
TPLP 24 (6): 1078–1108, 2024. c© The Author(s), 2024. Published by Cambridge University Press.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution

licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribu-

tion and reproduction, provided the original article is properly cited.

doi:10.1017/S1471068424000103 First published online 2 April 2024

1078

Unit Testing in ASP Revisited: Language
and Test-Driven Development Environment∗

GIOVANNI AMENDOLA, GIUSEPPE MAZZOTTA and FRANCESCO RICCA
University of Calabria, Rende, Italy

(e-mails: giovanni.amendola@unical.it, giuseppe.mazzotta@unical.it,

francesco.ricca@unical.it, ricca@mat.unical.it)

TOBIAS BEREI
University of Applied Sciences Upper Austria, Campus Hagenberg

(e-mails: tobias.berei@students.fh-hagenberg.at, bereitobias@hotmail.com)

submitted 24 May 2023; revised 21 December 2023; accepted 05 March 2024

Abstract

Unit testing frameworks are nowadays considered a best practice, included in almost all modern
software development processes, to achieve rapid development of correct specifications. Knowl-
edge representation and reasoning paradigms such as Answer Set Programming (ASP), that
have been used in industry-level applications, are not an exception. Indeed, the first unit testing
specification language for ASP was proposed in 2011 as a feature of the ASPIDE development
environment. Later, a more portable unit testing language was included in the LANA annotation
language. In this paper we revisit both languages and tools for unit testing in ASP. We propose
a new unit test specification language that allows one to inline tests within ASP programs,
and we identify the computational complexity of the tasks associated with checking the various
program-correctness assertions. Test-case specifications are transparent to the traditional eval-
uation, but can be interpreted by a specific testing tool. Thus, we present a novel environment
supporting test-driven development of ASP programs.

KEYWORDS: answer set programming, unit testing, development environments

1 Introduction

Answer Set Programming (ASP) (Brewka et al. 2011) is a well-known logic-based formal-

ism developed in the area of knowledge representation and reasoning. ASP combines a

purely declarative language based on the stable models semantics (Gelfond and Lifschitz

1991) with efficient implementations (Lierler et al. 2016). ASP is known to be suited for

rapid prototyping of complex reasoning tasks and has been effectively used to solve a

number of both academic and real-world applications of AI (Erdem et al. 2016). ASP

∗ This work was supported by Italian Ministry of Research (MUR) under PRIN project PINPOINT,
CUP H23C22000280006, Tech4You “Technologies for climate change adaptation and quality of life
improvement”, CUP H23C22000370006, and PNRR projects FAIR “Future AI Research” – Spoke 9 –
WP9.1 – CUP H23C22000860006.

https://doi.org/10.1017/S1471068424000103 Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S1471068424000103
https://orcid.org/0000-0002-2111-9671
https://orcid.org/0000-0001-8218-3178
mailto:giovanni.amendola@unical.it
mailto:giuseppe.mazzotta@unical.it
mailto:francesco.ricca@unical.it
mailto:ricca@mat.unical.it
mailto:tobias.berei@students.fh-hagenberg.at
mailto:bereitobias@hotmail.com
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068424000103&domain=pdf
https://doi.org/10.1017/S1471068424000103

Unit testing in ASP revisited: Language and test-driven development environment 1079

allows encoding complex computational problems often in an easier and more compact

way than mainstream (imperative) programming languages. For instance, the classical

NP-complete problem of 3-Colorability is encoded in ASP using only two rules. Nonethe-

less, it is also easy to write incorrect ASP programs, which seem correct (often due to a

misleading interpretation of rules based on intuition) but do not work as expected.

To speed up the development of correct and robust programs, many modern soft-

ware development processes support some test-driven development (TDD) best practices

(Fraser et al. 2003) such as unit testing (Beck 2002). In TDD the following sequence

of actions is repeated while developing a new program (Beck 2002): (i) add a test that

defines a function or improvements of a function, which should be very succinct, so that

the developer focuses on the requirements before writing the code; (ii) run all tests and

see if the new test fails. This confirms that the newly introduced tests indeed bring an

improvement in detecting errors; (iii) write the code (maybe not perfect); (iv) run all

tests, to become confident that the new code meets the test requirements, and does not

introduce bugs; (v) refactor code to improve it while accommodating the new features.

Tests drive the development because the program is considered improved only if it

passes new tests, while the repeated execution of tests allows to find problems early in

the development cycle and to isolate the incorrect behavior more easily. This intuition has

been subject to further empirical studies which proved that programmers who wrote more

tests tended to be more productive (Erdogmus et al. 2005) and evidenced the superiority

of the TDD practice over the traditional test-last approach or testing for correctness

approach (Madeyski 2010). Two important best practices of TDD are the following: (i)

concentrate on testing possibly small modules/functions/blocks of code; and (ii) adopt

frameworks and tools to make the process of testing the program automatically. In the

resulting software testing method, complex programs are split into units, which are tested

in isolation providing (usually) small inputs and checking whether the expected outputs

are computed. Tests for program units (i.e., unit tests) are directly derived from software

requirements and often created before (or while) implementing the corresponding feature.

The software is improved to pass the new tests, only.

TDD development practices are nowadays a standard technique used by expert pro-

grammers and development teams all over the world, no matter the programming lan-

guage used. TDD development practices have been already applied also to many AI

formalisms, as it is witnessed by the proposals in the literature, such as testing for De-

scription Logics (Bezerra and Freitas 2017), and Constraint Programming (Lazaar et al.

2010). In particular, TDD development practices have been applied to ASP program

development. Indeed the first unit testing language for ASP has been introduced in

2011 (Febbraro et al. 2011a) and was implemented in ASPIDE (Febbraro et al. 2011).

Nonetheless, this solution presents some limitations from the perspectives of both the

language for specifying unit tests and its implementation. Concerning the language, one

drawback is the need for specifying unit tests in separate files concerning the program

to test, which often is not very comfortable given that ASP programs might contain

(comparatively) few lines of code. Having the possibility to write tests together with the

source code, without interfering with the actual evaluation of the program itself, would

provide clear advantages for the developer. Subsequently (De Vos et al. 2012), a more

versatile approach of specifying unit tests together with ASP programs was included in

the LANA annotation language. However, the prototypical implementation of LANA,

https://doi.org/10.1017/S1471068424000103 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000103

1080 G. Amendola et al.

called ASPUnit, has never been included in a graphical development environment for

ASP. A testing framework integrated into a development environment is comfortable for

the developer, who can control the results in the same graphical environment she is using.

In this paper, we propose a new unit testing language for ASP, which comprises the

key features of both the above-mentioned proposals, and we identify the computational

complexity of the tasks associated with checking the various program-correctness condi-

tions, which can be specified in unit tests. To the best of our knowledge, this is the first

attempt to identify the complexity for all the tasks connected with unit testing in ASP.

The new language is annotation-based as LANA, so to allow the development of test

cases inline with ASP code and keep the assertion-based style for expressing test case

conditions from the language of ASPIDE. Note that, being capable of defining and run-

ning tests together with the program has several clear advantages, such as promoting and

exploiting programmer familiarity with the language (there is no need to know both ASP

and another language such as python) and enables programmers to define declarative test

case specifications. The proposed annotation style is more similar to the JUnit framework

for Java (from which both ASPIDE and LANA proposals were inspired) and should look

more familiar to developers that are accustomed to XUnit style languages (Beck 2002).

Moreover, we present a novel web-based development environment for ASP supporting

TDD of ASP programs that features an integrated implementation of unit testing.

We also observe that there is one additional advantage in equipping a programming

language with unit tests: they can be used to check and certify the behaviors of programs

with respect to any requirement of the application (Fraser et al. 2003). For example,

ethical or trustful behavior can be seen as a software requirement (Sommerville 2007).

Unit testing languages can be used to devise tests that check and certify that the behavior

of the ASP program respects also application-specific ethical requirements. Programs

that are provided without tests of such type might result in (unwanted) violation of

ethical requirements (besides potential bugs). In a sense, our contribution can lead to

the development of ASP-based AI applications that can be certified with respect also to

ethical requirements and other specific expected behaviors by reporting the outcome of

executing properly devised test suites.

Conference paper. This work is an extended and revised version of the paper “Testing in

ASP: Revisited language and programming environment” accepted for publication in the

17th edition of the European Conference on Logics in Artificial Intelligence (Amendola

et al. 2021). Preliminary results were illustrated during the 35th International Conference

on Logic Programming ICLP 2019 (Bogaerts et al. 2019). The current version of the

contribution extends the conference paper by:

1. Providing the complexity analysis of the main unit testing tasks.

2. Extending the description of the implementation.

3. Presenting the results of an experimental analysis that validates the applicability

and efficiency of the proposed approach.

The investigation of computational complexity makes clear that testing an ASP pro-

gram can be computationally very expensive (up to ΠP
2 -c, cfr. Table 4). This result

not only fills a gap in the understanding of unit testing in ASP, but also enabled

the development of a (more) efficient implementation, as evidenced empirically by the

https://doi.org/10.1017/S1471068424000103 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000103

Unit testing in ASP revisited: Language and test-driven development environment 1081

experimental analysis presented in this paper. Moreover, it serves as a valuable reminder

to programmers that they should rely on the small-scope hypothesis (Oetsch et al. 2012)

when crafting effective test cases. In other words, it is crucial to design small tests that

cover the defects, while avoiding the use of large instances that may become impractical

due to their high complexity. This understanding aids in promoting efficient and effective

testing practices in ASP development.

Paper structure. This paper is organized as follows. Section 2 provides a preliminary in-

troduction to ASP and introduces some basic notation; Section 3 introduces the new unit

testing language by resorting to simple examples; Section 4 reports a study of the com-

putational complexity of the main computational tasks related to unit testing; Section 5

describes the implementation of our programming environment; Section 6 reports an ex-

perimental evaluation aimed at demonstrate the effectiveness, but also the efficiency, of

the proposed system in detecting bugs in common ASP problems. Section 7 discusses

related work; Section 8 reports our conclusive statements.

2 Preliminaries on answer set programming

Let P be a set of predicates, C of constants, and V of variables. A term is a constant

or a variable. An atom a of arity k is of the form p(t1, ..., tk), where p ∈P and t1, ..., tn
are terms. A disjunctive rule r is of the form

a1 ∨ . . . ∨ al ← b1, . . . , bm, not c1, . . . , not cn, (1)

where all ai, bj , and ck are atoms; l,m, n ≥ 0 and l + m + n > 0; not represents

negation-as-failure. The set H(r) = {a1, ..., al} is the head of r; B+(r) = {b1, ..., bm} and
B−(r) = {c1, . . . , cn} are the positive body and the negative body of r, respectively; and

B(r) = B+(r) ∪ B−(r) is the body of r. A rule r is safe if each of its variables occurs

in some positive body atom. A rule r is a fact, if B(r) = ∅ (we then omit ← from the

notation); a constraint if H(r) = ∅; normal if |H(r)| ≤ 1; and positive if B−(r) = ∅. A
(disjunctive logic) program P is a finite set of disjunctive rules. P is called normal [resp.

positive] if each r ∈ P is normal [resp. positive]. Moreover, a program P is head-cycle-free

(HCF) if there is a level mapping ‖.‖h of P such that for every rule r of P : (i) For any

l in B+(r), and for any l′ in H(r), ‖l‖h ≤ ‖l′‖h; and (ii) For any pair l, l′ of atoms

in H(r), ‖l‖h �= ‖l′‖h. In the paper, At(r) denotes the set of all atoms in rule r, and

At(P) =
⋃

r∈P At(r) is the set of all atoms in P . We restrict attention to programs built

on safe rules only (to avoid well-known issues (Leone et al. 2006)).

The Herbrand universe of P , denoted by UP , is the set of all constants appearing in P .

If there are no constants in P , we take UP = {a}, where a is an arbitrary constant. The

Herbrand base of P , denoted by BP , is the set of all ground atoms that can be obtained

from the predicate symbols appearing in P and the constants in UP . Given a rule r of

P , a ground instance of r is a rule obtained from r by replacing every variable X in r

by σ(X), where σ is a substitution mapping the variables occurring in r to constants in

UP . The ground instantiation of P , denoted by ground(P), is the set of all the ground

instances of the rules occurring in P .

Any set I ⊆ BP is an interpretation; it satisfies a rule r ∈ ground(P) if Hr ⊆ I

(denoted as, I |= H(r)) or B+(r) ⊆ I and B−(r) ∩ I = ∅ (denoted as, I |= B(r)); it

https://doi.org/10.1017/S1471068424000103 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000103

1082 G. Amendola et al.

is a model of a program P (denoted I |= P) if for each rule r ∈ ground(P), I |= r.

A model M of P is minimal if no model M ′ ⊂ M of P exists. We denote by MM(P)

the set of all minimal models of P . We write P I for the well-known Gelfond–Lifschitz

reduct (Gelfond and Lifschitz 1991) of P w.r.t. I, that is, the set of rules H(r)← B+(r),

obtained from rules r ∈ ground(P) such that B−(r) ∩ I = ∅. We denote by AS(P) the

set of all answer sets (or stable models) of P , that is, the set of all interpretations I such

that I ∈MM(P I). We say that a program P is coherent, if AS(P) �= ∅, otherwise, P is

incoherent.

Finally, we recall a useful extension of the answer set semantics by the notion of weak

constraint (Buccafurri et al. 2000). A weak constraint ω is of the form:

:∼ b1, . . . , bm, not c1, . . . , not cn. [c@l], (2)

where c and l are nonnegative integers, representing a cost and a level, respectively. Let Π

= P∪W , where P is a set of rules andW is a set of weak constraints. We callM an answer

set of Π if it is an answer set of P . We denote by W (l) the set of all weak constraints at

level l. For every answer set M of Π and any l, the penalty of M at level l, denoted by

PenaltyΠ(M, l), is defined as
∑

ω∈W (l), M |=B(ω) c. For any two answer sets M and M ′ of
Π, we say M is dominated by M ′ if there is l s.t. (i) PenaltyΠ(M

′, l) < PenaltyΠ(M, l)

and (ii) for all integers k > l, PenaltyΠ(M
′, k) = PenaltyΠ(M,k). An answer set of Π

is optimal if it is not dominated by another one of Π. We also mention aggregates, an

extension of ASP that we do not recall here for keeping simple the description. We refer

the reader to Calimeri et al. (2020) for more details.

Example 2.1

Consider the following set of facts F = {node(1); node(2); node(3); edge(1, 2); edge(1, 3);
edge(2, 3)}, and the ASP program P :

col(X, red) ∨ col(X, blue) ∨ col(X, green)← node(X);

← edge(X,Y), col(X,C), col(Y,C)

The set of facts F models a cycle of length 3, while the two rules of the program P

model the 3-colorability problem. It can be checked, that F ∪ {col(1, red), col(2, blue),
col(3, green)} is an answer set of P ∪ F .

To illustrate the usage of weak constraints, we now add the following

:∼ not col(X, red), preferablyRed(X).[1@1],

that prefers solutions having the nodes in preferablyRed to be colored in red (note that

each violation of the weak constraint increases the solution penalty by 1). Suppose

we add to facts in input preferablyRed(2), we obtain that an optimal solution is F ∪
{col(1, green), col(2, red), col(3, blue)}.

3 Unit testing of answer set programs

We now describe a new annotation-based test specification language that follows the Java

annotation style of JUnit and can be fully embedded in programs compliant with the

ASP-Core-2 input language format of ASP competitions (Gebser et al. 2017), which is

nowadays a common syntactic fragment supported by the main ASP implementations. An

https://doi.org/10.1017/S1471068424000103 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000103

Unit testing in ASP revisited: Language and test-driven development environment 1083

Table 1. Base constructs of the annotation language

Annotation Description

@rule(name="rName ",block="bName ") The name rName is assigned to the following
rule. Assigning a rule to a block is optional.

@block(name="bName ",rules={rList }) Defines a block with name bName. Optionally a
block may specify the list of rules that it covers.

@test(

name = "testName ",

scope = { referenceList },
programFiles = { programFileList },
input = "aspCode ",

inputFiles = { inputFileList },
assert = { assertionList }
)

Defines a test case with name testName and
scope referenceList which is a list of strings
referencing the rules and/or blocks under test.
The target file is the current file, if program-
Files is not defined. An input for the test can
be specified in aspCode or several files (property
inputFiles) can be set optionally. Furthermore
assertionList is a list of assertions (defined in
Table 2) that have to be fulfilled for this test
case.

annotation starts with “@” and is enclosed between %** and **% to distinguish multi-

line comments, thus avoiding interference with program execution and to not require

a separate test definition file (although in principle one could also collect testcases in

separate files). The test specification language consists of base annotations and assertion

condition annotations (or simply assertion annotations). The base annotations, described

in Table 1, allow one to compose test cases, group subprograms in blocks, label rules and

subprograms, and refer to the content of files containing programs. These annotations

can be written anywhere in the ASP program, except @rule(...), which has to be

followed by an ASP rule in order to be assigned correctly. With regards to the @test(...)

annotation the property scope includes a list of strings as a parameter that reference both

rules and blocks under test (by their name). Furthermore the property assert holds a

list of assertion annotations that are described in Table 2. Basically, the programmer is

free to identify the (sub)programs to test, specify the input of a program in a test case,

and assert a number of conditions on the expected output, that is, the basic operations

supported by a XUnit testing language (Beck 2002). Note that, we have considered in

our proposal all the assertions that are both present in the main unit testing languages

proposed in the literature and that are more frequent in our experience.

An usage example of the test annotations language can be found in Figure 1, which

contains an instance of the graph coloring problem (3-colorability). This instance pro-

duces six answer sets according to the color assignments of the colors to the specified

nodes. In order to test whether the rules behave as expected, we have to be able to

reference the rules under test. As we do not want to test facts, we assign the names r1

and r2 to the rules in Lines 8 and 11. Additionally we assign these rules to a block,

which has been defined in Line 1. Afterward, we are able to reference the rules under test

inside the @test(...) annotation starting in Line 13. First we specify the name of the

test case and the rules under test, which is the block ToTest in this case. While refer-

encing the block is more convenient, we could also reference the rules directly by writing

https://doi.org/10.1017/S1471068424000103 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000103

1084 G. Amendola et al.

Table 2. Assertions for @test(...) annotation

Assertion Description

@noAnswerSet The test must have no answer set.

@trueInAll(atoms="atoms ") The atoms specified in atoms must be
true in all answer sets.

@trueInAtLeast(number=n,atoms="atoms ") The atoms specified in atoms must be
true in at least n answer sets.

@trueInAtMost(number=n,atoms="atoms ") The atoms specified in atoms must be
true in at most n answer sets.

@trueInExactly(number=n,atoms="atoms ") The atoms specified in atoms must be
true in exactly n answer sets.

@constraintForAll(constraint="c ") The constraint specified in c must be
fulfilled in all answer sets.

@constraintInAtLeast(number=n,constraint="c ") The constraint specified in c must be
fulfilled in at least n answer sets.

@constraintInAtMost(number=n,constraint="c ") The constraint specified in c must be
fulfilled in at most n answer sets.

@constraintInExactly(number=n,constraint="c ") The constraint specified in c must be
fulfilled in exactly n answer sets.

@bestModelCost(cost=cv,level=lv) The best model has to meet the
cost of cv at level lv (for weak con-
straints).

scope = { "r1", "r2" }. Input rules can be defined with the property input, which are

joined with the rules under test during test execution. They are equivalent to the facts of

the program in this case, but can be different for more complex test specifications. With

the property assert we can now define assertions that have to be fulfilled in order to exe-

cute the test with positive result. For this simple instance of the graph coloring problem,

we can test whether the atom col(1, red) is true in exactly two answer sets while the

atoms col(1, red) in combination with col(2, blue) should be true in exactly one

answer set (Lines 17 and 18).

Note that the @test(...) annotation is very flexible and allows inputs to be selected

freely by picking any subprogram, which plays the role of a unit to be tested (and run)

in isolation. The scope attribute can be filled with any list of references (cfr. Table 1),

including single rules, lists of rules (mentioned by name), and rules conveniently collected

in a block (as in the example). Thus, it is possible to fine tune tests selecting any sub-

program the programmer wants to test. The programmer can also flexibly control the

input, inserting specific facts, subprograms, or reading the additional inputs from a file.

https://doi.org/10.1017/S1471068424000103 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000103

Unit testing in ASP revisited: Language and test-driven development environment 1085

1 %** @block(name="ToTest") **%

2
3 %** Test graph **%

4 node(1). node(2). node(3).

5 edge(1,2). edge(1,3). edge(2,3).

6
7 %** @rule(name="r1", block="ToTest") **%

8 col(X,red) | col(X,blue) | col(X,green) :- node(X).

9
10 %** @rule(name="r2", block="ToTest") **%

11 :- edge(X, Y), col(X,C), col(Y,C).

12
13 %**@test(name = "checkRules",

14 scope = { "ToTest" },

15 input = "node(1). node(2). node(3). edge(1,2). edge(1,3). edge(2,3).",

16 assert = {

17 @trueInExactly(number = 2, atoms = "col(1, red)."),

18 @trueInExactly(number = 1, atoms = "col(1, red). col(2, blue)") }

19)

20 **%

Fig. 1. Testing graph coloring.

In spite of being a simple ASP program, Figure 1 shows how our lightweight annotation

language can be used to define test cases without the need for a separate test defini-

tion file. The annotations do not interfere with program executability as being part of

comments according to ASP-Core-2.

To further highlight the helpfulness of the TDD process for an ASP user, consider

the example reported in Figure 2. The program is a (buggy) ASP encoding for the

Hamiltonian Cycle (HC) problem, a classical problem in graph theory. Given a finite

directed graph G = (N,A), and a node a ∈ N , the HC problem asks whether a cycle in

G exists starting from a and passing through each node in G. In our encoding, the first

rule represents a guess for the set of arcs of the graph. The second and the third rule model

the reachability in a graph. Indeed, the starting node X is reached (rule r2, line 7), and if

X is reached and (X,Y) is in the cycle, then Y is also reached (rule r3, line 10). Finally,

the last three rules are constraints to be satisfied so that the arcs chosen in the cycle form

a Hamiltonian cycle. Indeed, the first two constraints state that for each node there is

no more than one outgoing arc (rule r4, line 13) and there is no more than one incoming

arc (rule r5, line 16); and the last constraint states that there is no node X which is not

reached (rule r6, line 19). Now, if we have found a Hamiltonian cycle, we expect to see in

each answer set an outgoing arc for each node appearing in the cycle. We can express this

condition through a constraint, stating that it is not possible that we have a node X, and

there is no arc from X to some other node in the cycle. This condition is modeled by the

assertion @constraintForAll in line 24, by meaning that each solution (answer set) must

satisfy that condition. If we consider the input A = {node(1), node(2), node(3), node(4),
arc(1, 2), arc(1, 4), arc(2, 4), arc(3, 1), arc(4, 3), start(1)} reported in lines 23 and 24,

we expect that a Hamiltonian cycle exists. Note that any programmer would run such

kind of “live” test and maybe more than one, as in any programming language. However,

the testing process fails. Indeed, our program on the given input admits the answer set:

A ∪ {inCycle(1, 2), inCycle(2, 4), inCycle(4, 3), outCycle(1, 4), outCycle(3, 1)}, which
does not satisfy the assertion. (Actually, the program would be a correct encoding for a

https://doi.org/10.1017/S1471068424000103 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000103

1086 G. Amendola et al.

1 %** @block(name="hamCycle") **%

2
3 %** @rule(name="r1", block="hamCycle") **%

4 inCycle(X,Y) | outCycle(X,Y) :- arc(X,Y).

5
6 %** @rule(name="r2", block="hamCycle") **%

7 reached(X) :- start(X).

8
9 %** @rule(name="r3", block="hamCycle") **%

10 reached(Y) :- reached(X), inCycle(X,Y).

11
12 %** @rule(name="r4", block="hamCycle") **%

13 :- inCycle(X,Y), inCycle(X,Z), Y<>Z.

14
15 %** @rule(name="r5", block="hamCycle") **%

16 :- inCycle(X,Y), inCycle(Z,Y), X<>Z.

17
18 %** @rule(name="r6", block="hamCycle") **%

19 :- node(X), not reached(X).

20
21 %** @test(name = "checkProperty",

22 scope = { "hamCycle" },

23 input = "node(1). node(2). node(3). node(4). arc(1,2). arc(1,4).

arc(2,4). arc(3,1). arc(4,3). start(1)."

24 assert = { @constraintForAll(":-node(X), #count{Y:inCycle(X,Y)}=0.") }

25)

26 **%

Fig. 2. Bugged encoding of Hamiltonian Cycle.

Hamiltonian Path). Note that, if you are the author of a piece of code, you are less likely

to see a mistake without “trying” the program (you are “expecting” your statements to

be correct), and common practice is to run a small instance to see if the result is as we

expect. Thus, without an automated testing procedure one should check manually all the

answer sets or resort to a script. Automatic testing makes this phase of the development

easier and declarative. Note that, since unit tests remain in the source code, once the

program is updated, they are not lost (as it happens to manually handled result-checking

sessions). Tests can be run again gaining all the advantages of regression testing (Beck

2002). If a test fails, bugs can be identified with a debugger (Busoniu et al. 2013).

More examples are reported in Berei (2019).

4 Computational complexity

In this section, we first overview the complexity classes that will be mentioned in the

paper; then, we study the computational complexity of the main assertion-checking tasks

that one can specify with the specification language described in the previous section.

4.1 Preliminaires on complexity classes

We recall some basic definitions that will be useful in the remainder of the paper. Here-

after, we assume the reader has basic knowledge of computational complexity (Papadim-

itriou 2007) and focus on the counting complexity classes. Roughly, the counting problems

https://doi.org/10.1017/S1471068424000103 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000103

Unit testing in ASP revisited: Language and test-driven development environment 1087

Table 3. Complexity results of the main tasks concerning ASP programs evaluation

ASP program Answer set checking Answer set existence Answer set counting

Head-cycle-free P NP-c #P-c

Disjunctive coNP-c ΣP
2 -c # · coNP-c

address the issue of computing the number of solutions of an instance of a given prob-

lem. For these problems, a number of specific complexity classes were introduced (Valiant

1979; Hemaspaandra and Vollmer 1995). In particular, the class of counting associated

with problems in NP is denoted by #P. More formally, according to Valiant (1979), the

class #P denotes the set of functions counting the number of accepting paths of NP

machines. This idea was generalized to arbitrary complexity classes by resorting to the

following definition:

Definition 1 (Hemaspaandra and Vollmer (1995))

For a standard complexity class C , # · C denotes the set of functions such that for

some C -computable binary predicate R and a polynomial p it holds that for every input

string x:

f(x) = ‖{y | p(| x |) =| y | ∧ R(x, y)}‖.
Intuitively, each function f ∈ # · C counts the strings of polynomial length, denoted

by y, with respect to the input size | x |, such that the predicate R(x, y) holds. It is

worth recalling that, as it has been noted by Hemaspaandra and Vollmer (1995), the

class #P = # · P .

Another useful definition will allow us to consider the cases in which we are interested

in verifying lower/upper bounds to the number of solutions.

Definition 2 (Hemaspaandra and Vollmer (1995))

Let C be a standard complexity class, then A ∈ C ·C if there exists a function f ∈ # ·C
and a polynomial-computable function g such that x ∈ A↔ f(x) ≥ g(x).

Starting from Definition 2, it can be verified that the complexity class PP = C · P
(Hemaspaandra and Vollmer 1995). Concerning the application of these definitions to the

realm of ASP, the complexity of the Answer Set Counting problem has been extensively

studied over the years (Fichte et al. 2016). In Table 3 we recall the complexity of the main

tasks associated with the problem of checking, computing, and counting answer sets of

ASP programs. The results on the complexity of decision problems are summarized in a

survey by Dantsin et al. (2001) and derived in previous papers by Marek and Truszczynski

(1991) for normal programs, Eiter and Gottlob (1995) for disjunctive programs, and Ben-

Eliyahu and Dechter (1994) for the HCF programs. The results on counting were provided

by Fichte et al. (2016).

4.2 Complexity of testing tasks

For evaluating the complexity of each assertion task we considered the case for proposi-

tional ASP programs. In particular, Table 4 reports the corresponding complexity class

for each assertion task.

https://doi.org/10.1017/S1471068424000103 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000103

1088 G. Amendola et al.

Table 4. Computational complexity of the assertion tasks

Assertions Head-cycle-free Disjunctive

@noAnswerSet coNP-c ΠP
2 -c

@trueInAll(atoms) coNP-c ΠP
2 -c

@trueInAtLeast(atoms,k) PP-c C · coNP-c

@trueInAtMost(atoms,k) PP-c C · coNP-c

@trueInExactly(atoms,k) PP-c C · coNP-c

@constraintForAll(constr) coNP-c ΠP
2 -c

@constraintInAtLeast(constr,k) PP-c C · coNP-c

@constraintInAtMost(constr,k) PP-c C · coNP-c

@constraintInExactly(constr,k) PP-c C · coNP-c

@bestModelCost(cost,level) ΔP
2 -c ΔP

3 -c

Theorem 4.1

All results stated in Table 4 do hold.

In the following, we provide detailed proofs of the computational complexity of the

implemented assertion tasks. Note that, some of them can be easily obtained as corollary

of well-known results about standard reasoning tasks in ASP, such as answer set existence,

brave reasoning, and cautious reasoning (Dantsin et al. 2001), but, to the best of our

knowledge, many others, in particular tasks that we identify to be PP-complete and

C · coNP-complete, are new.

In the following, assume that the program P is propositional.

@noAnswerSet asks whether P has no answer set, that is, AS(P) = ∅. Hence, this prob-
lem is the complementary of the answer set existence problem. Since answer set ex-

istence is NP-complete for HCF ASP programs and ΣP
2 -complete for disjunctive ASP

programs (Dantsin et al. 2001), then the assertion is coNP-complete for HCF programs

and ΠP
2 -complete for disjunctive ASP programs.

@trueInAll. Given a set of atoms A, @trueInAll(A) asks whether each atom in the

set A belongs to each answer set of P , that is, for each M ∈ AS(P), A ⊆ M? Hence,

this assertion task is equivalent to the cautious reasoning task. Since cautious reasoning

is coNP-complete for HCF ASP programs and ΠP
2 -complete for disjunctive ASP pro-

grams (Dantsin et al. 2001), then the assertion is also coNP-complete for HCF programs

and ΠP
2 -complete for disjunctive ASP programs.

https://doi.org/10.1017/S1471068424000103 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000103

Unit testing in ASP revisited: Language and test-driven development environment 1089

@trueInAtLeast. Given a set of atoms A and a positive integer k,

@trueInAtLeast(A, k) asks whether there exist M1, . . . ,Mk ∈ AS(P) such that

A ⊆ Mi, with 1 ≤ i ≤ k. Note that, this problem is equivalent to check if, the ASP

program P ∪ {← not a | a ∈ A} has at least k answer sets. Now, it is known that the

problem of answer set counting is #P-complete for HCF programs and # ·coNP-complete

for disjunctive programs (Fichte et al. 2016). Hence, the corresponding decision problem

of checking if the number of answer sets is at least k is PP-complete for HCF programs

and C · coNP-complete for disjunctive programs.1

@trueInAtMost. Given a set of atoms A and a positive integer k, @trueInAtMost(A, k)

asks whether there exist at most k answer sets, M1, . . . ,Mk ∈ AS(P) such that A ⊆Mi,

with 1 ≤ i ≤ k. Moreover, this problem is equivalent to check if, the ASP program

P ∪ {← not a | a ∈ A} has at most k answer sets. It is known that, the decision problem

of checking if the number of satisfying assignments for a given Boolean formula is at most

k, has the same complexity of checking if the number of satisfying assignments is at least

k (Valiant 1979). Thus, the assertion task @trueInAtMost has the same computational

complexity of @trueInAtLeast.

@trueInExactly. Given a set of atoms A and a positive integer k,

@trueInExactly(A, k) asks whether there exist exactly k answer sets, M1, . . . ,Mk ∈
AS(P) such that A ⊆Mi, with 1 ≤ i ≤ k. Note that the assertion @trueInExactly(A, k)

is true if, and only if, @trueInAtLeast(A, k) and @trueInAtMost(A, k) are true. There-

fore, the assertion task @trueInExactly has the same computational complexity of the

assertion tasks @trueInAtLeast and @trueInAtMost.

@constraintForAll. Given a set of constraints C, @constraintForAll asks whether

each answer set of P is also an answer set of P ∪ C, that is, AS(P) = AS(P ∪ C). This

problem is equivalent to ask whenever P ∪ C ′ has no answer set, where C ′ = {fail ←
B(c) | c ∈ C}∪{← not fail}. Indeed, assume that each answer set M of P is also an an-

swer set of P∪C. Hence,M models each constraint in C. Therefore, B(c) is never satisfied.

Thus, fail cannot be inferred, and it must be false. Hence, the constraint ← not fail is

not satisfied, and P∪C ′ has no answer set. The other implication is similar. In conclusion,

this problem is the complementary of the answer set existence problem (Dantsin et al.

2001). Therefore, the assertion is coNP-complete for HCF programs and ΠP
2 -complete

for disjunctive programs.

@constraintInAtLeast. Given a set of constraints C and a positive integer k,

@constraintInAtLeast asks whenever there exist at least k answer sets of P that satisfy

the set of constraints C, that is, if P ∪ C has at least k answer sets. Again, since the

problem of answer set counting is #P-complete for HCF programs and # ·coNP-complete

for disjunctive programs (Fichte et al. 2016), then, the problem of checking if the number

of answer sets is at least k is PP-complete for HCF programs and C · coNP-complete for

disjunctive programs.

1 For further details on complexity classes related to counting problems, we refer to Hemaspaandra and
Vollmer (1995).

https://doi.org/10.1017/S1471068424000103 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000103

1090 G. Amendola et al.

@constraintInAtMost. Given a set of constraints C and a positive integer k,

@constraintInAtMost asks whenever there exist at most k answer sets of P that satisfy

the set of constraints C, that is, if P ∪ C has at most k answer sets. Note that this

problem is equivalent to ask whenever P ∪ C has not at least k + 1 answer sets, that is

the complementary problem of @constraintInAtLeast, and it has the same complexity

of @constraintInAtLeast.

@constraintInExactly. Given a set of constraints C and a positive integer k,

@constraintInExactly asks whenever there exist exactly k answer sets of P that sat-

isfy the set of constraints C, that is, if P ∪ C has exactly k answer sets. Hence, this

problem is equivalent to ask whenever P ∪C has at least k answer sets and has at most

k answer sets. Therefore, it has the same complexity of @constraintInAtLeast and

@constraintInAtMost.

@bestModelCost. Given a set of weak constraints W , and two positive integers c and l,

@bestModelCost(c,l) asks whenever there is an optimal answer set M of P ∪W such

that its cost is c at level l. It is easy to see that the computational complexity of this

task is equal to that of deciding the existence of an optimal answer set for programs

with weak constraints, which is ΔP
2 -complete for HCF programs and ΔP

3 -complete for

disjunctive programs (Buccafurri et al. 2000).

5 The ASP-WIDE environment

The ASP-WIDE environment implements this paper’s unit testing mechanism and the

annotation language. While command line tools are efficient to use, the focus was to

build an environment containing a code editor with syntax checking, syntax highlighting,

and execution/testing capabilities. This integrated development tool offers a convenient

environment for writing, executing and testing answer set programs. Since web-based

environments, not only for logic programming, but also for conventional languages, are

widely used, ASP-WIDE is based mostly on web technologies.

5.1 Architecture and implementation

As many modern web-based applications, ASP-WIDE consists of a front-end, which

is built using the Angular framework, and a back-end implemented in Java utilizing

the Spring framework. The communication between front-end and back-end is realized

with HTTP-Requests transmitting JSON data. The overall architecture is depicted in

Figure 3; below we detail the two main components of ASP-WIDE. For a deeper (more

technical) description of the implementation we refer the reader to the Master Thesis of

Berei (2019).

The front-end of the development environment was built with the Angular framework

(see https://angular.io/), which is a web technology for building comprehensive web

applications. The UI components are partly based on Angular Material components

(cfr. https://material.angular.io/), while the code editor utilizes the Monaco editor

known from Visual Studio Code (see https://microsoft.github.io/monaco-editor/

https://doi.org/10.1017/S1471068424000103 Published online by Cambridge University Press

https://angular.io/
https://material.angular.io/
https://microsoft.github.io/monaco-editor/index.html
https://doi.org/10.1017/S1471068424000103

Unit testing in ASP revisited: Language and test-driven development environment 1091

Fig. 3. Architecture of ASP-WIDE.

index.html). The Monaco editor comes with several built-in features, like the possibility

to define a custom syntax highlighting using Monarch, but also syntax errors/warnings

can be displayed efficiently. Thus ASP-WIDE environment is restricted to run inside a

browser that renders HTML with CSS and executes JavaScript in background.

The back-end of ASP-WIDE consists of a REST web service implemented in Java using

the Spring framework. In particular, web controllers receive web requests and execute

the required logic in order to fulfill actions for the front-end. Some of these actions are:

(i) file management operations; (ii) checking the syntax of the program; (iii) executing

programs and returning answer sets; and (iv) executing unit tests and returning test

results. Following “Separation of concerns,” a well-known design principle, certain aspects

of the back-end have been split into three modules, namely Development, Execution, and

File Management.

The File Management module deals with typical CRUD operations for files, while the

Development and Execution modules implement the testing engine that is responsible

for syntax checking and execution of programs and tests.

The main steps of the proposed test engine can be summarized as follows: (i) parsing

of the ASP-Core-2 input language including an extension for the annotation language

of this paper; (ii) interpreting parsed assertions in order to generate the tester program;

(iii) execution of ASP systems; and (iv) evaluating test results.

More precisely, the test engine starts by parsing the entire ASP program, together with

provided test annotations, by means of a parser generated with JavaCC (see https://

javacc.org/). In particular, such a parser is obtained from a grammar definition of the

input language and provides the possibility to implement a visitor pattern on top of the

grammar tree by means of JJTree tool included in JavaCC. During parsing, exceptions

are caught by our engine in order to report to the users all useful information (i.e., error

line and column) to identify the error in the provided ASP code. If no errors happen

at this stage, an object-oriented representation of the parsed program and the parsed

annotations is obtained.

In particular, this is encapsulated in the Java class named TestSuite reported in

Figure 4. By exploiting such a virtual model, rules and blocks of the original program

are stored only once and are shared among the different tests, while test-specific data

such as assertions, input facts, constraints, and more, are enclosed in the different Test

objects.

https://doi.org/10.1017/S1471068424000103 Published online by Cambridge University Press

https://microsoft.github.io/monaco-editor/index.html
https://javacc.org/
https://javacc.org/
https://doi.org/10.1017/S1471068424000103

1092 G. Amendola et al.

1 public class TestSuite{

2 private HashMap<String, Block> blocks;

3 private HashMap<String, String> rules;

4 private ArrayList<Test> tests;

5 public TestSuite() {

6 this.blocks = new HashMap<String, Block>();

7 this.rules = new HashMap<String, String>();

8 this.tests = new ArrayList<Test>();

9 }

10 // further functions and definitions

11 }

Fig. 4. TestSuite class definition.

1 private AssertionResult checkAssertion(String code, AssertTrueInAtMost

assert, SolverType st) {

2 AssertionResult ar = new AssertionResult();

3 ar.setName(assert.getClass().getSimpleName());

4 ar.setExecutedCode(code);

5 String[] atoms = assert.getAtoms().split("\\.");

6 StringBuilder sb = new StringBuilder(code);

7 for(String atom: atoms) {

8 sb.append(":- not ");

9 sb.append(atom.trim());

10 sb.append(".\n");

11 }

12 ar.setExecutedCode(sb.toString());

13 ExecutableFile testFile = new ExecutableFile("checkAssertionTrueAtMost",

ar.getExecutedCode(), "");

14 testFile.setSolverType(st);

15 ExecutionResult er = this.executionLogic.executeCode(testFile,

(assert.getAssertCount()+1));

16 ar.setExecutionOutput(er.getResult());

17 if(er.getModels() != null && er.getModels().size() <=

assert.getAssertCount()) {

18 ar.setSucceeded(true);

19 }

20 return ar;

21 }

Fig. 5. Implementation of the @trueInAtMost assertion.

Starting from the obtained TestSuite each test is executed separately. In order to

better understand the testing workflow, Figure 5 reports the code that implements the

execution of a test verifying a @trueInAtMost assertion.

The function checkAssertion receives three parameters, an ASP program (code), an

assertion to verify (assert), and the ASP system that should be used (st). Intuitively,

the ASP program is obtained from the generated TestSuite, by fetching all the rules

indicated (explicitly or indirectly by using block definitions) in the scope attribute of the

test while the assertion object stores the answer set count k, and the list of atoms that

has to be true in at most k answer sets.

https://doi.org/10.1017/S1471068424000103 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000103

Unit testing in ASP revisited: Language and test-driven development environment 1093

Table 5. Implementation of the assertions. P denotes the scope (i.e., the subprogram to

test), TP the program built to implement the assertion, C a constraint, A a set of atoms,

k, c, l are integers

Assertions Tester program TP Test output

@noAnswerSet P Return fail if TP admits answer
sets, pass otherwise.

@trueInAll(A) P ∪⋃
a∈A{← a} Return fail if TP admits answer

sets, pass otherwise.

@trueInAtLeast(A,k) P ∪⋃
a∈A{← not a} Return pass as soon as the solver

on TP outputs k answer sets, fail
otherwise.

@trueInAtMost(A,k) P ∪⋃
a∈A{← not a} Return pass if the solver termi-

nates on TP outputting at most k
answer sets, fail otherwise.

@trueInExactly(A,k) P ∪⋃
a∈A{← not a} Return pass if the solver on TP

outputs k answer sets, fail other-
wise.

@constraintForAll(C) P ∪ {f ← C; ← not f} Return pass if TP admits no an-
swer set, fail otherwise.

@constraintInAtLeast(C,k) P ∪ {C} Return pass as soon as the solver
on TP outputs k answer sets, fail
otherwise.

@constraintInAtMost(C,k) P ∪ {C} Return pass if the solver termi-
nates on TP outputting at most k
answer sets, fail otherwise.

@constraintInExactly(C,k) P ∪ {C} Return pass if the solver on TP

outputs k answer sets, fail other-
wise.

@bestModelCost(c,l) P Return pass if the optimal answer
set of TP has a cost of c at level l,
fail otherwise.

According to the transformation described in Table 5, in our example, the tester pro-

gram is obtained by adding to the input program a constraint for each atom that has to

be true (Figure 5, lines 6-11).

Then, the tester program is evaluated by the ASP system st (Figure 5, lines 12–15).

This evaluation is implemented in the Execution module that is built on top of the library

DLVWrapper (Ricca 2003). In particular, we extended the DLVWrapper library to handle

any ASP systems supporting the output format of the last ASP Competition (Gebser

et al. 2017), such as, for example, Clingo (Gebser et al. 2019). According to the selected

https://doi.org/10.1017/S1471068424000103 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000103

1094 G. Amendola et al.

1 protected void startRun throws IOException, DLVInvocationException {

2
3 // some preparation ...

4
5 List<String> input = new ArrayList<String>();

6 input.add(DLVWrapper.getInstance().getPath());

7 try {

8 if (isDLV2){

9 addOption("--silent");

10 }

11 else if(isClingo) {

12 addOption("--outf=1"); // competition output format

13 addOption("--quiet=0,0"); // output configuration

14 }

15 else{ // DLV

16 addOption("-silent");

17 }

18 } catch (DLVInvocationException e) {

19 e.printStackTrace();

20 }

21 input.addAll(options);

22 input.addAll(inputProgram.getFiles());

23
24 // starting the ASP system in a process ...

25
26 }

Fig. 6. Customization of DLVWrapper according to the used ASP system.

ASP system, DLVWrapper executes it as a command line tool with its specific arguments.

A snapshot of the code that prepares the execution engine is reported in Figure 6.

There are several benefits that come with the DLVWrapper. One of them is that it

provides a layer of objects that abstracts the interaction with the solver and simplifies

the implementation. Moreover, it supports asynchronous program execution with the

possibility to register callback functions (ModelHandlers) for found answer sets, which

allows handling large results without saturating the memory of the caller.

The output produced by the ASP system (i.e., the list of answer sets of the tester

program) is encapsulated in an object of the class ExecutionResult that is further used

to check the tested assertion. In our example, if at most k answer sets have been found

out of the k+1 requested by the execution module, then the assertion succeeded (Figure 5

lines 16–19). Assertion results are then provided as output to the user request and are

visualized by the front-end.

5.2 User interface

The user interface of ASP-WIDE is depicted in Figure 7. The design of the environment

was inspired by ASPIDE and features four main areas of interaction with the user:

(i) The toolbar on the top of the environment;

(ii) The workspace or file explorer on the left side;

(iii) The code editor in the middle/right area (with open tabs on the top); and

(iv) The output area on the bottom, which shows answer sets and test results.

https://doi.org/10.1017/S1471068424000103 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000103

Unit testing in ASP revisited: Language and test-driven development environment 1095

Fig. 7. The ASP-WIDE interface.

The toolbar features usual menus for handling files and settings; two buttons to run

files and tests and a drop-down list for handling solver execution configurations (called

run configuration as in ASPIDE), respectively. Programs can be organized in projects,

which appear and can be operated as folders on the workspace explorer. Acting on the

workspace explorer one can open files. The opened file is displayed in the code editor

in the middle/right area of the screen. The code editor features syntax highlights and

code completion, that is, it suggests how to complete predicate names and variables,

to assist program and test case development. Errors and warnings are also immediately

displayed, and the modifications are automatically saved, as is customary in modern

web-based interfaces. The execution of programs can be controlled by managing run

configurations, where one can specify the files to include, the solver to use and the

command line parameters. Executing the current file or unit tests (if there are any) is

done by clicking on the buttons “Solve” or “Test,” which can be found in the middle of

the Toolbar. In case one just wants to run some files together, the interface allows the

user to select files from the workspace explorer, right click, and select “Run directly”

from a drop-down menu. More involved configurations can be set up acting on the run

configuration window. The result of the execution (of tests and programs) is shown in

the bottom part of the environment, containing output area. The result of test case

execution outlines, for each test, the result (using red color for failed tests, and green

color for passed ones), and for each test it is possible to inspect the execution details,

and a witness of the result.

5.3 Availability

The ASP-WIDE environment can be installed as a standalone application on any com-

puter with a modern (java script-enabled) web browser and Java 8 installed. ASP-WIDE

https://doi.org/10.1017/S1471068424000103 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000103

1096 G. Amendola et al.

can be downloaded from: http://www.mat.unical.it/ricca/asptesting/asp-wide_

1.0-beta4.zip, and the sources are distributed under GPL license (send an email to

ricca@mat.unical.it).

6 Experimental evaluation

In this section we present an experimental evaluation aimed at assessing the ASP-WIDE

implementation of the test case execution environment. On the one hand, the experiment

aims to demonstrate the practical usability of the ASP-WIDE language by showcasing

its ability to effectively identify and capture bugs in real-world use cases. Also, the

experiment shows that ASP-WIDE exhibits good performance in test case execution. On

the other hand, the experiment highlights the importance of having a complexity-aware

implementation of test case execution.

6.1 Development of the test suites

The first step of the experimental campaign was the development of a benchmark cov-

ering some concrete use case problems. In particular, we considered three well-known

problems used in the literature both to introduce ASP and to test ASP systems in

competitions (Gebser et al. 2020; 2017; 2012): (HP) Hamiltonian Path, (FF) Fast Food

problem, and Quantified Boolean Formulas with two quantifiers (2QBF).

The HP problem involves determining the existence of a finite set of vertices v1, . . . , vk
of a directed graph G = 〈V,E〉, such that: (i) every node v ∈ V appears exactly once,

and (ii) for each 1 ≤ i < k, (vi, vi+1) ∈ E. HP is a well-known problem in literature

belonging to the class of NP-complete problems. HP played a relevant role in the ASP

literature because it is one of the canonical examples of non-tight (Erdem and Lifschitz

2003) encoding (i.e., with positive recursive definitions).

FF is an optimization problem introduced in ASP competitions (Gebser et al. 2020).

The objective of FF is to find a k-subset of n restaurants that serve as depots in such a

way the distance between each restaurant and the closest depot is minimized. FF features

an encoding that follows the guess&check methodology and makes use of aggregates and,

importantly, of weak constraints to model the optimality condition.

2QBF is the problem of deciding the satifiability of a quantified boolean formula with

two quantifiers. More in detail, the problem is to check satisfiability of a formula of the

form ∃X∀Y φ, where X and Y are sets of propositional variables, and φ is a formula

in disjunctive normal form. Recall that a formula φ is in disjunctive normal form if

it is of the form C1 ∨ · · · ∨ Cn where Ci is a conjunction of propositional literals (i.e.,

propositional variables or their negation) for all i = 1, · · · , n. 2QBF is ΣP
2 -complete. Note

that, 2QBF is the canonical example of the application of the saturation programming

technique (Eiter and Gottlob 1995), that is used to model problems belonging to the

second level of the Polynomial Hierarchy (PH).

All in all, the experiment covers many of the main constructs of ASP (i.e., recursive

definitions, constraints, aggregates) as well as the two main programming methodolo-

gies (i.e., guess&check and saturation). Moreover, it considers representatives for both

decision and optimization problems belonging to different levels of the PH. The encod-

ings of HP, FF and 2QBF have been introduced in the literature and used also in ASP

https://doi.org/10.1017/S1471068424000103 Published online by Cambridge University Press

http://www.mat.unical.it/ricca/asptesting/asp-wide_1.0-beta4.zip
http://www.mat.unical.it/ricca/asptesting/asp-wide_1.0-beta4.zip
ricca@mat.unical.it
https://doi.org/10.1017/S1471068424000103

Unit testing in ASP revisited: Language and test-driven development environment 1097

Table 6. Employed assertions for each domain

Assertion\Domain Hamiltonian Path Fast Food 2QBF

@constraintForAll � � �
@constraintInAtLeast - - �
@trueInAll - - �
@trueInAtLeast - � �
@trueInExactly � - -
@noAnswerSet � - �
@bestModelCost - � -

Table 7. Modifications applied to generate mutants

Modification\Domain Hamiltonian Path Fast Food 2QBF

renamePredicates � � �
deleteRule � � �
deleteLiteral - � �
addDefaultNegation � - �
swapTerms � - �
changeAggregates - � -
changeMathOperators - � -
swapDefaultNegation - � -

competitions (Gebser et al. 2020). Thus, this benchmark can be pragmatically considered

to be made of concrete and representative use cases of ASP programs.

A test suite for the above-mentioned problems has been developed by using the testing

language presented in Section 3. We have created unit test specifications for the consid-

ered problems: HP, FF, and 2QBF, consisting of 6, 5, and 6 cases, respectively. Table 6

summarizes the assertions used in the test cases for each considered problem. We observe

that @constraintForAll assertion, checking properties that hold in all answer sets, was

used in all the three cases; whereas @trueInExacly revealed to be useful only in HP. As

expected, @bestModelCost was used only in FF, which is the only optimization problem.

All the remaining assertions were used in at least two cases. The test case specifications

were accompanied by random problem instances, forming a test suite consisting of 88

unit tests for HP, 23 for FF, and 459 for 2QBF.

In order to assess our test suite, we performed a mutation analysis (Oetsch et al.

2012). The latter involves making various modifications to the original (correct) encoding,

resulting in the creation of mutants. The purpose is to evaluate the effectiveness of the

test suite in detecting potential bugs by executing it on these mutants. More in detail, we

utilized the mutation model and tool specifically designed for ASP, which was introduced

by Oetsch et al. (2012). In our work, we refer to this tool as ASP-Modificator , which

provides a pool of possible modifications that can be applied, possibly multiple times,

to an input program P , in order to generate different mutants of P . Among possible

modifications supported by ASP-Modificator, we selected those that can be applied

to the considered problem encoding according to their syntactic features. In particular,

Table 7 reports the list of modification used for generating mutants for each problem.

https://doi.org/10.1017/S1471068424000103 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000103

1098 G. Amendola et al.

By applying such transformations, we obtained nine altered mutants (i.e., M1, · · · ,M9)

for each problem encoding.

6.2 Experiment setup

In order to ensure the reproducibility of our results, we provide detailed information below

regarding the methods compared and the execution environment used in the study.

Compared methods. In the experiment we run two implementations. The first is the test

case execution engine of ASP-WIDE, configured with the ASP system clingo (Geb-

ser et al. 2019). Recall that, ASP-WIDE produces for each test case a tester program

(as specified in Table 5), and then analyzes the output of the ASP solver on the tester

program to present the results to the user. This behavior has been extracted from the en-

vironment and incorporated into a command line tool, which is then executed in isolation

within the experimental environment.

Another implementation that was executed is a re-engineering of the algorithms em-

ployed in ASPIDE, which we denote as ASPIDE-LIKE. Note that, ASPIDE does not

provide direct access to the internal engine, thus it has been faithfully re-implemented.

More in detail, in the ASPIDE approach the semantics of the assertions is implemented

straightly. In few words, the instance under test is assembled according to the test case

specification and fed to an ASP system (i.e., clingo in this experiment). In turn, a Java

thread processes the answer sets to check whether the assertion to test is satisfied. This

approach is not complexity-wise optimal in most cases. For example, checking whether a

property holds in all answer sets requires a full enumeration in ASPIDE, whereas it can

be done in a single call to an ASP solver in ASP-WIDE (cfr. Table 5). ASPIDE-LIKE

implementation is “complexity-wise optimal” only when analyzing the first solution gen-

erated by the ASP system is adequate, for example, in the case of @bestModelCost.

Hardware and software resources. All the experiments were executed on a machine

equipped with Xeon(R) Gold 5118 CPUs, running Ubuntu Linux (kernel 5.4.0-77-

generic). Memory and time were limited to 4 gigabyte and 300 s, respectively. The

evaluation of ASP programs was performed by running clingo (Gebser et al. 2019)

version 5.4.0.

Benchmarks availability. All the material (encoding, instances, tests, executables, etc.)

needed to reproduce the experiments can be downloaded from https://osf.io/6hxdn/?

view_only=2a2067f712ac438cb3b6a9c7aa528331.

6.3 Results

In the following the results obtained by running ASP-WIDE and ASPIDE-LIKE are

analyzed.

Efficacy of the testing methodology. First, we discuss about the efficacy of the approach

(i.e., we answer to the question whether our (small) test suite is sufficient to cover all

mutants) and check whether it delivers acceptable performance in terms of executions

time.

https://doi.org/10.1017/S1471068424000103 Published online by Cambridge University Press

https://osf.io/6hxdn/?view_only=2a2067f712ac438cb3b6a9c7aa528331
https://osf.io/6hxdn/?view_only=2a2067f712ac438cb3b6a9c7aa528331
https://doi.org/10.1017/S1471068424000103

Unit testing in ASP revisited: Language and test-driven development environment 1099

Figure 8 reports an histogram for each considered problem. More specifically, each

histogram reports one bar for each mutant. The green (resp. red) color indicates succeeded

(resp. failed) tests case executions for each generated mutant. A test succeeds whenever

an assertion is satisfied and fails otherwise.

As expected, the bar corresponding to the original (i.e., bug-free) encoding are only

colored in green, which means that no assertion fails on a correct program. Moreover,

some assertion fails in all the mutants (note that the red color is visible in bars corre-

sponding to mutants). This means that all the bugs introduced in the encodings for the

three problems could be detected.

Given the high worst-case complexity of checking assertions, and the intrinsic com-

plexity of benchmark problems (recall that HP is NP-complete, FF is NP hard and 2QBF

is ΣP
2 -complete), one might wonder whether this result can be obtained in a reasonable

time.

The average execution time employed by ASP-WIDE is reported in Table 8. Test cases

in HP, FF, and 2QBF were completed in average 0.003 s, 0.05 s, and 0.026 s, respectively.

This average performance is clearly acceptable and reveals that the majority of assertion

tests is basically instantaneous. (A more detailed analysis on these results is provided in

the next paragraph).

We remark that this result can be seen as a confirmation of the small-scope hypoth-

esis (Oetsch et al. 2012). As observed by Oetsch et al. (2012), to detect a bug in an

ASP program, it is sufficient to “analyze programs after grounding them over a small

domain.” As a consequence, regardless of the high worst-case complexity associated with

assertion testing tasks, unit testing remains effective in identifying bugs due to the rea-

sonable solving time of state-of-the-art ASP systems. On the other hand, it is important

to take into account the high worst-case complexity of assertion testing when designing

test cases. Indeed, complexity results tell us that utilizing large instances in a test case

can render it ineffective and pointless, as waiting for the results may become unreason-

ably time-consuming. A rule of thumb for devising good unit tests is to concentrate in

devising smart test cases that run over small problem instances.

Comparison with ASPIDE. Now, ASP-WIDE and ASPIDE-LIKE performance are com-

pared. This is done to measure the improvements that can be obtained by delivering an

implementation, like ASP-WIDE, that carefully considers the complexity of the task at

hand. Also an in-depth analysis of the performance of the systems running each different

annotation type is performed.

Obtained results are summarized by Figure 9 and Table 8. In particular, Table 8

reports, for each benchmark and testing method, number of solved instances (#solved),

average running time (avg(T)), and standard deviation σ(T) computed over all the test

case executions (column #). While ASP-WIDE consistently generates results within the

time limit for all test cases, ASPIDE fails to do so. Therefore, average and standard

deviation provided in Table 8 take into account the execution time for solved instances

and double the time limit (i.e., 600 s) for unsolved instances. This performance measure,

commonly known as the PAR-2 score, is widely used in systems comparison (Froleyks

et al. 2021). From Table 8 it is evident that the ASP-WIDE outperforms by orders of

magnitude ASPIDE-LIKE. Nonetheless, the values of the standard deviation suggest

that some specific instances are more demanding.

https://doi.org/10.1017/S1471068424000103 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000103

1100 G. Amendola et al.

Unit tests (2QBF)

Unit tests (FF)

Unit tests (HP)

(a)

(b)

(c)

Fig. 8. Successful and failed unit tests for each domain.

https://doi.org/10.1017/S1471068424000103 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000103

Unit testing in ASP revisited: Language and test-driven development environment 1101

Figure 9 reports the aggregate performance of both ASP-WIDE and ASPIDE-LIKE

in form of cactus plots, one for each assertion type (executed on all encodings). Recall

that a line in a cactus plot contains a point (X,Y) if a given method is able to solve

X instances within Y seconds. From Figure 9a–9g it emerges that ASP-WIDE is very

efficient in checking all the assertion types. More precisely, ASP-WIDE outperforms

ASPIDE-LIKE, which often reveals an exponential-like behavior. Whereas, in the case

of @noAnswerSet and @bestModelCost, the two approaches performs equally since the

underlying check is the same (cfr. Figure 9f and 9g). Here, the first answer of the system

is sufficient to check the assertions, as the corresponding task has the same computational

complexity of checking the existence of an (optimal) answer set.

The overall gap in performance is evident in Figure 9h, which compares the two ap-

proaches over all executions. More in detail, we report that ASP-WIDE run 5700 tests

within 135 s by using, on average, 2.75MB of memory, while, ASPIDE-LIKE run 4373

tests in 10 h by using, on average 94MB of memory.

7 Related work

The first paper approaching the problem of systematic testing of ASP programs is (Jan-

hunen et al. 2010), where a general framework for structure-based testing of answer set

programs, encompassing the definition of test coverage notions for ASP programs, has

been proposed. In (Janhunen et al. 2010) the complexity issues related to coverage prob-

lems and the inherent complexity of relevant decision problems were also studied. An

experimental comparison of basic strategies for random testing and structure-based test-

ing of ASP programs has been presented (Janhunen et al. 2011). Results obtained in

this latter indicate that random testing is quite effective in catching errors provided that

sufficiently many admissible test inputs are considered. It has been empirically demon-

strated (Oetsch et al. 2012) that the small-scope hypothesis of traditional testing holds

also in the case of ASP programs. That is, many errors can be found by testing a program

w.r.t. test inputs considering a small number of objects (i.e., from a small scope). More

recently, a new tool for random-based testing of ASP programs, called Harvey, has been

described (Greßler et al. 2017). In Harvey random testing for ASP has been implemented

using ASP itself (i.e., both test-input generation and determining test verdicts is done

employing ASP). Harvey achieves uniformity of the test-input selection by using XOR

streamlining (Gomes et al. 2007) a technique used also in the area of SAT solving (Gomes

et al. 2006). The methods mentioned up to now focus on the problem of generating auto-

matically test suites for ASP programs that are sufficient to identify defects, after correct

programs have been written. These tools are thus particularly useful in cases in which one

wants to improve an encoding and use a natural (but less efficient) encoding, to check

whether a more complicated (but efficient) one is being developed. On the other hand,

as outlined in the introduction, the goal of unit testing in software development is to

drive the implementation toward working software also when no previous solution exists.

Indeed, in TDD, test cases are derived from the requirements even before writing the

source code (Fraser et al. 2003; Beck 2002). Nonetheless, automatic test generation can

be combined with unit testing, for example, in case one is evolving a solution to meet

some non-functional requirement such as efficient computation.

https://doi.org/10.1017/S1471068424000103 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000103

1102 G. Amendola et al.

(a) Assertion: @constraintForAll (b) Assertion: @constraintInAtLeast

(c) Assertion: @trueInAll (d) Assertion: @trueInAtLeast

(e) Assertion: @trueInExactly (f) Assertion: @noAnswerSet

(g) Assertion: @bestModelCost (h) Overall performances

Fig. 9. Assertion-based comparison between ASP-WIDE and ASPIDE-LIKE methods.

https://doi.org/10.1017/S1471068424000103 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000103

Unit testing in ASP revisited: Language and test-driven development environment 1103

Table 8. Comparison between ASP-WIDE and ASPIDE-LIKE

ASP-WIDE ASPIDE-LIKE

Benchmark Test cases # #solved avg(T) σ(T) #solved avg(T) σ(T)

Hamiltonian Path 6 880 880 0.003 0.018 565 216.750 286.749
Fast Food 5 230 230 0.050 0.398 212 50.078 160.661
2QBF 6 4590 4590 0.030 0.102 3596 137.275 244.897

Focusing on unit testing, the first implementation of an ASP-specific solution was pre-

sented and included in the comprehensive development tool ASPIDE (Febbraro et al.

2011a). This implementation utilizes rule naming inside of ASP comments in combina-

tion with a test definition language for specifying test cases. While rule naming can be

accomplished in an annotation-like manner, which does not interfere with program ex-

ecutability, the specification of test cases required a separate test file and a dedicated

syntax (Febbraro et al. 2011a). Since adding meta-information to programs in form of an-

notations is known from conventional programming languages as C# and Java, a purely

annotation-based test case specification for answer set programs is desirable. With (De

Vos et al. 2012) a language for annotating answer set programs (called LANA) is pre-

sented. Although LANA is not solely devoted to testing, it does address test case defi-

nition inside of ASP comments. Despite fully relying on annotations, its implementation

(called ASPUnit) requires each unit test to be defined in a separate file and was never

integrated in a development environment (to the best of our knowledge). Consequently

the desire for a lightweight test definition mechanism that is purely annotation-based

and does not necessarily require additional files or external tools that are not included

in an environment dedicated to assisted programming remained unfulfilled. Moreover,

it is important to note that, from a pure syntactic perspective, our assertion language

closely resembles the one of ASPIDE, which is also based on Java-like conventions, and

uses similar names for the assertions. On the other hand, our language syntax-wise is

significantly different from LANA, which follows its own syntactic conventions and can

provide the same assertions.

The annotation language presented in this paper, albeit inspired by existing proposals,

presents a new syntax that differs from both ASPIDE and LANA proposals and recalls

the well-known annotation style of Java. Since one of our design goals was to keep it

simple while considering all the most important features, our language does not sup-

port (by design) some of the ASPIDE-specific options (such as automatic extraction of

program modules and run configuration management), and some of the LANA-specific

options (such as pre-/post-conditions and signatures). We discarded those that are not

strictly related to program testing (e.g., signatures), can be simulated (e.g., pre-/post-

conditions), are implementation-specific (run configuration management), and have a

not-so-obvious semantics (automatic expansion of program modules). Indeed, automatic

expansion of program modules in ASPIDE allows the automatic extension of a block

under test with the rules from the original program up to the point that a modular-

ity condition is satisfied, such as the splitting condition (Lifschitz and Turner 1994) or

the more precise conditions of (Janhunen et al. 2009). In our experience this feature

https://doi.org/10.1017/S1471068424000103 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000103

1104 G. Amendola et al.

augments the program under test in a way that is not obvious to the programmer, thus

we decided to discard this feature. Alternative ways of verifying the correctness of pro-

grams with input and output have been recently proposed (Fandinno et al. 2020), that

could be considered for integration in our framework.

We remark that our approach allows (as first suggested by De Vos et al. (2012)) to

inline tests with code. This choice brings advantages, for example, makes it easy to

pack and distribute ASP programs, that are often contained in a single file, with tests.

However, the programmer can decide to keep tests and code in separate files, which

might be convenient in some cases (e.g., the ASP code is divided in several files); thus

our approach can deliver the maximum flexibility in the organization of a project.

Finally, we observe that our unit testing language has been conceived for ASP-Core-2,

nonetheless, it can be applied -almost as it is- to any extension of ASP, such as the richer

languages supported by Clingo (Gebser et al. 2019) and DLV 2.0 (Alviano et al. 2017),

DLVHEX (Eiter et al. 2018), ASPMT (Bartholomew and Lee 2019; Shen and Lierler

2018), CASP (Mellarkod et al. 2008; Balduccini and Lierler 2017; Banbara et al. 2017),

and SPARC (Balai et al. 2013). Indeed, annotations (in comments) do not interfere with

the specifications. Moreover, our approach could be complemented with techniques for

rushing and strolling among answer sets (Fichte et al. 2022).

8 Conclusion

Unit testing frameworks are nowadays considered best practice in all modern software

development processes. The development of ASP applications can be accelerated by re-

sorting to unit testing frameworks, as it happens for all known programming languages.

In this paper we revisit unit testing in ASP by proposing a new unit test language that

unifies the strengths of previous approaches. The new language allows the development

of test cases inline with ASP code, keeps the style of expressing test case conditions from

ASPIDE and is annotation-based as LANA. Moreover, it features a refreshed syntax

that is nearer to the JUnit framework and should look more familiar to developers that

are accustomed to XUnit style languages. Importantly, the new unit testing language is

implemented in a novel web-based development environment for ASP, which supports

TDD of ASP programs. Another contribution of the paper is a complete identification of

the computational complexity of the tasks associated to unit testing of ASP programs.

To the best of our knowledge, this overview was never done in the literature and contains

both known and novel results.

Despite the high worstcase complexity of testing ASP programs, thanks to the small-

scope hypothesis, one can define effective test suites with good performance in practice.

Moreover, the experiment reported in the paper reveals the importance of devising a

complexity-aware implementation, as ASP-WIDE outperforms the more naive approach

of ASPIDE (Febbraro et al. 2011b).

As far as future work is concerned, we are improving the ASP-WIDE environment by

implementing additional features, such as quick fixes, code templates, support for debug-

gers that are available in more mature IDEs for ASP (Febbraro et al. 2011a; Busoniu

et al. 2013); moreover we are evaluating the possibility of resorting to a dedicated an-

swer set counting system (Fichte et al. 2016) to implement test case conditions that are

PP-complete and C · coNP-complete.

https://doi.org/10.1017/S1471068424000103 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000103

Unit testing in ASP revisited: Language and test-driven development environment 1105

References

Alviano, M., Calimeri, F., Dodaro, C., Fuscà, D., Leone, N., Perri, S., Ricca, F.,
Veltri, P. and Zangari, J. 2017. The ASP system DLV2. In Logic Programming and Non-
monotonic Reasoning – 14th International Conference, LPNMR 2017, Espoo, Finland, July
3-6, 2017, Proceedings, M. Balduccini and T. Janhunen, Eds. Lecture Notes in Computer
Science, vol. 10377. Springer, 215–221.

Amendola, G., Berei, T. and Ricca, F. 2021. Testing in ASP: revisited language and
programming environment. In Logics in Artificial Intelligence – 17th European Conference,
JELIA 2021, Virtual Event, May 17–20, 2021, Proceedings, W. Faber, G. Friedrich, M. Geb-
ser, and M. Morak, Eds. Lecture Notes in Computer Science, vol. 12678. Springer, 362–376.

Balai, E., Gelfond, M., and Zhang, Y. 2013. Towards answer set programming with sorts. In
Logic Programming and Nonmonotonic Reasoning, 12th International Conference, LPNMR
2013, Corunna, Spain, September 15-19, 2013. Proceedings, P. Cabalar and T. C. Son, Eds.
Lecture Notes in Computer Science, vol. 8148. Springer, 135–147.

Balduccini, M. and Lierler, Y. 2017. Constraint answer set solver EZCSP and why integra-
tion schemas matter. Theory and Practice of Logic Programming 17, 4, 462–515.

Banbara, M., Kaufmann, B., Ostrowski, M. and Schaub, T. 2017. Clingcon: The next
generation. Theory and Practice of Logic Programming 17, 4, 408–461.

Bartholomew, M. and Lee, J. 2019. First-order stable model semantics with intensional
functions. Artificial Intelligence 273, 56–93.

Beck. 2002. Test Driven Development: By Example. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

Ben-Eliyahu, R. and Dechter, R. 1994. Propositional semantics for disjunctive logic pro-
grams. Annals of Mathematics and Artificial Intelligence 12, 1–2, 53–87.

Berei, T. 2019. Annotation-based testing for answer set programming. Master The-
sis - University of Calabria, 1–65. URL: https://www.mat.unical.it/ricca/downloads/

Annotation-based_Testing_for_ASP_Berei_Tobias.pdf.

Bezerra, C. and Freitas, F. 2017. Verifying description logic ontologies based on competency
questions and unit testing. In Proceedings of the IX Seminar on Ontology Research in Brazil
and I Doctoral and Masters Consortium on Ontologies, Braśılia, Brazil, August 28th-30th,
2017, M. Abel, S. R. Fiorini, and C. Pessanha, Eds. CEUR Workshop Proceedings, vol. 1908.
CEUR-WS.org, 159–164.

Bogaerts, B., Erdem, E., Fodor, P., Formisano, A., Ianni, G., Inclezan, D., Vidal,

G., Villanueva, A., Vos, M. D. and Yang, F., Eds. 2019. Proceedings 35th International
Conference on Logic Programming (Technical Communications), ICLP 2019 Technical Com-
munications, Las Cruces, NM, USA, September 20–25, 2019. EPTCS, vol. 306.

Brewka, G., Eiter, T. and Truszczynski, M. 2011. Answer set programming at a glance.
Com. ACM 54, 12, 92–103.

Buccafurri, F., Leone, N. and Rullo, P. 2000. Enhancing disjunctive datalog by constraints.
TKDE 12, 5, 845–860.

Busoniu, P., Oetsch, J., Pührer, J., Skocovsky, P. and Tompits, H. 2013. Sealion: An
Eclipse-based IDE for answer-set programming with advanced debugging support. Theory and
Practice of Logic Programming 13, 4–5, 657–673.

Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krenwallner, T.,
Leone, N., Maratea, M., Ricca, F. and Torsten, S. 2020. Asp-core-2 input language
format. Theory and Practice of Logic Programming 20, 2, 294–309.

Dantsin, E., Eiter, T., Gottlob, G. and Voronkov, A. 2001. Complexity and expressive
power of logic programming. ACM Computing Surveys 33, 3, 374–425.

De Vos, M., Kisa, D. G., Oetsch, J., Pührer, J. and Tompits, H. 2012. Annotating answer-
set programs in LANA. Theory and Practice of Logic Programming 12, 4–5, 619–637.

https://doi.org/10.1017/S1471068424000103 Published online by Cambridge University Press

https://www.mat.unical.it/ricca/downloads/Annotation-based_Testing_for_ASP_Berei_Tobias.pdf
https://www.mat.unical.it/ricca/downloads/Annotation-based_Testing_for_ASP_Berei_Tobias.pdf
https://doi.org/10.1017/S1471068424000103

1106 G. Amendola et al.

Eiter, T., Germano, S., Ianni, G., Kaminski, T., Redl, C., Schüller, P. and

Weinzierl, A. 2018. The DLVHEX system. Künstliche Intelligenz 32, 2–3, 187–189.

Eiter, T. and Gottlob, G. 1995. On the computational cost of disjunctive logic programming:
Propositional case. Annals of Mathematics and Artificial Intelligence 15, 3-4, 289–323.

Erdem, E., Gelfond, M. and Leone, N. 2016. Applications of answer set programming. AI
Magazine 37, 3, 53–68.

Erdem, E. and Lifschitz, V. 2003. Tight logic programs. Theory and Practice of Logic Pro-
gramming 3, 4–5, 499–518.

Erdogmus, H., Morisio, M. and Torchiano, M. 2005. On the effectiveness of the test-first
approach to programming. IEEE Transactions on Software Engineering 31, 3, 226–237.

Fandinno, J., Lifschitz, V., Lühne, P. and Schaub, T. 2020. Verifying tight logic programs
with anthem and vampire. Theory and Practice of Logic Programming 20, 5, 735–750.

Febbraro, O., Leone, N., Reale, K. and Ricca, F. 2011a. Unit testing in ASPIDE. In
Applications of Declarative Programming and Knowledge Management – 19th International
Conference, INAP 2011, and 25th Workshop on Logic Programming, WLP 2011, Vienna,
Austria, September 28–30, 2011, Revised Selected Papers, H. Tompits, S. Abreu, J. Oetsch,
J. Pührer, D. Seipel, M. Umeda, and A. Wolf, Eds. Lecture Notes in Computer Science,
vol. 7773. Springer, 345–364.

Febbraro, O., Leone, N., Reale, K. and Ricca, F. 2011b. Unit testing in ASPIDE.
CoRR abs/1108.5434.

Febbraro, O., Reale, K. and Ricca, F. 2011. ASPIDE: integrated development environment
for answer set programming. In Logic Programming and Nonmonotonic Reasoning - 11th
International Conference, LPNMR 2011, Vancouver, Canada, May 16–19, 2011. Proceedings,
J. P. Delgrande and W. Faber, Eds. Lecture Notes in Computer Science, vol. 6645. Springer,
317–330.

Fichte, J. K., Gaggl, S. A. and Rusovac, D. 2022. Rushing and strolling among answer
sets - navigation made easy. In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI
2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI
2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI
2022 Virtual Event, February 22 – March 1, 2022. AAAI Press, 5651–5659.

Fichte, J. K., Hecher, M., Morak, M. and Woltran, S. 2016. Counting answer sets via
dynamic programming. CoRR abs/1612.07601.

Fraser, S., Beck, K. L., Caputo, B., Mackinnon, T., Newkirk, J. and Poole, C. 2003.
Test driven development (TDD). In Extreme Programming and Agile Processes in Software
Engineering, 4th International Conference, XP 2003, Genova, Italy, May 25–29, 2003 Pro-
ceedings, M. Marchesi and G. Succi, Eds. Lecture Notes in Computer Science, vol. 2675.
Springer, 459–462.

Froleyks, N., Heule, M., Iser, M., Järvisalo, M. and Suda, M. 2021. SAT competition
2020. Artificial Intelligence 301, 103572.

Gebser, M., Kaminski, R., Kaufmann, B. and Schaub, T. 2012. Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool
Publishers.

Gebser, M., Kaminski, R., Kaufmann, B. and Schaub, T. 2019. Multi-shot ASP solving
with clingo. Theory and Practice of Logic Programming 19, 1, 27–82.

Gebser, M., Maratea, M. and Ricca, F. 2017. The sixth answer set programming competi-
tion. Journal of Artificial Intelligence Research 60, 41–95.

Gebser, M., Maratea, M. and Ricca, F. 2020. The seventh answer set programming com-
petition: Design and results. Theory and Practice of Logic Programming 20, 2, 176–204.

Gelfond, M. and Lifschitz, V. 1991. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing 9, 3/4, 365–386.

https://doi.org/10.1017/S1471068424000103 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000103

Unit testing in ASP revisited: Language and test-driven development environment 1107

Gomes, C. P., Hoffmann, J., Sabharwal, A. and Selman, B. 2007. Short xors for model
counting: From theory to practice. In Theory and Applications of Satisfiability Testing -
SAT 2007, 10th International Conference, Lisbon, Portugal, May 28–31, 2007, Proceedings,
J. Marques-Silva and K. A. Sakallah, Eds. Lecture Notes in Computer Science, vol. 4501.
Springer, 100–106.

Gomes, C. P., Sabharwal, A. and Selman, B. 2006. Near-uniform sampling of combinatorial
spaces using XOR constraints. In Advances in Neural Information Processing Systems 19,
Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems,
Vancouver, British Columbia, Canada, December 4–7, 2006, B. Schölkopf, J. C. Platt, and
T. Hofmann, Eds. MIT Press, 481–488.

Greßler, A., Oetsch, J. and Tompits, H. 2017. Harvey : A system for random testing in
ASP. In Logic Programming and Nonmonotonic Reasoning – 14th International Conference,
LPNMR 2017, Espoo, Finland, July 3–6, 2017, Proceedings, M. Balduccini and T. Janhunen,
Eds. Lecture Notes in Computer Science, vol. 10377. Springer, 229–235.

Hemaspaandra, L. A. and Vollmer, H. 1995. The satanic notations: counting classes beyond
#p and other definitional adventures. SIGACT News 26, 1, 2–13.

Janhunen, T., Niemelä, I., Oetsch, J., Pührer, J. and Tompits, H. 2010. On testing
answer-set programs. In ECAI 2010 - 19th European Conference on Artificial Intelligence, Lis-
bon, Portugal, August 16-20, 2010, Proceedings, H. Coelho, R. Studer, and M. J. Wooldridge,
Eds. Frontiers in Artificial Intelligence and Applications, vol. 215. IOS Press, 951–956.

Janhunen, T., Niemelä, I., Oetsch, J., Pührer, J. and Tompits, H. 2011. Random vs.
structure-based testing of answer-set programs: An experimental comparison. In Logic Pro-
gramming and Nonmonotonic Reasoning – 11th International Conference, LPNMR 2011,
Vancouver, Canada, May 16–19, 2011. Proceedings, J. P. Delgrande and W. Faber, Eds.
Lecture Notes in Computer Science, vol. 6645. Springer, 242–247.

Janhunen, T., Oikarinen, E., Tompits, H. and Woltran, S. 2009. Modularity aspects of
disjunctive stable models. Journal of Artificial Intelligence Research 35, 813–857.

Lazaar, N., Gotlieb, A., and Lebbah, Y. 2010. On testing constraint programs. In Principles
and Practice of Constraint Programming – CP 2010 – 16th International Conference, CP
2010, St. Andrews, Scotland, UK, September 6-10, 2010. Proceedings, D. Cohen, Ed. Lecture
Notes in Computer Science, vol. 6308. Springer, 330–344.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S. and Scarcello,

F. 2006. The DLV system for knowledge representation and reasoning. ACM Trans. Comput.
Log. 7, 3, 499–562.

Lierler, Y., Maratea, M. and Ricca, F. 2016. Systems, engineering environments, and
competitions. AI Magazine 37, 3, 45–52.

Lifschitz, V. and Turner, H. 1994. Splitting a logic program. In Logic Programming, Pro-
ceedings of the Eleventh International Conference on Logic Programming, Santa Marherita
Ligure, Italy, June 13-18, 1994, P. V. Hentenryck, Ed. MIT Press, 23–37.

Madeyski, L. 2010. Test-Driven Development – An Empirical Evaluation of Agile Practice.
Springer.

Marek, V. W. and Truszczynski, M. 1991. Autoepistemic logic. Journal of ACM 38, 3,
588–619.

Mellarkod, V. S., Gelfond, M. and Zhang, Y. 2008. Integrating answer set programming
and constraint logic programming. Annals of Mathematics and Artificial Intelligence 53, 1–4,
251–287.

Oetsch, J., Prischink, M., Pührer, J., Schwengerer, M. and Tompits, H. 2012. On the
small-scope hypothesis for testing answer-set programs. In Principles of Knowledge Repre-
sentation and Reasoning: Proceedings of the Thirteenth International Conference, KR 2012,
Rome, Italy, June 10-14, 2012, G. Brewka, T. Eiter, and S. A. McIlraith, Eds. AAAI Press.

Papadimitriou, C. H. 2007. Computational complexity. Academic Internet Publ.

https://doi.org/10.1017/S1471068424000103 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000103

1108 G. Amendola et al.

Ricca, F. 2003. A java wrapper for DLV. In Answer Set Programming, Advances in Theory
and Implementation, Proceedings of the 2nd Intl. ASP’03 Workshop, Messina, Italy, Septem-
ber 26-28, 2003, M. D. Vos and A. Provetti, Eds. CEUR Workshop Proceedings, vol. 78.
CEUR-WS.org.

Shen, D. and Lierler, Y. 2018. SMT-based constraint answer set solver EZSMT+ for non-
tight programs. In Principles of Knowledge Representation and Reasoning: Proceedings of
the Sixteenth International Conference, KR 2018, Tempe, Arizona, 30 October – 2 November
2018, M. Thielscher, F. Toni, and F. Wolter, Eds. AAAI Press, 67–71.

Sommerville, I. 2007. Software Engineering, 8th Edition. International Computer Science
Series. Addison-Wesley.

Valiant, L. G. 1979. The complexity of enumeration and reliability problems. SIAM Journal
on Computing 8, 3, 410–421.

https://doi.org/10.1017/S1471068424000103 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000103

	Introduction
	Preliminaries on answer set programming
	Unit testing of answer set programs
	Computational complexity
	Preliminaires on complexity classes
	Complexity of testing tasks

	The ASP-WIDE environment
	Architecture and implementation
	User interface
	Availability

	Experimental evaluation
	Development of the test suites
	Experiment setup
	Results

	Related work
	Conclusion
	References

