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1. Introduction and preliminaries. Normalisers have played a major role in the
theory of selfadjoint operator algebras since their introduction by Murray and von
Neumann [12]. Their importance in the rapidly growing theory of limit algebras is
vital [15]. Normalisers of non-selfadjoint, and more specifically of nest, algebras were
introduced in [5] and subsequently studied in the more general setting of reflexive
algebras in [8].

There exists a close relation between normalisers and ternary rings of operators
(TRO’s). Recall that a TRO is a norm closed subspace U of the space B(H1,H2) of
all bounded linear operators from a Hilbert space H1 into a Hilbert space H2 such
that TS∗R ∈ U whenever T, S, R ∈ U . Let A and B be norm closed (in general, non-
selfadjoint) operator algebras acting on H1 and H2, respectively, and T ∈ B(H1,H2) a
normaliser of B into A; that is, an operator satisfying the relations

T∗BT ⊆ A and TAT∗ ⊆ B. (1)

It is easy to see that the TRO U ⊆ B(H1,H2) that is generated by T consists of
normalisers of B into A; thus each normaliser of B into A belongs to a TRO each
of whose elements normalises B into A. As a matter of fact, if A and B are reflexive
algebras, this holds also for the semi-normalisers of B into A [8]; that is, the operators
T ∈ B(H1,H2) satisfying only the first of the relations (1).

Both operator algebras and TRO’s can be viewed abstractly in the setting of
Operator Space Theory (see e.g. [1], [6] and [7]). Suppose that A and B are abstract
operator algebras. It is natural to ask for an abstract characterisation of the TRO’s
X possessing a completely isometric representation as a space of normalisers between
(the ranges of) some completely isometric representations of A and B. In the present
note we provide such a characterisation in the case in which A and B are C∗-algebras.
Concrete representations of abstract operator spaces, algebras, modules, etc. are of
basic importance in Operator Space Theory. See [1] and [6]. Our results establish such
representations in a new situation and point out a direction to consider normalisers of
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operator algebras independently of the underlying Hilbert spaces. They extend a well
known representation of the Morita context of two strongly Morita equivalent (in the
sense of Rieffel [16]) C∗-algebras. (We refer the reader to [2] for the categorical aspects
of Morita equivalence of C∗-algebras.) Recall that if A and B are strongly Morita
equivalent C∗-algebras then their imprimitivity bimodule, say X , is a TRO, and A, B
and X can be concretely and faithfully represented in such a way that the linear span of
X∗X is dense in A and the linear span of XX∗ is dense in B. (See [3] for a more general
representation of Morita contexts of non-selfadjoint operator algebras.) In that case X
is a “full” space of normalisers of B into A. In our setting, A and B need not be Morita
equivalent; we characterise the normalising TRO’s for which X∗BX and XAX∗ do not
necessarily span dense subsets of A and B.

The question we study is closely related to the notion of a Hilbert module over a
C∗-algebra. As corollaries, we provide an intrinsic characterisation of the sub-TRO’s
of the Hilbert modules over a given C∗-algebra and a representation for a class of
positive definite maps. We also discuss weak∗ versions of our main results.

We briefly review the concept of a Hilbert (bi)module. Let A be a C∗-algebra. A
complex linear space Z is called a right pre-Hilbert A-module if Z is a right A-module
and an inner product (·, ·)A : Z × Z → A is given such that, for each z, z1, z2 ∈ Z and
a ∈ A, the following identities hold:

(i) (z1, z2 · a)A = (z1, z2)Aa;
(ii) (z1, z2)∗A = (z2, z1)A;

(iii) (z, z)A ≥ 0 and (z, z)A = 0 if and only if z = 0.
Left pre-Hilbert modules are defined similarly. If A and B are C∗-algebras, the space
Z is called a pre-Hilbert B, A-bimodule [4], if Z is a right pre-Hilbert A-module, a left
pre-Hilbert B-module and the identity

(iv) (z1, z2)B · z3 = z1 · (z2, z3)A

holds for each z1, z2, z3 ∈ Z. Pre-Hilbert (bi)modules, which are complete with respect
to the norm ‖x‖ = √‖(x, x)A‖ are called Hilbert (bi)modules.

If U ⊆ B(H1,H2), let Mn(U) ⊆ B(Hn
1,Hn

2) denote the space of all n by n matrices
with entries in U . If U ⊆ B(H1,H2) and V ⊆ B(K1,K2) are norm closed spaces, a linear
map ϕ : U → V is called a complete isometry if the map ϕn : Mn(U) → Mn(V), given
by ϕn((xij)) = (ϕ(xij)), is an isometry for each n ∈ �.

Suppose that U ⊆ B(H1,H2) and V ⊆ B(K1,K2) are TRO’s. A linear map ϕ :
U → V will be called a ternary monomorphism if ϕ is injective and ϕ(TS∗R) =
ϕ(T)ϕ(S)∗ϕ(R), for each T, S, R ∈ U ; ϕ is a ternary isomorphism, if it is a
surjective ternary monomorphism. Ternary isomorphisms between TRO’s are complete
isometries and vice versa [7]; hence we can speak about abstract TRO’s in the sense of
Operator Space Theory [9]. Alternatively, abstract TRO’s can be defined axiomatically
[18], [19]. Following [9] and [17] however, we shall not make a strict distinction between
abstract and concrete TRO’s, just as one does in the case of C∗-algebras.

Let (Z, (·, ·)A) be a Hilbert module over a C∗-algebra A. By [11] and [19], there
exists an isometry ϕ : Z → B(H,K) and a faithful ∗-representation π : A → B(H) such
that π ((z1, z2)A) = ϕ(z1)∗ϕ(z2) and ϕ(z · a) = ϕ(z)π (a). It is easy to see that ϕ(Z) is a
TRO and that any two such representations of Z are ternarily isomorphic. Hence,
Z can be viewed as a TRO itself, its ternary product being z1z∗

2z3 = z1 · (z2, z3)A.
(We refer the reader to Section 2 of [17] for a detailed account of the relationship
between TRO’s and Hilbert modules.) If Z is a Hilbert bimodule, then condition (iv)
guarantees that the ternary structures arising from the two (different) C∗-algebras
coincide.
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2. Characterisation results. Let A, B be unital C∗-algebras and X a complex
linear space. Suppose that the map r : X × B × X → A is linear on the first and the
second variable and conjugate linear on the third, or linear on the second and the
third variable and conjugate linear on the first. (We shall call such maps sesquilinear,
pointing out in addition on which variable we have conjugate linearity.) Call r positive
definite if

∑n
i,j=1 a∗

i r(xi, b∗
i bj, xj)ai ≥ 0 in A, for all xi ∈ X , ai ∈ A, bi ∈ B, i = 1, 2, . . . , n.

By Proposition 6.1 of [13], the map r is positive definite if and only if for any x1,
x2, . . . , xn ∈ X and each positive matrix (bi j)i j ∈ Mn(B) the matrix (r(xi, bi j, xj))i j ∈
Mn(A) is positive. Call r weakly positive definite, if

∑n
i,j=1 r(xi, b∗

i bj, xj) ≥ 0 in A, for
all xi ∈ X , bi ∈ B, i = 1, 2, . . . , n. It is clear that a positive definite map is weakly
positive definite. Of course, the converse is not true in general: for example, if A and
B are C∗-algebras for which there exists a positive linear map r0 : B → A that is not
completely positive, then the map r : � × B × � → A given by r(λ, b, µ) = λµr0(b) is
weakly positive definite but not positive definite.

The following definition is basic for the subsequent development.

DEFINITION 2.1. Let A and B be unital C∗-algebras and X a TRO. A normalising
context for A, B and X is a 5-tuple (A, B, X, p, q), where

p : X × B × X → A

and

q : X × A × X → B

are weakly positive definite sesquilinear maps, p (resp. q) is conjugate linear on the
first (resp. third) variable, p(x, 1, x) �= 0 for each non-zero x ∈ X , and the following
identities hold, for all x, x1, x2, y1, y2 ∈ X , a, a1, a2 ∈ A and b, b1, b2 ∈ B:

(a) p(x1, b1q(y1, a, y2)b2, x2) = p(x1, b1, y1)ap(y2, b2, x2);
(a’) q(y1, a1p(x1, b, x2)a2, y2) = q(y1, a1, x1)bq(x2, a2, y2);
(b) p(x, b, x1x∗

2x3) = p(x, b, x1)p(x2, 1, x3).
A semi-normalising context for A, B and X is a 4-tuple denoted by (A, B, X, p), where
p : X × B × X → A is a positive definite sesquilinear map, conjugate linear on the first
variable, such that p(x, 1, x) �= 0 for each non-zero x ∈ X and condition (b) is satisfied.

The motivation for the definition above comes from the following example.

EXAMPLE. Let H1 and H2 be Hilbert spaces, A ⊆ B(H1), B ⊆ B(H2) be unital
C∗-algebras and X ⊆ B(H1,H2) be a TRO, consisting of semi-normalisers of B into
A. Define a mapping p : X × B × X → A by p(T, V, S) = T∗VS, T, S ∈ X , V ∈ B.
Then (A,B,X , p) is a semi-normalising context. If X normalises B into A and a
mapping q : X × A × X → B is defined by q(T, U, S) = TUS∗, T, S ∈ X , U ∈ A,
then (A,B,X , p, q) is a normalising context. One of our main aims in this note is to
show that every (semi-) normalising context arises essentially in this way.

A standard argument yields the following fact.

LEMMA 2.2. If r : X × B × X → A is a sesquilinear weakly positive definite map,
then r(x, b, y)∗ = (y, b∗, x), for all x, y ∈ X and b ∈ B.

As we pointed out, weak positive definiteness is strictly weaker than positive
definiteness. As the next lemma shows, the two notions are the same for the maps of a
normalising context.
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LEMMA 2.3. If (A, B, X, p, q) is a normalising context, then p and q are positive
definite.

Proof. By symmetry, it suffices to prove the claim for the map p. Let

A0 = span

{
n∑

i=1

p(xi, bi, yi) : xi, yi ∈ X, bi ∈ B, i = 1, 2, . . . , n, n ∈ �

}—‖·‖
.

By condition (a) of Definition 2.1, the space A0 is closed under multiplication and
by Lemma 2.2, A0 is selfadjoint. Hence A0 is the C∗-subalgebra of A generated by
the range of the map p. Fix elements xi ∈ X and bi ∈ B, i = 1, 2, . . . , n and pick
ai = ∑mi

k=1 p(uik, bik, vik) ∈ A0. Then, by (a) and Lemma 2.2,

a0
def=

n∑
i,j=1

a∗
i p(xi, b∗

i bj, xj)aj

=
∑
i,j,k,l

p(uik, bik, vik)∗p(xi, b∗
i bj, xj)p(ujl, bjl, vjl)

=
∑
i,j,k,l

p(vik, b∗
ik, uik)p(xi, b∗

i bj, xj)p(ujl, bjl, vjl)

=
∑
i,j,k,l

p(vik, b∗
ikq(uik, 1, xi)b∗

i bjq(xj, 1, ujl)bjl, vjl)

=
∑
i,j,k,l

p(vik, c∗
ikcjl, vjl),

where cik = biq(xi, 1, uik)bik, i = 1, 2, . . . , n, k = 1, 2, . . . , mi. It follows that a0 ≥
0 in A0; by Proposition 6.1 of [13], (p(xi, b∗

i bj, xj))i j ≥ 0 in Mn(A0), and thus
(p(xi, b∗

i bj, xj))i j ≥ 0 in Mn(A). �
The next theorem provides an abstract characterisation of the normalising TRO’s

of (unital) C∗-algebras: it yields that a TRO X possesses a completely isometric
representation consisting of normalisers between some faithful ∗-representations of
B and A if and only if there exists a normalising context for A, B and X .

THEOREM 2.4. Let A and B be unital C∗-algebras, X a TRO and p : X × B × X → A
(resp. q : X × A × X → B) a sesquilinear map, conjugate linear on the first (resp. third)
variable. The 5-tuple (A, B, X, p, q) is a normalising context if and only if there exist
Hilbert spaces H1 and H2, faithful ∗-representations π1 : A → B(H1) and π2 : B →
B(H2) and a ternary monomorphism ϕ : X → B(H1,H2) such that

π1(p(x, b, y)) = ϕ(x)∗π2(b)ϕ(y) and π2(q(x, a, y)) = ϕ(x)π1(a)ϕ(y)∗,

for all x, y ∈ X, a ∈ A and b ∈ B.

Proof. Suppose that (A, B, X, p, q) is a normalising context and let Y = B ⊗ X ⊗ A
be the algebraic tensor product of B, X and A. Define pairings (·, ·)A : Y × Y → A
and (·, ·)B : Y × Y → B given on elementary tensors by

(b1 ⊗ x1 ⊗ a1, b2 ⊗ x2 ⊗ a2)A = a∗
1p(x1, b∗

1b2, x2)a2
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and

(b1 ⊗ x1 ⊗ a1, b2 ⊗ x2 ⊗ a2)B = b1q(x1, a1a∗
2, x2)b∗

2.

If α = ∑n
i=1 bi ⊗ xi ⊗ ai ∈ Y then, by Lemma 2.3,

(α, α)A =
n∑

i,j=1

a∗
i p(xi, b∗

i bj, xj)aj ≥ 0.

Similarly, (α, α)B ≥ 0 for each α ∈ Y .
For an element α ∈ Y , set ‖α‖A = √‖(α, α)A‖ and ‖α‖B = √‖(α, α)B‖ and let N1

(resp. N2) be the kernel of ‖·‖A (resp. ‖·‖B). Suppose that α = ∑n
i=1 bi ⊗ xi ⊗ ai ∈ N2.

Then
∑n

i,j=1 biq(xi, aia∗
j , xj)b∗

j = 0. Thus

n∑
i,j,k,l=1

a∗
kp(xk, b∗

kbiq(xi, aia∗
j , xj)b∗

j bl, xl)al = 0.

By condition (a) of Definition 2.1,


∑

k,i

a∗
kp(xk, b∗

kbi, xi)ai





∑

k,i

a∗
kp(xk, b∗

kbi, xi)ai




∗

= 0

and so
∑

k,i a∗
kp(xk, b∗

kbi, xi)ai = 0, which means that
∑n

i=1 bi ⊗ xi ⊗ ai ∈ N1. Hence
N2 ⊆ N1 and, by symmetry, N1 ⊆ N2; let N = N1 = N2.

If α ∈ N and β ∈ Y , the Cauchy-Schwarz inequality implies that (α, β)A = 0 and
(α, β)B = 0. Thus (·, ·)A and (·, ·)B give rise to A-valued and B-valued pairings on the
factor space Z0

def= Y/N, which we denote in the same way and which are defined by
(α + N, β + N)A = (α, β)A and (α + N, β + N)B = (α, β)B.

Define a right A- and a left B-module actions on Y by setting

(b ⊗ x ⊗ a) · a0 = b ⊗ x ⊗ aa0

and

b0 · (b ⊗ x ⊗ a) = b0b ⊗ x ⊗ a.

It is clear that these are indeed module operations. Next observe that if we let
α = ∑n

i=1 bi ⊗ xi ⊗ ai ∈ N and a0 ∈ A then

(α · a0, α · a0)A =
n∑

i,j=1

a∗
0a∗

i p(xi, b∗
i bj, xj)aja0 = 0

and hence N · A ⊆ N; similarly, B · N ⊆ N. Equip Z0 with the induced module actions.
We now show that Z0 is a pre-Hilbert B, A-bimodule. The identities (z1, z2)∗A =

(z2, z1)A and (z1, z2)∗B = (z2, z1)B follow from Lemma 2.2. Positive definiteness has
already been observed. The relations (z2, z1 · a)A = (z2, z1)Aa and (b · z2, z1)B =
b(z2, z1)B follow directly from the definition of the pairings and the module operations.
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Let αi = bi ⊗ xi ⊗ ai ∈ Y , i = 1, 2, 3; we compute in Y :

β
def= (α1, α2)B · α3 − α1 · (α2, α3)A

= (b1 ⊗ x1 ⊗ a1, b2 ⊗ x2 ⊗ a2)B · (b3 ⊗ x3 ⊗ a3)

− (b1 ⊗ x1 ⊗ a1) · (b2 ⊗ x2 ⊗ a2, b3 ⊗ x3 ⊗ a3)A

= (b1q(x1, a1a∗
2, x2)b∗

2b3) ⊗ x3 ⊗ a3 − b1 ⊗ x1 ⊗ (a1a∗
2p(x2, b∗

2b3, x3)a3).

If d ⊗ y ⊗ c ∈ Y is an elementary tensor then, by (a),

(d ⊗ y ⊗ c, β)A = c∗p (y, d∗b1q(x1, a1a∗
2, x2)b∗

2b3, x3)a3

− c∗p ( y, d∗b1, x1)a1a∗
2p(x2, b∗

2b3, x3)a3 = 0.

It follows that ‖β‖A = 0, β ∈ N and, by (conjugate-)linearity, (z1, z2)B · z3 =
z1 · (z2, z3)A, for all z1, z2, z3 ∈ Z0.

We have thus shown that Z0 is a pre-Hilbert B, A-bimodule; let Z be its completion.
Recall that the canonical ternary structure of Z is given by z1z∗

2z3 = z1 · (z2, z3)A.
Consider the map ι : X → Z, defined by

ι(x) = 1 ⊗ x ⊗ 1 + N (x ∈ X).

We have ‖ι(x)‖2 = ‖p(x, 1, x)‖ > 0 and thus ι is injective. Let

γ1
def= ι(x1x∗

2x3) = 1 ⊗ (x1x∗
2x3) ⊗ 1 + N.

We have

γ2
def= ι(x1)ι(x2)∗ι(x3)

= (1 ⊗ x1 ⊗ 1 + N)(1 ⊗ x2 ⊗ 1 + N)∗(1 ⊗ x3 ⊗ 1 + N)

= (1 ⊗ x1 ⊗ 1 + N) · (1 ⊗ x2 ⊗ 1 + N, 1 ⊗ x3 ⊗ 1 + N)A

= 1 ⊗ x1 ⊗ p(x2, 1, x3) + N.

If d ⊗ y ⊗ c + N ∈ Z then, by (b),

(d ⊗ y ⊗ c + N, γ1 − γ2)A = c∗p(y, d, x1x∗
2x3) − c∗p (y, d, x1)p(x2, 1, x3) = 0.

It follows that γ1 − γ2 ∈ N; hence ι is a ternary monomorphism from X into Z.
We have thus constructed a Hilbert B, A-bimodule (Z, (·, ·)A, (·, ·)B) and a ternary

monomorphism ι : X → Z such that

p(x, b, y) = (ι(x), b · ι(y))A and q(x, a, y) = (ι(x) · a, ι(y))B,

for all x, y ∈ X , a ∈ A and b ∈ B. By Proposition 2.3 of [4], we can form the linking
C∗-algebra of Z consisting of all matrices of the form ( b x

ỹ a ), where a ∈ A, b ∈ B,
x ∈ Z and ỹ ∈ Z̃ (Z̃ being the “dual” A, B-bimodule to Z [4]); the involution and
the multiplication are performed in the obvious way using the module operations
and the pairings. A standard argument now implies that there exist Hilbert spaces
H1 and H2, faithful ∗-representations π1 : A → B(H1) and π2 : B → B(H2) and a
ternary monomorphism ψ : Z → B(H1,H2) such that ψ(b · x · a) = π2(b)ψ(x)π1(a),
π1((x, y)A) = ψ(x)∗ψ(y) and π2((x, y)B) = ψ(x)ψ(y)∗, for all x, y ∈ Z, a ∈ A and
b ∈ B. The claim follows if we set ϕ = ψ ◦ ι.
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Conversely, suppose that representations π1, π2 and ϕ exist with the cited
properties. Clearly, p and q are weakly positive definite. Conditions (a), (a’) and
(b) follow from the associativity of the operator multiplication. By the C∗-property,
‖p(x, 1, x)‖ = ‖x‖2 > 0 and hence p(x, 1, x) �= 0, for each x ∈ X . �

Theorem 2.4 yields the following characterisation of the C∗-algebras possessing
non-trivial ideals that are strongly Morita equivalent in the sense in Rieffel [16].

COROLLARY 2.5. Let A and B be unital C∗-algebras. If (A, B, X, p, q) is a normalising
context for A and B, then the ideals of A and B generated by the ranges of p and q,
respectively, are strongly Morita equivalent. Hence, A and B have non-trivial strongly
Morita equivalent ideals if and only if A and B participate in some normalising context.

REMARK. By Theorem 2.4, for a normalising context (A, B, X, p, q), the identity
“dual” to (b), q(y, a, y1y∗

2y3) = q(y, a, y3)q(y2, 1, y1), is satisfied automatically. Also
automatic are the identities ‖p(x, 1, x)‖ = ‖x‖2 and ‖q(x, 1, x)‖ = ‖x‖2, (x ∈ X). By
Lemma 2.3 we now have that if (A, B, X, p, q) is a normalising context then (A, B, X, p)
and (B, A, X∗, q∗) are semi-normalising contexts, where X∗ is the TRO consisting of
the adjoints of the elements of X and q∗ : X∗ × A × X∗ → B is the map given by
q∗(x∗, a, y∗) = q(x, a, y).

We now turn our attention to semi-normalisers between C∗-algebras. Recall that
a right-Hilbert B, A-bimodule is a right Hilbert A-module Z equipped with a left B-
module action induced by a unital ∗-homomorphism B → B(Z), where B(Z) is the
C∗-algebra of adjointable operators on X . (For definitions and basic facts concerning
operators on Hilbert modules see [10].) The next result is the analogue of Theorem 2.4
in the semi-normalisers case. It provides a characterisation of the TRO’s which can
be completely isometrically represented as a space of semi-normalisers between some
∗-representations of two given C∗-algebras.

THEOREM 2.6. Let A and B be unital C∗-algebras, X be a TRO and p : X × B × X →
A a sesquilinear positive definite map, conjugate linear on the first variable. The 4-tuple
(A, B, X, p) is a semi-normalising context if and only if there exist Hilbert spaces H1

and H2, a faithful ∗-representation π1 : A → B(H1), a non-degenerate ∗-representation
π2 : B → B(H2) and a ternary monomorphism ϕ : X → B(H1,H2) such that

π1(p(x, b, y)) = ϕ(x)∗π2(b)ϕ(y),

for all x, y ∈ X and b ∈ B.

Proof. Assume that (A, B, X, p) is a semi-normalising context. As in the proof of
Theorem 2.4, equip the (algebraic) tensor product Y = B ⊗ X ⊗ A with an A-valued
sesquilinear form given on elementary tensors by

(b1 ⊗ x1 ⊗ a1, b2 ⊗ x2 ⊗ a2)A = a∗
1p(x1, b∗

1b2, x2)a2.

Let N be the kernel of the induced seminorm ‖·‖A and consider the module operation
on Y given by (b ⊗ x ⊗ a) · a0 = b ⊗ x ⊗ aa0. As before, observe that Z0 = Y/N is a
right pre-Hilbert A-module, let Z be its completion and notice that the map ι : X → Z
given by ι(x) = 1 ⊗ x ⊗ 1 + N is a ternary monomorphism.

Let K(Z) and B(Z) be the C∗-algebras of compact and adjointable operators on
Z, respectively, and L(Z) the Banach algebra of bounded A-module linear maps on Z.

https://doi.org/10.1017/S0017089504001958 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089504001958


496 I. G. TODOROV

(See [10].) For each b0 ∈ B, define a linear map π (b0) on Y given on elementary tensors
by

π (b0)(b ⊗ x ⊗ a) = b0b ⊗ x ⊗ a.

The positive definiteness of p implies that π (b0)N ⊆ N and ‖π (b0)(α)‖A ≤ ‖b0‖‖α‖A,
for all b0 ∈ B and α ∈ Z. Thus π induces a contractive homomorphism from B into
L(Z). If α = ∑n

i=1 bi ⊗ xi ⊗ ai, β = ∑m
j=1 dj ⊗ yj ⊗ cj, then

(π (b0)(α + N), β + N)A =

 n∑

i=1

b0bi ⊗ xi ⊗ ai,

m∑
j=1

dj ⊗ yj ⊗ cj




A

=
∑

i,j

a∗
i p(xi, b∗

i b∗
0dj, yj)cj

=

 n∑

i=1

bi ⊗ xi ⊗ ai,

m∑
j=1

b∗
0dj ⊗ yj ⊗ cj




A

= (α + N, π (b∗
0)(β + N))A.

Hence π (b0) ∈ B(Z) and π is a (unital) ∗-homomorphism. We have thus constructed a
right-Hilbert B, A-bimodule (Z, (·, ·)A) and a ternary monomorphism ι : X → Z such
that p(x, b, y) = (ι(x), b · ι(y))A, for all x, y ∈ X and b ∈ B. By Theorem 3.1 of [11],
there exist Hilbert spaces H1 and H2, a faithful ∗-representation π1 : A → B(H1) and a
ternary monomorphism ψ : Z → B(H1,H2) such that π1((z1, z2)) = ψ(z1)∗ψ(z2) and
ψ(z · a) = ψ(z)π1(a), z, z1, z2 ∈ Z, a ∈ A. The closed linear span C of ψ(Z)ψ(Z)∗ is
then a C∗-algebra on H2, ∗-isomorphic to K(Z). See e.g. [1, pp. 289–290]. The space
H2 can moreover be taken in such a way that C is nondegenerate. A well-known
result of Kasparov (Theorem 2.4 of [11]) identifies B(Z) as the multiplier algebra
of K(Z). Thus there exists a ∗-isomorphism π0 of B(Z) onto the multiplier algebra
D ⊆ B(H2) of C computed in B(H2). Letting π2 = π0 ◦ π and ϕ = ψ ◦ ι we see that
π1(p(x, b, y)) = ϕ(x)∗π2(b)ϕ(y), x, y ∈ X , b ∈ B. The proof is complete. �

We note that versions of Theorems 2.4 and 2.6 can be proved without the
assumption that the C∗-algebras A and B are unital — one can define “non-unital
(semi-)normalising contexts” replacing the terms in which the units appear by limits
along approximate identities. (A version of Corollary 2.5 will then be valid without the
assumption that A and B are unital.) We hence have the corollaries of Theorem 2.6 that
follow. The first one is a representation for positive definite maps. In the case B = �, it
can also be inferred from Theorem 2.3 of [11].

COROLLARY 2.7. Let A and B be C∗-algebras and X a linear space over the complex
field. A sesquilinear map p : X × B × X → A, conjugate linear on the first variable, is
positive definite if and only if there exists a right-Hilbert B, A-bimodule Z and a linear
map j : X → Z such that p(x, b, y) = ( j(x), b · j(y))A, for all x, y ∈ X and b ∈ B.

We also have the following characterisation of the TRO’s, ternarily isomorphic
to a (ternary) subspace of some Hilbert A-module. Note that such subspaces are not
necessarily A-submodules.
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COROLLARY 2.8. Let A be a C∗-algebra. A TRO X is ternarily isomorphic to a sub-
space of a Hilbert A-module if and only if there exists a sesquilinear map p : X × X → A,
conjugate linear on the first variable, such that p(x, x) is a non-zero positive element of
A, for each non-zero x ∈ X, and

p(x, y1y∗
2y3) = p(x, y1)p(y2, y3),

for all x, y1, y2, y3 ∈ X.

We finally note that weak∗ versions of Theorems 2.4 and 2.6 can be provided.
Recall that a W∗-TRO is a TRO X that is a dual Banach space [17]. If A and B are
W∗-algebras, a W∗-normalising context (A, B, X, p, q) can be defined in the same way
as in Definition 2.1, but with the additional requirement that the maps p and q are
weak∗ continuous on each variable. The proof of the next result is based on the proof
of Theorem 2.4 and uses the notion of a self-dual Hilbert module; we omit it. A similar
result holds for semi-normalisers.

THEOREM 2.9. Let A and B be W∗-algebras and X a W∗-TRO. There exists a
W∗-normalising context for A, B and X if and only if there exist Hilbert spaces H1

and H2, faithful normal ∗-representations π1 : A → B(H1) and π2 : B → B(H2) and a
ternary monomorphism ϕ : X → B(H1,H2) such that ϕ(X) is weakly closed and consists
of normalisers of π2(B) into π1(A).
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