5) and an analogue of (4.5) that

Pλ(S(B) ≥ �λc� − r, S(v + B) ≥ �λc� − r)

≤ Pλ(S(B) + S(v + B) ≥ 2(�λc� − r))

= E
Q̃λ

(
dPλ

dQ̃λ

1{S(B)+S(v+B)≥2(�λc�−r)}
)

= O(exp{−λI − λζσd(B \ (v + B))}λ−1/2). (B.2)

Let ‖e‖ = 1, and let �e = {b − (e · b)e : b ∈ B} be the projected surface of B on a (d − 1)-
dimensional hyperplane orthogonal to e. Then β = inf‖e‖=1 σd−1(�e) > 0. Hence, there
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exists ε > 0 such that

σd(B \ (v + B)) ≥ ‖v‖β
2

≥ ‖v‖∞β

2
for all ‖v‖∞ ≤ ε. (B.3)

By (B.2) and (B.3), it follows that∑
{v∈(λ−1Z)d : kλ−1≤‖v‖∞≤ε}

Pλ(S(B) ≥ �λc� − r, S(v + B) ≥ �λc� − r)

= O

(
λ−1/2e−λI

∑
�≥k

�d−1e−ζ�β/2
)

= O(λ−1/2e−λI kd−1e−ζkβ/2). (B.4)

Since α = inf‖v‖∞>ε σd(B \ (v + B)) > 0, it also follows from (B.2) that

∑
{v∈(λ−1Z)d : ε<‖v‖∞≤L}

Pλ(S(B) ≥ �λc� − r, S(v + B) ≥ �λc� − r) = O(λd−1/2e−λI−λζα).

(B.5)
Lemma 4.3 then follows from combining (B.4) and (B.5).

Appendix C. Proof of (4.9)

Let ε > 0. By Lemma 4.2 and stationarity, we can select r large enough such that

γu,λ = Pλ

(
S(u + B) < �λc� − r, sup

u≤v≤u+1
S(v + B) ≥ �λc�

)
≤ ελ−1/2e−λI (C.1)

for all large λ. Let k = �m1/2�, 
m = {t ∈ Z
d : k ≤ t ≤ (m − k)}, and �m = {t ∈ Z

d : 0 ≤
t ≤ m} \ 
m. Then

∑
u∈C

mλ−1

Pλ

( ⋃
{w∈C

mλ−1 : w �=u}
(Eu,m,λ ∩ Ew,m,λ)

)
≤

∑
u∈C

λ−1

γu,λ +
∑

{u,w∈C
mλ−1 : w �=u}

Pλ(Gu,m,λ ∩ Gw,m,λ) +
∑

u∈C
mλ−1

Pλ(Hu,m,λ), (C.2)

where

Gu,m,λ = Pλ(S(v + B) ≥ �λc� − r for some v ∈ u + λ−1
m), (C.3)

Hu,m,λ = Pλ(S(v + B) ≥ �λc� − r for some v ∈ u + λ−1�m). (C.4)

By (4.12) and (C.1), ∑
u∈C

λ−1

γu,λ ≤ [ε + o(1)]λd−1/2e−λI σd(D). (C.5)
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Let L > supx,y∈D ‖x −y‖∞. Then, by (C.3), stationarity, and Lemma 4.3, there exists m large
enough such that, for all u ∈ Cmλ−1 and large λ,∑

{w∈C
mλ−1 : w �=u}

Pλ(Gu,m,λ ∩ Gw,m,λ)

≤ md
∑

{v∈(λ−1Z)d : kλ−1≤‖v‖∞≤L}
Pλ(S(B) ≥ �λc� − r, S(v + B) ≥ �λc� − r)

≤ [ε + o(1)]mdλ−1/2e−λI .

Hence, by (4.12), ∑
{u,w∈C

mλ−1 : w �=u}
Pλ(Gu,m,λ ∩ Gw,m,λ) ≤ σd(D)[ε + o(1)]λd−1/2e−λI . (C.6)

Since k = �m1/2�, it follows that #�m = (m+ 1)d − (m+ 1 − 2k)d = O(md−1/2). By (4.12),
(C.4), and a modification of (4.8) (with

∑r
�=−∞ in place of

∑0
�=−∞),∑

u∈C
mλ−1

Pλ(Hu,m,λ) = O(md−1/2(λm−1)dσd(D)λ−1/2e−λI ) ≤ ελd−1/2e−λI σd(D) (C.7)

for all large m. We then obtain (4.9) from (C.2) and (C.5)–(C.7) by choosing ε arbitrarily
small.
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