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The primary bifurcation of the flow past three-dimensional axisymmetric bodies is
investigated. We show that the azimuthal vorticity generated at the body surface is at
the root of the instability, and that the mechanism proposed by Magnaudet & Mougin
(2007, J. Fluid Mech., vol. 572, 311-337) in the context of spheroidal bubbles extends to
axisymmetric bodies with a no-slip surface. The instability arises in a thin region of the
flow in the near wake, and is associated with the occurrence of strong vorticity gradients.
We propose a simple yet effective scaling law for the prediction of the instability, based
on a measure of the near-wake vorticity and of the radial extent of the separation bubble.
At criticality, the resulting Reynolds number collapses approximately to a constant value
for bodies with different geometries and aspect ratios, with a relative variation that is
one order of magnitude smaller than that of the standard Reynolds number based on the
free-stream velocity and body diameter. The new scaling can be useful to assess whether
the steady flow past axisymmetric bodies is globally unstable, without the need for an
additional stability analysis.

Key words: wakes, instability

1. Introduction
1.1. Axisymmetric three-dimensional bluff bodies

The flow past a stationary isolated axisymmetric body may be considered as a simplified
case of a more general family of immersed three-dimensional (3-D) bluff bodies, which
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are ubiquitous in human life and engineering applications. In spite of the symmetries of the
body, instabilities are known to generate asymmetric and possibly unsteady flows; different
regimes are indeed possible depending on the Reynolds number Re = U, H /v, based on
the body cross-stream dimension H, the free-stream velocity Uy, and the fluid kinematic
viscosity v. In this work, we focus on the primary symmetry-breaking instability.

The flow past 3-D axisymmetric bodies becomes asymmetric before transitioning to
an unsteady regime (Magarvey & Bishop 196la,b; Magarvey & MacLatchy 1965). The
steady axisymmetric flow past a sphere, for example, is known to transition to a steady
asymmetric state at Re ~ 211 (Johnson & Patel 1999) through the regular bifurcation
of an eigenmode of azimuthal wavenumber m = 1 (Tomboulides & Orszag 2000). This
bifurcation gives origin to a pair of counter-rotating steady streamwise vortices in the
wake, which are not aligned with the flow but possess a reflectional symmetry about
a longitudinal plane of arbitrary azimuthal orientation, and exhibit an eccentricity that
increases with the distance from the body. The same bifurcation has been observed for
the flow past other axisymmetric bodies, e.g. disks and bullet-shaped bodies (slender
cylindrical bodies with a smooth leading edge and a blunt trailing edge). The flow past
a disk placed perpendicular to the incoming flow exhibits the primary regular bifurcation
towards an asymmetric state at Reynolds number Re ~ 115 (Natarajan & Acrivos 1993;
Fabre, Auguste & Magnaudet 2008; Meliga, Chomaz & Sipp 2009a). The flow past a
bullet-shaped body undergoes the same bifurcation, but at a larger Reynolds number
(Brucker 2001; Bohorquez et al. 2011) that increases with the length-to-diameter aspect
ratio /2 = L/H of the body, e.g. Re ~ 216 for /R =1, and Re ~ 435 for /R = 6. A similar
dependence on AR has been observed by Chrust, Bouchet & Dusek (2010) for the flow
past flat cylinders whose axis is parallel to the free stream. They observed that the flow
bifurcates towards an asymmetric state at Re &~ 115—120 for /& — 0, and at Re ~ 270 for
AR=1.

The instability mechanism of the primary bifurcation of the flow past axisymmetric
bodies has been investigated extensively over the years. Monkewitz (1988) investigated
the linear stability of an analytic two-parameter family of axisymmetric, parallel and
incompressible wake profiles. He observed that the first helical mode with m = 1 displays
the largest growth rate for all cases, and that it is the only mode to become absolutely
unstable for velocity profiles approximating those found in the near wake. Pier (2008)
studied the local absolute instability features of the flow past a sphere, with the aim
of linking the local flow properties with the fundamental mechanism driving the global
flow bifurcation. He neglected the strong non-parallelism of the near-wake region, and
highlighted the local properties by freezing the flow at different streamwise coordinates,
and studying the equivalent axially parallel shear flows. In doing so, he demonstrated the
existence of absolutely unstable regions in the near wake, and found that the strength
and spatial extent of these regions increase with the Reynolds number. The results of
Monkewitz (1988) and Pier (2008) clearly hint at the existence of a wavemaker in the
wake (an absolutely unstable region where the fluctuations self-sustain), which feeds the
convectively unstable region downstream. However, these results cannot fully explain the
symmetry breaking corresponding to the first bifurcation of the flow.

1.2. The Magnaudet and Mougin model for free-slip bodies

In the context of free-slip oblate spheroidal bodies, Magnaudet & Mougin (2007)
(hereafter referred to as MM) proposed an instability mechanism that accounts for the
strongly non-parallel nature of the flow. The theoretical arguments that they put forward
are based on the idea that the regular bifurcation of the flow is driven by the azimuthal
vorticity wg = du,/dz — du,/dr generated at the body surface and then transported into
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Figure 1. Near-wake distribution of the azimuthal vorticity around an ellipsoid with free-slip surface and
AR =04 for (a) Re=200 and (b) Re=270. Black lines are isocontours of the azimuthal vorticity wg,
and coloured contours show dwg/dr. The grey dashed line shows u; =0, and the red dashed line shows
dwy/dr = 0. Blue/red circles indicate the negative/positive maxima of dwy/dr in the near-wake region.

the wake (where (u,, u;) are the velocity components in the radial and axial directions r
and z). For free-slip ellipsoids, in fact, they found that the wider range of Re for which the
flow becomes unstable as A increases (see figure 7 of their paper) well correlates with
the increase in maximum surface vorticity wg_,4x and normal diffusive vorticity flux at the
body surface (see § 3 of their paper). They suggested that the instability originates in a thin
region of the flow downstream the body. By inspecting the vorticity field, they observed
that two distinct regions may be identified (see figure 21 of their paper and figure 1): (i)
very close to the body, isocontours of wg are almost parallel to the free-slip surface; (ii)
farther downstream in the wake recirculation region, instead, isocontours of wg are almost
parallel to the symmetry axis, because of the tendency of wg/r to approach a constant
value as Re increases. At large Reynolds numbers, indeed, the spatial distribution of the
vorticity in the recirculation region of the steady viscous flow past an axisymmetric body
resembles that of a Hill spherical vortex (Hill 1894; Batchelor 1967); see e.g. figure 10
in Fornberg (1988) and the related discussion. Thus MM conjectured that the instability
arises in the transition region where isocontours of wg have to turn to satisfy the conditions
both at the body surface and in the wake recirculation region. As Re increases, this
transition region shrinks, and isocontours of wy must turn more and more sharply, resulting
in stronger and stronger vorticity gradients.

In an attempt to provide a rational instability criterion, MM related the flow bifurcation
to the appearance of points where dwg/dr = 0 in the near wake. This comes directly from
the balance equation for the steady axisymmetric base-flow vorticity, which in cylindrical
coordinates reads

dwg wy dwg 1 9 (13(rwe) 1 92wy

Up— —Up— Fthy—— = —— [ ———2 ) — ——. (1.1)
ar r 0z Re or \r Or Re 072

N e e’ N—— ——

I i I v v

We focus on the near-wake region where wy < 0, u, < 0 and u, > 0 (see figure 1). Here,
terms II and III on the left-hand side are positive everywhere. As long as wy becomes
more negative with r (i.e. dwy/dr < 0), term I on the left-hand side is negative and may,
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at least partially, balance terms II and III. When instead an isocontour of wg becomes
perpendicular to the symmetry axis (i.e. dwg/0dr =0), term I vanishes and the positive
left-hand side can only be balanced by the positive viscous terms IV and V. Note that
where dwy/dr =0, term IV reduces to —wyg/ (r2Re) ~ Re~ L. Therefore, as the Reynolds
number increases, term V is observed to dominate term IV, and the balance equation
reduces to
wg dwy N 1 92wy
e T T Re 92

This implies that to balance the left-hand side, the streamwise gradient of wy in term
V on the right-hand side has to vary more and more sharply (over a shorter distance
along z) as Re increases. The MM idea is that this tendency of the vorticity to become
discontinuous in the points where dwg /9r = 0 underlies the instability mechanism.

Notably, the numerical simulations of MM corroborate their arguments, showing a good
correlation between the first appearance of points with dwy/dr =0 and the onset of the
bifurcation in the context of free-slip axisymmetric bluff bodies. However, despite some
hints provided by the same authors (see the concluding discussion in their paper), it is
not clear whether axisymmetric bodies with free-slip and no-slip surfaces share this same
instability mechanism driven by the vorticity generated at the surface. It is well known,
indeed, that the mechanism of vorticity generation on a surface changes with the boundary
condition; see the seminal works of Truesdell (1954), Lighthill (1963), Morton (1984),
Leal (1989), Wu & Wu (1993), Wu (1995) and Lundgren & Koumoutsakos (1999), and the
more recent works of Brgns et al. (2014) and Terrington, Hourigan & Thompson (2020).
For no-slip surfaces, the normal diffusion vorticity flux depends on the tangential shear
stress and on the pressure gradient, and it is non-null also in the limit case of a flat wall
(Wu & Wu 1993). On a free-slip surface, instead, the vorticity appears as a consequence
of the continuity of the tangent stresses, and is non-null only in the case of curved surfaces
(Wu 1995). Thus the generality of the MM mechanism and the influence of the different
vorticity generation mechanisms at no-slip and free-slip surfaces on the primary flow
bifurcation are still open questions that deserve further investigation.

(1.2)

1.3. Focus of the present work

To address these questions, we study the flow past no-slip axisymmetric bluff bodies
with different shapes and aspect ratios, and focus on the primary symmetry-breaking
bifurcation. We consider four geometries — ellipsoids, bullets, cones and bicones — that
feature different combinations of smooth/sharp leading edge and smooth/blunt trailing
edge (see figure 2). The aspect ratio of the ellipsoid and the bicone is varied over
1 < AR <5, and that of the bullet and the cone over 1 < AR < 8.

We give evidence that the MM instability mechanism captures rather well the primary
instability of the flow past axisymmetric bodies with different shapes and surface types.
Indeed, we find that the onset of the bifurcation correlates well with the first appearance
of points where dwy/dr =0 in the near wake, not only for free-slip surfaces but also
for no-slip surfaces, despite the different vorticity generation mechanism at the surface.
As first hinted by MM, this shows that although the vorticity is at the root of the instability,
the way it is produced at the wall does not play a major role. We then propose a simple
yet effective scaling law that may be used to predict the onset of the instability without
the need for an additional stability analysis. Indeed, the large variability of the critical
Reynolds number with the geometry (e.g. as mentioned above, Re. =~ 115 for the disk,
Re. =~ 211 for the sphere, and 126 < Re, < 435 for bullet-shaped bodies with 1 < AR < 6)
clearly shows that the free-stream velocity Uy, and the cross-stream dimension H of the
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Figure 2. Sketch of the considered geometries. Here, /R = 3.

body are not the appropriate velocity and length scales for describing this bifurcation.
In the same spirit as Chiarini, Quadrio & Auteri (2022) in the context of two-dimensional
(2-D) symmetric bodies, the new scaling is based on quantities related to the physics of the
problem, i.e. measures of the vorticity at the body surface and of the radial extent of the
wake recirculation region. We show that the resulting Reynolds number, when evaluated at
the onset of the bifurcation, collapses rather well to a constant value for all the considered
bodies, and thus provides a simple criterion to assess the flow stability.

2. Methods
2.1. Problem formulation

We investigate the primary symmetry-breaking bifurcation of the incompressible flow past
3-D axisymmetric bluff bodies with different geometries and aspect ratios. The bodies
have length L and maximum diameter H, and are placed in a uniform flow with velocity
U aligned with their symmetry axis (see figure 2). Standard cylindrical coordinates are
used (with 7, 6 and z as the radial, azimuthal and axial directions), and the origin is placed
at the leading edge of the bodies. The flow is governed by the incompressible Navier—
Stokes (NS) equations for the velocity and pressure fields {u, p}:

a—"+u-Vu=—v +iv2u V-u=0 2.1

ot PT Re ' ' '
with Re = Uso H/v. Unless otherwise stated, all quantities are made dimensionless using
Usx and H.

We consider four different geometries that yield a base flow with distinct features:
ellipsoids, bullets, cones and bicones (see figure 2). The aspect ratio of the bodies
AR =L/H is varied over 1 < AR <5 for ellipsoids and bicones, and over 1 < AR < 8 for
bullets and cones. Ellipsoids and bullets possess a smooth leading edge, where the flow
separation is driven by the adverse pressure gradient and the position of the separation
point changes with the Reynolds number; conversely, cones and bicones feature a zero-
thickness sharp leading edge. Bullets and cones have a blunt trailing edge (TE), where
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the separation point is enforced by the geometry, and the cross-stream size of the wake
recirculation region does not depend on Re and A?; by contrast, ellipsoids and bicones
have a zero-thickness TE, where the flow separation is not set by the geometry, and the
size of the wake recirculation region varies with Re and AR.

2.2. Linear stability

The onset of the primary instability is studied using linear theory (Theofilis 2003, 2011).
The field {u, p} of velocity and pressure is divided into a time-independent axisymmetric
base flow {ug, po} and an unsteady perturbation {1, p1} of small amplitude 0 < € < 1:

ulx,t)=upg(x)+eui(x,t) and p(x,t)=po(x)+e€ pi(x,t). 2.2)

Introducing this decomposition in the NS equations, one obtains at order €” the steady
nonlinear NS equations for the base flow {ug, po}. At order €!, one obtains the linearised
NS equations for the perturbation field {u;, p1}. By using a normal mode ansatz and a
Fourier transform in the azimuthal direction, for each mode the perturbation field takes
the form

{wy, pr)Ge, ) ={@tr, p1}(r, 2) e e, (2.3)

where m is the azimuthal wavenumber, and c.c. designates the complex conjugate terms.
Introducing this expansion in the linearised NS equations yields, for each m, an eigenvalue
problem for the complex eigenvalue 4 = A, + i A; and the complex eigenvector {&1, p1}:

Ay + Ly {uo, Re}ﬁ1+Vmﬁ1:0, Vi st =0. 2.4)

Here, V,, is the gradient operator relative to the azimuthal wavenumber m, and L,
stands for the Fourier-transformed linearised NS operator

. . 1.
Ln{uo, Re) ity = Cp (i1, o) — R—ev;ul, 2.5)

where
Cn(ug,up) =up-Vyup+up-Vyuy. (2.6)

The flow stability is ascertained by the solution of the generalised eigenvalue problem
(2.4) for the complex frequency 4. When A, < 0, the flow is linearly stable, while when
Ar > 0, the associated global mode is linearly unstable and grows exponentially in time.
When 4; # 0, the unstable mode is time-dependent. When m # 0, the unstable mode is
modulated in the azimuthal direction. Since the focus of the present work is on the primary
symmetry-breaking regular bifurcation of the flow past axisymmetric bodies, we restrict
our analysis tom = 1.

2.3. Numerical method

The analysis is based on finite elements, and the simulations have been carried out using
the COMSOL Multiphysics software (Multiphysics 1998).

Given the axisymmetric nature of the bodies, we consider only the (r, z) plane, and
build the mesh in the numerical domain {r, z | 0 < r < 50; —50 < z < 150}, with nodes
strongly clustered near the body. We employ a quadrilateral mesh with eight layers and
growth factor 1.2 in the vicinity of the body, and a triangular mesh in the remaining part
of the domain. Several sub-domains are used to control the mesh size. The element size
decreases from 1 in the far field to 1/120 on the body surface; at the corners, the element
size is approximately 107>. The number of elements changes with the geometry and the
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Figure 3. Base flow for /R =1 at Re & Re,: streamlines and contours of (a) azimuthal vorticity, (b) pressure.
Ellipsoid, Re = 210; bicone, Re = 135; bullet, Re = 220; cone, Re = 160. Dashed line: ug, = 0.

aspect ratio. For the shortest and longest bodies, the numbers of elements are 79 x 10° and
126 x 103 for ellipsoids, 83 x 103 and 146 x 103 for bicones, 74 x 103 and 122 x 10 for
bullets, and 77 x 10> and 143 x 103 for cones. See Appendix B for details about the mesh
convergence.

The low-Re steady axisymmetric base flow {ug, pg} is obtained by solving the
axisymmetric steady version of the NS equations (2.1) using the Newton’s iteration
method. The NS equations are completed with the following boundary conditions: uniform
velocity field ug = Uxe; at the inlet, stress-free pon — Re~ ! Vug - n =0 at the outlet and
far field (where n is the unit normal vector), no-slip and no-penetration #g =0 on the
body surface, and axisymmetry conditions ug, = d,ug; = 9, po = 0 on the axis r = 0. The
generalised eigenvalue problem (2.4) for the onset of the primary instability is then solved
using the Arnoldi algorithm, with standard boundary conditions: #; = 0 at the inlet and on
the body surface, stress-free pyn — Re~ ! Vuy - n =0 at the outlet and far field, and m = 1
conditions d,u1, = d,u19 = u1, = p1 = 0 on the axis. To avoid singularity on the axis, the
equations are multiplied by r? before taking the variational form. For the computation
of the base flow, the finite elements formulation employs the higher-order Lagrange P3
and P2 elements for velocity and pressure, respectively. For the linear stability analysis,
instead, P2 and P1 elements are used.

3. The symmetry-breaking bifurcation
3.1. Base flow

The axisymmetric low-Re base flow for the four considered geometries is shown in
figures 3 and 4 at Re = Re,, corresponding to the first onset of the symmetry-breaking
instability, for /2 =1 and 4. Only a brief characterisation is provided here, as the effect of
the different placement of the corners resembles what was found by Chiarini et al. (2022)
for 2-D symmetric bodies.

A shear layer with negative azimuthal vorticity wgy separates from the rear part of the
body and delimits the axisymmetric wake recirculation region. The vorticity is maximum
in the vicinity of the body surface: for cones and bicones, wgpy is maximum close to the
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Figure 4. Same as figure 3 for 42 = 4. Ellipsoid, Re = 1000; bicone, Re = 775; bullet, Re = 390; cone,
Re =260.

corners, while for ellipsoids and bullets, the region with intense vorticity is more spread.
The pressure distribution changes accordingly (see the bottom right panels in figures 3
and 4). For bodies with a blunt TE (cones and bullets), the minimum of the pressure is
placed at the TE corners, and the flow streamlines along the lateral side of the body face a
favourable pressure gradient. For bodies with zero-thickness TE (ellipsoids and bicones),
instead, the pressure is minimum where the cross-stream size of the body is maximum.
In this case, the flow streamlines along the lateral side of the body face first a favourable
pressure gradient and then an adverse one that promotes the flow separation. Notably, the
adverse pressure gradient becomes milder as A4 increases. For cones and bullets, the flow
separation point is set by the geometry at the TE corner. The cross-stream dimension of
the wake recirculation region is thus determined by the body width, and its extent only
slightly decreases with /R. On the contrary, for ellipsoids and bicones, the flow separation
is driven by the pressure distribution (see figures 3 and 4). In agreement with the milder
pressure gradient, the separation point moves downstream for larger /R, yielding a thinner
and shorter wake recirculation region (see also figure 19 in Appendix A).

3.2. Neutral curves

We now move to the results of the linear stability analysis. Figure 5 shows the neutral
curves for the primary instability that, for all cases, consists in the regular (4; =0)
symmetry-breaking bifurcation of an eigenmode of azimuthal wavenumber m = 1. Table 1
compares the results of our computations with those of Meliga et al. (2009) and
Bohorquez et al. (2011) for validation purposes. We find very good agreement with the
results of Meliga et al. (2009b), while some discrepancies are observed when comparing
with Bohorquez et al. (2011) (we measure a relative difference in the value of Re. of
approximately 4 % for /R = 6). We conjecture that this discrepancy is due to the different
numerical method and to the different size of the computational domain.

Looking at figure 5, a first observation is that although the primary bifurcation is the
same for the different bodies, the value of Re. shows large variability, with Re. ~ 150 for
the /R = 1 bicone, and Re, ~ 1400 for the /R = 5 ellipsoid. This highlights that Uy, and H
are not the appropriate velocity and length scales for the characterisation and prediction of
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Figure 5. Critical Reynolds number as a function of the aspect ratio.

Body Ellipsoid Bullet

R 1 1 2 3 4 5 6
Meliga et al. (2009b) 213 - - - - - -
Bohorquez et al. (2011) - 216 327 372 399 420 435
Present study 213 216 314 358 384 403 419

Table 1. Comparison of the critical Reynolds number Re, with results from the literature, for some geometries.
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Figure 6. Eigenmode for /R =1 at Re = Re,: streamwise velocity. Ellipsoid, Re = 210; bicone, Re = 135;
bullet, Re =220; cone, Re = 160. Dashed line: up, = 0.

this bifurcation. Similarly to the flow past 2-D symmetric cylinders (Chiarini et al. 2022),
an increase in the aspect ratio leads to a stabilisation of the base flow regardless of the body
geometry; see in figure 5 that Re, increases monotonically with 4. This effect holds also
for non-axisymmetric bodies, as shown e.g. by Zampogna & Boujo (2023) and Chiarini
& Boujo (2025) in the context of 3-D rectangular prisms. Notably, the way Re. varies
with /R depends on the shape of the TE of the body. For bodies with a blunt TE (cones
and bullets), the critical Reynolds number almost flattens as A4 increases. For bodies with
zero-thickness TE (ellipsoids and bicones), instead, the critical Reynolds number increases
faster than linearly, and very large values of Re, are observed already at intermediate 4.
An explanation for the steep increase of Re. with /R for bodies with zero-thickness TE is
provided in § 4.

For completeness, we show in figures 6 and 7 the axial velocity of the unstable mode
for different geometries. Qualitatively, the structure of the mode does not change among
the considered geometries, and agrees with the results of other authors; see e.g. figure 8 of
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Figure 7. Same as figure 6 for /R = 4. Ellipsoid, Re = 1000; bicone, Re = 775; bullet, Re = 390; cone,
Re =260.

Figure 8. Spatial distribution of the (a,c) structural sensitivity S and (b,d) sensitivity of the growth rate to
base-flow modification Vy,A, for /=1 at Re ~ Re.. Panels (a,b) are for the ellipsoid at Re =210. Panels
(c,d) are for the bullet at Re = 220. Dashed line: u(, = 0.
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Figure 9. Same as figure 8 for /R = 4. Ellipsoid, Re = 1000; bullet, Re = 390.

Natarajan & Acrivos (1993) and figure 4 of Meliga et al. (2009a). The perturbation field is
confined in the wake, with the largest value found close to the TE of the body within the
wake recirculation region. This is consistent with the appearance of a pair of streamwise
counter-rotating vortices in the wake (see the discussion in § 1), and with the instability
mechanism discussed in § 4. For bodies with zero-thickness TE, the region where the mode
is intense extends farther downstream.

3.3. Sensitivities

To further characterise the instability, we consider in figures 8 and 9 the structural
sensitivity (Giannetti & Luchini 2007) and the sensitivity to base-flow modifications
(Marquet, Sipp & Jacquin 2008; Meliga, Sipp & Chomaz 2010). For brevity, here we show
only ellipsoids and bullets, being representative of bodies with zero-thickness TE and with
a blunt base.
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The structural sensitivity S(x) is based on the interplay between the direct and adjoint
modes, and identifies the region where a generic structural modification of the stability
problem provides the largest drift of the leading eigenvalue. It is an upper bound for the
eigenvalue variation |64| induced by a local body force actuation proportional to the signal
of a velocity sensor located at the exact same station. The region of the flow where S is
large identifies the wavemaker (Monkewitz, Huerre & Chomaz 1993). For the primary
instability, the structural sensitivity is defined as

|2 I||| 1l
Ifw

where | - || represents the R? Euclidean norm, ﬂ is the adjoint mode, and (u 4, up) =

[p u - up d$2 is the inner product of L%(D), with the superscript % denoting the complex
conjugate. For all cases, S(x) is substantially close to zero everywhere except close to
the body where the product of the direct and adjoint modes is large. Large values are
observed along the separation line ug; = 0 and within the recirculating region, where the
maximum is observed (Meliga et al. 2009b). The similar distribution of S(x) suggests
that the different geometries and /R values considered share the same wavemaker and the
same instability mechanism, which are spatially located within the recirculating region.
Note that for bodies with zero-thickness TE, the spatial extent of the wavemaker decreases
as AR increases, in agreement with the smaller recirculating region and with the base-flow
stabilisation.

Next, the sensitivity to base-flow modifications quantifies the variation of the complex
eigenpair (4, &1, p1) induced by a small variation of the base flow Sug. Specifically, the
variation of the eigenvalue 84 is linked with Sug by the inner product 4 = (Vy,A4, duyp),
where

S(x) = , 3.1

/\

—vap il +val - a*

Vipd = (3.2)

is indeed the sensitivity of A to base-flow modifications; here, the superscript H indicates
the trans-conjugate. The variation of the growth rate induced by du is thus expressed
as 64, = (VyyA,, dugp), where the corresponding sensitivity is Vy 4, = Re(Vy,4). Unlike
the structural sensitivity S, which is a scalar field, the sensitivity V4, to base-flow
modification is a vector field: the field lines provide the local orientation of the sensitivity
field, while the magnitude provides the intensity. As expected, far from the bodies, Vi, 4,
decays to zero due to the spatial separation of the direct and adjoint modes. Large values
are instead observed close to the 1, =0 line and within the recirculating region. For
bodies with zero-thickness TE, VA, is large within the entire recirculating region,
while for bodies with a blunt base, the sensitivity is maximum at the downstream end
of the recirculating region, close to the base and in correspondence with the corners (this
resembles what is observed for 2-D rectangular cylinders; see Chiarini, Quadrio & Auteri
2021). For all cases, an increase of the backflow within the recirculating region (6up; < 0)
largely destabilises the flow. Again, for bodies with zero-thickness TE, the spatial extent
where the sensitivity is large decreases with 4.

3.4. Effect of the Reynolds number

We now investigate the effect of a small variation of Re on the growth rate 4,.. We start
by looking for an expression for d4, /0 Re. We consider a small departure from criticality
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such that
1 1

ReC_R_e=

where |¢| < 1 (¢ <0 for Re < Re.,and € > 0 for Re > Re,). A small-amplitude change in
Re induces small changes in the base flow, in the eigenmode and in the eigenvalues, i.e.

&, 3.3)

{uo, po} — {mo, po} +{duo, dpo}, {@1, p1} — {ar, p1} +1{8a1,8p1}, A— A+d4
3.4)
We now set Re = Re, as reference, and inject these changes into the steady nonlinear
NS equations and into the linearised NS equations. By keeping the first-order terms only,
we then obtain the equations for the base-flow modification {Sug, épg} and for the
eigenmode modification {8u, 8 p1}, i.e.

(ﬁo{uo, Rec}() Vo(-)) (3uo> _ (—e Vguo) 35)
Vo - () 0 épo) 0 '
and

I o0 5121 Em{u07 Rec}(’) VM(') 8&1 _ .7:m(8uo, ill)
A (OT 0) (8131) + < Vi () 0 ) (5ﬁ1) = ( 0 ) . (3.06)

accompanied by homogeneous Dirichlet boundary conditions at the inlet and at the surface
of the body, and stress-free conditions at the outlet and at the far field; here,

Fom(Sug, it1) = —Cp (i1, Sug) — eV2ity — 82y, (3.7)
Equation (3.5) is divided by ¢ and solved for ug = duo/e. Equation (3.6) is projected on

the adjoint mode {ﬁlr, ﬁI} to eliminate {8#, § p1} and obtain an expression for 84, i.e.

s G, uh) + Vi) 58)
(@], i) ' '

Interestingly, this expression matches exactly the one for the linear coefficient of the
amplitude equation obtained with a standard weakly nonlinear stability analysis (Sipp &
Lebedev 2007; Zampogna & Boujo 2023). At this point, we can write the 94,/0Re
derivative as

94, A, de 1 94, L e ((ﬁi,cm(ﬁl,ug)Jrv,z,ﬁl))

dRe e dRe Re2 de  Re?

— 3.9)
(u] ’ u1>
A small change in the Reynolds number thus leads to a modification of the growth
rate that depends on the effect of the base-flow modification on the eigenmode,

ie. (ﬁi, Ci (i1, uy)), and on the direct effect of Re on the viscous term of the eigenmode,

ie. (if{, V2a1). The spatial distribution of the integrand in the inner product of (3.9)
provides information regarding the region that contributes most to the increase of the
growth rate when Re increases (recall that we set Re = Re, as reference such that here
oA, /dRe > 0).

Figure 10 shows the results for the ellipsoid and the bullet with /R = 1. Figures 10(a,c)
show the modification of the base-flow azimuthal vorticity w, (to be compared with
figure 3). For all considered geometries, the € Reynolds increase leads to a more negative
vorticity in the layer along the separating streamline, and to a more positive vorticity
in the base region and in a tiny elongated region along the up, =0 line. Interestingly,
the latter region closely matches the region where dwqgg/0dr first changes sign (see the
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Figure 10. Effect of a small increase in Re on the base flow and on the growth rate for /R=1 at Re ~ Re,.
Panels (a,c) show the spatial distribution of w§,0~ Panels (b,d) show the spatial distribution of the integrand of
84, (see text and (3.9)). Panels (a,b): ellipsoid, Re = 210. Panels (c,d): bullet, Re = 220. Dashed line: ug, = 0.
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Figure 11. Maximum surface azimuthal vorticity at Re = Re,.

discussion in § 4). Figures 10(b,d) show the integrand of the inner product in (3.9), and
reveal that the destabilisation due to the increase of Re mostly comes from the upstream
region of the recirculating region, which closely matches the wavemaker identified by
the structural sensitivity. Moreover, a close inspection of the terms in (3.9) shows that
almost the complete destabilisation is due to the convective-like term resulting from the
base-flow modification rather than due to the direct effect of Re on the eigenmode, as

|ﬁJ{* < C @y, ub)| > |ﬁi* - V21| at all positions (not shown).

4. Azimuthal vorticity and mechanism of the primary bifurcation

In this section, we show that the instability mechanism proposed by MM for oblate
spheroidal objects with a free-slip surface extends to axisymmetric bodies with a no-slip
surface.

4.1. Maximum surface vorticity

As discussed in § 1, the MM arguments are based on the idea that the bifurcation is driven
by the vorticity generated at the body surface and transported into the wake. Therefore,
we start by assessing the relation between the base-flow surface vorticity and the onset of
the bifurcation. To simplify the notation, in this and in the following subsection (§ 4.2),
we drop the O subscript. Introducing wg max(Re) as the maximum vorticity measured
on the surface of a body of given geometry and aspect ratio, figure 11 shows wy (Re),
i.e. the maximum surface vorticity wg mnqx at the critical Reynolds number Re = Re,.
We report values for the ellipsoids and bullets, which have a smooth geometry. For cones
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Figure 12. Near-wake distribution of the azimuthal vorticity around an ellipsoid with no-slip surface and
AR =1, for (@) Re=250 < Re (b) Re =290 > Re where Re is the Reynolds number corresponding to the
first appearance of a region with dwg/dr > 0 with wy < 0. Thin black lines are isocontours of the azimuthal
vorticity wg. The thick black line delimits the ‘boundary layer’ where wy > 0. Coloured contours show dwg /0r.
The grey dashed line shows u; =0, and the red dashed line shows dwg/0r = 0. Blue/red circles indicate the
negative/positive maxima of dwg /dr in the near-wake region.
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and bicones, we note that the maximum surface vorticity diverges at the sharp edges, which
leads to wy max growing unboundedly when refining the numerical mesh, while the critical
Reynolds number is well converged. It is therefore unlikely that a simple relationship
between wg nqx and Re. holds for bodies with a sharp geometry. See Appendix C for
more details.

Similarly to what was observed by MM for free-slip surfaces, figure 11 shows that wg .
has a linear dependence on Re, and that the results for the two considered geometries
collapse rather well onto the same curve:

wp.c(Re) ~a+ bRe, “4.1)

where a and b are two constants. The amount of vorticity that has to be produced at the
body surface to promote the flow instability increases linearly with the Reynolds number,
in a way that does not depend on the geometry of the body. This provides a simple
criterion for predicting the onset of the instability, which requires only the knowledge
of the maximum azimuthal vorticity at the surface (which is, however, not always easily
available, as discussed later, in § 5): at a given Reynolds number, the flow is stable when
9. max (Re) < wg,.(Re), and unstable when wg ,x (Re) > wg (Re). The linear fit of our
data with (4.1) gives a =14 and b =4.4 x 10~2. These values differ from the constants
a=12.5 and b=4.3 x 1073 found by MM for ellipsoids with free-slip surface. This
is expected, as the maximum surface vorticity at criticality depends on the slip at the
body surface; see e.g. figure 4 of Legendre, Lauga & Magnaudet (2009) for the flow
past a circular cylinder at different Knudsen numbers. Notably, the different values of
b show that the critical vorticity at the body surface exhibits a faster variation with Re for
axisymmetric bodies with a no-slip surface than for those with a free-slip surface.

4.2. Vorticity gradient

We now focus on the near-wake region, and investigate the correlation between the flow
bifurcation and the appearance of points where dwy/dr = 0. Figure 12 shows the vorticity
distribution in the near wake for the /R =1 ellipsoid (with the same representation as in
figure 1). Due to the no-slip boundary condition, a thin boundary layer arises on the rear
side of the body, where the azimuthal vorticity is positive, wy > 0, i.e. has the opposite
sign as in the rest of the flow (the black thick line in figure 12 denotes wg = 0). Outside
this boundary layer, the vorticity distribution closely resembles that of free-slip bodies:
isocontours of wy are essentially parallel to the solid surface in the vicinity of the body,
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Figure 13. As figure 12 for the four considered geometries with 42 = 1. The Reynolds number is slightly above
Re, i.e. after the first appearance of a region with dwg /dr > 0 where wg < 0. Here, (a) ellipsoid at Re =270,
(b) bicone at Re =295, (c) bullet at Re = 120, (d) cone at Re = 80.
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Figure 14. As figure 13 for /R = 4, for (a) ellipsoid at Re = 1250, (b) bicone at Re = 950, (¢) bullet at
Re =175, (d) cone at Re = 150.

and farther downstream, they align with the symmetry axis. In the transition region in
between, the turning of the wy isocontours becomes sharper and sharper as Re gets larger.
Two values of the Reynolds number are considered in figure 12, one below (figure 12a)
and one above (figure 12b) the critical Reynolds number Re.. One can immediately notice
that dwg /dr < 0 (blue) everywhere in the transition region when Re < Re., while a region
where dwg/dr > 0 (red) appears when Re > Re,, in agreement with the MM arguments.
Figures 13 and 14 are as figure 12(b), for different geometries and aspect ratios. Notably,
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Figure 15. Critical Reynolds number Re, (lines) and lowest Reynolds number Re (open symbols) such that
dwy /0r = 0 with wg < 0 in the near wake.

the location where the dwy/dr > 0 region appears depends on the shape of the TE. For a
blunt TE, it is placed along the wy = 0 isocontour delimiting the base boundary layer due
to the no-slip boundary condition. For bodies with zero-thickness TE, instead, it is located
farther downstream within the wake recirculation region, and close to the contour of zero
streamwise velocity u, = 0.

It is worth noting that the vorticity distribution for bodies with zero-thickness TE
explains the steep increase of Re. with A observed in figure 5. Due to the specific
shapes of these bodies, the wyg isocontours close to the body surface become more aligned
with the symmetry axis r =0 as AR increases. For these bodies, therefore, the condition
dwg/0r =0 (wp isocontours being locally perpendicular to the symmetry axis) for the
instability to occur requires more vorticity to be produced at the body surface, i.e. a larger
Reynolds number.

Figure 15 quantifies the correlation between the onset of the instability and the first
appearance of points where dwy/0r = 0. We compare the critical Reynolds number Re,
obtained from our stability analysis with the Reynolds number Re, corresponding to the
first appearance of a point where dwg/dr = 0 in the near wake (we consider only the near
wake outside the boundary layer that develops along the TE). Although the collapse with
Re. is not perfect, Re. captures the trend of the critical Reynolds number rather nicely for
all the considered geometries, increasing sharply with A4 for bodies with a zero-thickness
TE, and much more slowly for bodies with a blunt TE.

To summarise, our results show that the instability mechanism proposed by MM in the
context of ellipsoids with free-slip surfaces also extends to no-slip surfaces, and describes
fairly well the primary symmetry-breaking bifurcation of the flow past axisymmetric
bodies with different geometries and aspect ratios. This clearly hints to the fact that the
vorticity generated at the body surface is at the root of the instability mechanism, while
the way it is produced, i.e. the nature of the surface, does not play a major role.

4.3. Free-slip versus no-slip

It is worth spending few words on the fact that, as shown in the previous subsections,
axisymmetric wakes past free-slip and no-slip bodies share the same instability
mechanism. It is well known that the mechanism of vorticity generation on a surface
changes with the boundary condition; see e.g. Truesdell (1954), Lighthill (1963), Morton
(1984), Leal (1989), Wu & Wu (1993), Wu (1995), Lundgren & Koumoutsakos (1999),
Brgns et al. (2014) and Terrington et al. (2020). This is clear when looking at the ‘boundary
vorticity flux’ (normal diffusion flux of vorticity) at the surface, 6 =vn - Vw, which is a
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measure of the vorticity creation at the wall. For stationary rigid walls, it reads (see Wu &
Wu 1993)

(%)
o=nx|— ) —(mxV)-(tn), 4.2)
\q,p_/ o

where T =vw X n is the tangential shear stress. Here, 0 depends on the non-uniform
distribution of the normal (o ) and shear (o;) stresses. In the limit case of a 2-D flow
u(x,y) = (ux, uy, 0) near a stationary, no-slip flat wall of normal n = e,, the boundary
vorticity flux reduces to 6 =0, =—(1/p)(dp/dx)e;, while 0. =0 (Lighthill 1963). By
contrast, on a free-slip surface, the vorticity appears as a consequence of the continuity of
the tangent stresses and is non-null only in the case of curved surfaces; in the limit case of
a 2-D stationary surface, w =2Uk, where U is the tangential velocity and « is the local
curvature; accordingly, the boundary vorticity flux is non-null only for curved surfaces
(see Wu 1995).

The fact that axisymmetric bodies with no-slip and free-slip surfaces exhibit the same
instability mechanism means that although the vorticity is at the root of the instability,
the way it is produced at the wall does not play a dominant role in the overall triggering
mechanism (see also the discussion in MM). In other words, the flow becomes unstable
once the amount of vorticity brought into the near wake is large enough, irrespective of the
production mechanism. Clearly, the different vorticity creation mechanism has an impact
on the critical Reynolds number and on the actual onset of the instability, as it influences
the size of the wake recirculation region and the amount of vorticity brought into the wake.
The different vorticity creation mechanism, indeed, leads to some substantial differences
between no-slip and free-slip surfaces in terms of boundary vorticity dynamics (Moore
1963; Wu 1995). For large Reynolds numbers, dimensional analysis shows that: (i) in
the no-slip case, a boundary vorticity flux ¢ ~ O(1) is generated, which implies that the
surface vorticity increases as w ~ Re!/?; (ii) in the free-slip case, the boundary vorticity
flux decreases as o ~ Re~!/2, and the amount of surface vorticity is independent of the
Reynolds number, w ~ O (1).

4.4. On the amplification mechanism

We now investigate the contribution of various physical mechanisms to the exponential
growth of the mode in the linear regime (Re &~ Re.). We start by looking at the energy
equation for the perturbation u; (see Lanzerstorfer & Kuhlmann 2012). We sum (2.4)
multiplied by &} with the complex conjugate of the same equation multiplied by &, and
after some manipulation and using the incompressibility constraint, we obtain the equation
for ) - a7, ie.

SN N ax Ak n 1 PN
201 - 0] = —{( @u} +uj ®uy): Voup) — Evg(ul -ay)

P

D
— Vo - (1t} + piiy) —Vo - (woty - 4Y) — e (Vmity : VEGT) . (4.3)
Tp A

£

On the right-hand side, in order, we find the production term P that accounts for the
exchange of energy between the base flow and the perturbation, the viscous diffusion
term D, the pressure transport term Tp, the advection associated with the base flow A,
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Figure 16. Energy budget for /R =1 at Re = Re,. Spatial distribution of the (a,c) production term P and (b,d)
advection term .A. Panels (a,b) are for the ellipsoid at Re = 210. Panels (c,d) are for the bullet at Re = 220.
Dashed line: up, =0.

and the viscous dissipation £. All the terms contribute to the total budget, but differently
depending on the flow region.

Figure 16 considers the energy equation for the ellipsoid and the bullet with 2 =1
at Re = Re,. In this case, A, =0 and the Reynolds—Orr equation reduces to [, P d§2 =
[p€ds2, with [, A+ T, + D =0. We focus on the spatial distribution of P and A to
locate the flow regions where the mode amplification is driven by the production and/or
the advection. We observe that P > 0 downstream of the bodies, with the maximum placed
along the separating streamline and within the recirculating region, where the base-flow
velocity gradient is indeed maximum. At the base, the small P < 0 region indicates that
energy is moved from the perturbation to the base flow there. For bodies with a blunt base,
we observe a more intense production activity, in agreement with the stronger base-flow
velocity gradients. The advection term .A, instead, behaves differently depending on the
direction of uy. Itis a sink (A < 0) and tends to stabilise the flow along the separating shear
layer where ug, > 0, while it is a source (A > 0) and tends to destabilise the flow within
the recirculating region where ug, < 0. In the recirculating region, the base flow transports
the perturbations backwards in the near wake so that they can grow more compared to the
situation where they are advected downstream. Note that this agrees with § 3.4, where the
effect of a small increase in Re on A, is discussed (see in figure 10 the large positive
04, /dRe > 0 region in the core of the recirculating region).

Similar conclusions can be drawn by using the concept of endogeneity introduced
by Marquet & Lesshafft (2015). The endogeneity E(x) characterises the contributions
of localised flow regions to the global dynamics of the eigenmode, and allows us to
separate the contributions from individual mechanisms such as production, base-flow
advection, pressure forces and viscous diffusion. The endogeneity is defined as E(x) =

ﬁ{* «(—Lyiy — Vy p1), and has the property that its integral equals the eigenvalue, i.e
f p E(x) d§2 = 1. We now replace the definition of £, in the above relation to obtain

E(x)=—a]"- (uo - Vy)itr) — " (@1 - Vy)uo) — " - V1 + — " V
4.4)

where, in order, the different terms account for the contribution of the base-flow advection,
the production due to the base-flow velocity gradients, pressure forces and viscous diffu-
sion. The real part of the endogeneity and of (4.4) isolates the contributions to the growth
rate A, while the imaginary part isolates the contributions to the eigenfrequency 4;.
Figure 17 shows the production and advection contribution to Re(E (x)) for the ellipsoid
and the bullet with /R=1 at Re = Re.. The endogeneity is concentrated close to the
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Figure 17. Spatial distribution of the (a,c) production and (b,d) advection contributions to the endogeneity for
AR =1and Re =~ Re,. Panels (a,b) are for the ellipsoid at Re = 210. Panels (c,d) are for the bullet at Re = 220.
Dashed line: uq, = 0.

body around the shear layers and within the recirculating region. The production has a
stabilising/destabilising effect depending on the region, with the positive contribution to
Re(E (x)) being maximum at the centre of the recirculating region. The advection, instead,
has a strongly destabilising effect within the recirculating region where uo; <0, but a
stabilising effect in the first portion of the shear layers separating from the bodies where
uo; > 0. This partially agrees with the energy budget analysis.

5. A new scaling

In the previous section, we have shown that the base-flow azimuthal vorticity drives the
primary instability of the flow past 3-D axisymmetric bodies. We now use this information
to define a new Reynolds number that is more suitable for predicting the onset of the
instability than the standard Reynolds number based on U, and H. This is done in the
same way as by Chiarini et al. (2022), who proposed a new scaling for the description of
the primary instability of the flow past 2-D symmetric bluff bodies. They used a measure
of the spatial extent of the separation bubble as a length scale, and the largest reverse
flow speed within it as the velocity scale, and found that the ensuing Reynolds number
evaluated at criticality only marginally changed with the geometry and aspect ratio of the
body. This choice of scales was inspired by their link to the local amplification of the
unstable wave packets and to the extension of the absolute instability region (Hammond
& Redekopp 1997; Chomaz 2005). Here, we introduce a new scaling that can be used to
estimate whether the low-Re steady flow past axisymmetric bodies is unstable, without
the need for a computationally expensive stability analysis. This new scaling is based on
the inspection of the base flow only (here we again drop the O subscript), and relies on
quantities that are related to the physics of the problem and are easily accessible in both
experiments and numerical simulations.

The onset of the primary symmetry-breaking bifurcation depends on the thickness of
the transition region where the instability mechanism takes place (see §4). A thinner
transition region, indeed, means that the wy isocontours exhibit sharper turnings, and
points with dwg/dr =0 are more likely to arise. The thickness of this region depends
on (i) the maximum vorticity wg mqx generated at the body surface (see figure 11), and
(ii) the radial extent of the wake recirculation region (see MM). Thus one may be tempted
to use wg max and a measure of rp to define a new Reynolds number. However, the
measure of wy nayc at the body surface is not always available. First, vorticity diverges
at a geometric singularity such as a sharp leading edge, as observed for cones and
bicones. Second, in experiments, the flow region close to the body surface is not easily
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Figure 18. Critical Reynolds number Re, (dashed lines) and newly defined Reynolds numbers (solid lines):
(@) Re( = w9ro/v ®) Rec = Urevro/v.

accessible. A different estimation of the surface vorticity is thus needed. Here, we propose
Wp = max, (wg (7, Zmax)), Where zqx is the streamwise location of maximum reverse flow
U,y within the wake recirculation region. We use @y as a vorticity-related scale, and
the radius of the u, =0 isocontour at the same > Zmax | streamwise location as a measure
of ry, and define the new Reynolds number as Re=ap rg /v. Figure 18(a) shows that at

criticality, this new Reynolds number Re collapses approximately to the same value for all
the considered bodies. The collapse is not perfect, yet the relative variation is one order of
magnitude smaller than that observed with the standard Reynolds number based on Uso
and H. To be quantitative, we measure e.g. Re. ~ 133 for the /R = 1 cone, and Re, ~ 147
for the AR =35 ellipsoid, to be compared with Re. = 167 and Re. ~ 1360, respectively.
More generally, the new proposed Reynolds number provides a simple and effective global
criterion for the prediction of the instability onset: considering a variation in Re. of one
standard deviation around its mean value (both computed with all the cases considered
in this study and with weights such that each of the four geometries contributes equally),
we obtain 125 & 20 and can therefore conclude that the flow is likely to be stable when
Re < 105 and likely to be unstable when Re 2 145. For comparison, the original critical
Reynolds number has a much larger relative spread, Re. =480 £ 340.

It is worth noting that the new scaling works well also when other vorticity-related
quantities are used instead of @y, provided that they are a measure of the vorticity
generated at the body surface. As an example, in figure 18(b), we keep ro as the length
scale and use wy = U,.y/ro as a vorticity scale, which may indeed be _seen as a rough
estimate of @y. Again, at criticality, the new proposed Reynolds number Re. = @y rg Jv=
U,evro/v collapses rather well for all the considered aspect ratios and geometries to
34 + 6. The relevance of U,., on the physics of the instability agrees with the map of
the sensitivity to base-flow modifications shown in figures 8 and 9.

6. Conclusion

In this study, we have investigated the primary symmetry-breaking bifurcation of the flow
past axisymmetric bodies with a no-slip surface. We have computed the neutral curves
Re.(AR) and investigated the instability mechanism using various quantities: structural
sensitivity, sensitivity to a base-flow modification or to an increase in Re, dynamics of the
perturbation kinetic energy, and endogeneity. We have also proposed a new scaling that is
suitable for predicting the onset of the bifurcation. The generality of our conclusions has
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been assessed by considering bodies with different geometries (ellipsoids, bullets, cones
and bicones) and different aspect ratios (1 < AR < 8).

The instability is driven by the azimuthal vorticity generated at the body surface.
We have shown that the mechanism proposed by MM in the context of free-slip spheroidal
bubbles well describes the onset of the instability for bodies with a no-slip surface too.
In both cases, indeed, the instability arises in a thin region in the near wake, and its
onset is strongly related to the occurrence of points where dwg/dr =0, i.e. points where
isocontours of wy align with the radial direction and are perpendicular to the symmetry
axis. At these points, the streamwise vorticity gradient dwy/dz largely increases with the
Reynolds number, favouring the instability.

Having characterised the physical mechanism, we have then proposed a new scaling
for the prediction of the instability, in the spirit of the study of Chiarini ef al. (2022) in
the context of 2-D bluff bodies. The new scaling is based on measures of the near-wake
azimuthal vorticity, g, and the radial extent of the wake recnrculatlon region, rg. When
computed at criticality, the ensuing Reynolds number Re= a)gro 2 /v has been shown to
collapse approximately to the same value across all geometries and aspect ratios. This
observation can be used to readily estimate whether the steady base flow past axisymmetric
bodies is unstable, avoiding a computationally expensive stability analysis, and relying
only on an inspection of the base flow.

While the present study focuses on the first instability, it is worth concluding with a
word about turbulent wakes. In the turbulent regime, while the mean (time-averaged) flow
past an axisymmetric bluff body is itself axisymmetric, the most probable instantaneous
flow state is a static m = 1 symmetry-breaking deflection (Grandemange, Gohlke & Cadot
2014; Rigas et al. 2014). The wake visits different azimuthal orientations 6 through
sudden switches that are triggered by turbulent fluctuations, and that are both random and
rare events: the residence time At between successive switches follows an exponentially
decreasing distribution with no preferred frequency, and the mean residence time (At) is
orders of magnitude larger than the convective time L/ Uso. Qualitatively similar dynamics
is observed in non-axisymmetric bodies with a planar symmetry, such as the Ahmed body
(Grandemange, Gohlke & Cadot 2013; Barros et al. 2017). For both types of bluff bodies,
static symmetry-breaking deflections of the wake are reminiscent of the primary, laminar
pitchfork bifurcation. The understanding of the mechanism of the low-Re instabilities
may thus play an important role for the understanding of the flow physics at larger
Re and, for example, to locate the most sensitive regions in order to develop new flow
control strategies. While the notion of critical Reynolds number may not be relevant in the
turbulent regime, it would be interesting to analyse mean turbulent wakes through the lens
of the present study. For example, one could evaluate the newly defined Reynolds numbers
Re and Re, and investigate how they depend on the geometry, aspect ratio and Re. It may
also be worth determining whether regions with dwy/dr < 0 can be sustained, or if the
competition between the production and advection of vorticity is such that dwg/0r > 0
everywhere in the near wake.

Funding. This research received no specific grant from any funding agency, commercial or not-for-profit
sectors.

Declaration of interests. The authors report no conflict of interest.

Appendix A. Characteristic base-flow quantities at Re,

In § 5, we introduced two new Reynolds numbers, i.e. Re = 59;’3 /v and Re = 0)9}"0 / V=
Uyevro/v. Figure 19 shows the base-flow quantities involved in the definitions of
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Figure 19. Base-flow quantities at the critical Reynolds number Re.. (a¢) Maximum reverse flow U,y .
(b) Streamwise location z,,,, of maximum reverse flow. (¢) Maximum azimuthal vorticity @y (solid lines)
and maximum shear 7, (dashed lines) at z = z,4y. (d) Radius rq of zero streamwise velocity (solid lines) and
radius r,, of maximum azimuthal vorticity (dashed lines) at z = z;;4x

Re and Re, and measured at Re = Re,. They are the maximum reverse flow U,
(figure 19a), the streamwise location z,,,c of maximum reverse flow (figure 190), the
maximum azimuthal vorticity @y (and, for reference, the maximum shear 7;,) at z = Zyax
(figure 19¢), and the radius rg of zero streamwise velocity (and, for reference, the radius
r,, of maximum azimuthal vorticity) at z = z;,4x (figure 19d). We note in particular that
for bodies with a zero-thickness TE, @y increases with A2 > 2, and r( decreases, while for
bodies with a blunt TE, @y decreases and r( remains approximately constant.

Appendix B. Mesh convergence

Table 2 reports the critical Reynolds numbers obtained on three different numerical
meshes, for all the geometries considered in the present study and for /=1 and 4.
From one mesh to the next, all mesh sizes are divided by +/2, such that the number of
elements N,;,;s increases by a factor of approximately 2. Additionally, table 3 reports the
base-flow quantities involved in the definition of the newly introduced Reynolds numbers
Re and Re. For illustration purposes, we arbitrarily chose the flow past the /R =1 cone
at Re =160. In the present study, we used mesh M2, for which all results are very well
converged.
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MR=1 AR=4
Geometry Mesh Neimts Re, Neimts Re,
Mi 42 141 212.67 60 643 999.64
Ellipsoid M2 79 198 212.67 113 796 999.66
M3 150 697 212.66 217 854 999.66
Ml 44 697 135.13 70250 758.94
Bicone M2 82 757 135.13 129 564 759.02
M3 156 943 135.13 244 945 758.90
M1 40 207 216.13 51755 383.87
Bullet M2 73 940 216.13 93 773 383.87
M3 139 788 216.14 174 449 383.88
M1 41 976 164.69 58 107 262.74
Cone M2 77 044 164.69 104 849 262.75
M3 145 009 164.69 194 017 262.74

Table 2. Values of the critical Reynolds numbers obtained on three different meshes M1-M3 for the four
different geometries, and two aspect ratios each.

Mesh Nelmts Urev Imax 59 Tz ro Yo

M1 41 976 -0.5737 1.5985 -4.2795 3.9234 0.4255 0.5936
M2 77 044 -0.5737 1.5985 —4.2796 3.9235 0.4255 0.5937
M3 145 009 -0.5737 1.5985 -4.2795 3.9235 0.4255 0.5937

Table 3. Values of the base-flow quantities of figure 19 obtained on three different meshes M1-M3 for the
AR =1 cone at Re = 160.
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Figure 20. Azimuthal vorticity wg (z) on the lateral surface of a cone for /2 =1 at Re = 160. (a) Sharp
leading edge, varying local mesh size &. (b) Rounded leading edge, varying fillet radius R.

Appendix C. Rounding sharp leading edges

In §4.1, we reported the maximum vorticity at the wall for ellipsoids and bullets,
i.e. bodies with a smooth leading edge. Here, we give more details about bodies with a
sharp leading edge.

Figure 20(a) shows the azimuthal vorticity wy(z) obtained numerically on the surface
of an AR =1 cone with a sharp leading edge, at Re = 160. Different curves correspond to
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different values of the local mesh size /4 at the leading edge. The vorticity computed at the
sharp leading edge keeps increasing when the numerical mesh is refined locally.

Next, we investigate the effect of smoothing the leading edge with a fillet of radius R.
We use a local mesh size 7 = R/10, and verify convergence with # = R /30. Figure 20(b)
shows that the maximum vorticity is obtained slightly downstream of the fillet, and
increases as R decreases. However, the critical Reynolds number remains essentially
constant (not shown), which is consistent with all the curves wg (z) collapsing downstream
enough (for z 2 0.4 in the present case). Therefore, Re. and the maximum vorticity are
not related.
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