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OSCILLATION OF SECOND ORDER LINEAR
ORDINARY DIFFERENTIAL EQUATIONS
WITH ALTERNATING COEFFICIENTS

CH.G, PHILOS

A new result is obtained for the oscillation of second order
linear ordinary differential equations with alternating
coefficients. This oscillation result extends a recent
oscillation criterion due to Kamenev [Mat. Zametki 23 (1978),
2kg9-2511].

Consider the second order linear ordinary differential equation

(E) x"(t) + a(t)x(t) =0, t=zty,

where a s a continuous real-valued function on the interval [t, =)

without any restriction on its sign. A solution of (E) is said to be
osctllatory if the set of its zeros is unbounded above, and otherwise it is
said to be nonoscillatory. Equation (E) is called oscillatory if all its

solutions are oscillatory.

For the oscillation of the equation (E) the following integral

criterion due to Wintner [4] is well-known. If

1 t
lim ;—{ (t-g)a(s)ds = = |,

then (E) is oscillatory. Hartman [1] has shown that the limit cannot be

replaced by the upper limit in the above condition. Recently, Kamenev [2]
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has proved a new integral criterion for the oscillation of the differential
equation (E), based on the use of the nth primitive of the coefficient

a , which has the result of Wintner as a particular case. More precisely,
Kamenev has established that (E) is osecillatory if, for some integer

nz=3,

t
(Co) lim sup—anf (f"s)n-la(s)ds N
t

[ZRad to

Kamenev's criterion has been extended in various directions by Yeh [5], [6]
and Philos [3]. The purpose of this paper is to extend the result of
Kamenev by multiplying the coefficient a in condition (Cp) by a function
which belongs to an appropriate function class depending on the integer

n . More precisely, our main result is the following theorem.

THEOREM. Let »n be an integer with n =2 3 and p be a positive
continuously differentiable function on the interval [to, °°] such that

t n=-3
(H) lim sup —% f (#=8)_ " [(,1-1)p(s)-(t-8)p" () 13ds < = .
t tn-—l to p(s)

Equation (E) is oscillatory if

. 1
(c) lim sup —=7

t n-1
[ (t-5)"Yo(s)als)ds = = .
o t

%

Proof. Let x be a nonoscillatory solution of the differential
equation (E) and let T > max{to, 0} be such that x(t) # 0 for all

t>T. As in [2], we set w = z'/x on [T, ») and we obtain

a(t) = —w'(t) - w2(¢) for every t=T.

Then for t = T we have

t n-1
f (£-8)""Yp(s)als)ds
T

t t
- [ (t-8)"Lp(s )" (s)ds - [ (2-6)""Lp(s)u(s ) ds
T T
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1

t n-3
(=0 Yo(D)(T) + & [ L8) 2 [(n1)p(s)-(t-s)p" (o) 12s
T

¢ (n-3)/2 , 2

- [ {(t_s)("—l)/%/mw(s) , (=) [(n-1)p(s)-(t-s)p (s)]} ds
T 2\/0(3)

t n-3

(-1 o(Phu(T) + % f (t=e)2

t p(s)

[(n-1)p(s)-(t-8)p'(s) 1%ds .

IA

On the other hand, for every ¢t =T , we get

¢ n-1 4 n-1
J (t-s)" “pls)a(s)ds - f (t-8)" “pls)als)ds

to T
T 1
- [ s otedate s
t
0
T n-1 -1 T
=< f (t-s) "p(s)|als)|ds = (t—to)" f pls)|als)|ds .
%o %o
Thus

t
L r (t-6 ) Yo (s )als )ds
t

n-1 t y-1
=(+-4 oawm h-Y f pls) las) lds
t
0

t n-3
+ nl_lf (t;fi) [(n-1)p(8)-(t-8)p"(s)]%ds
t 7‘;0

for all ¢ = T . This gives

lim sup

¢ n-1 T
[ (t-5)"o(s)als)ds < p(T)w(T) + f o(s) |a(s) | ds
tro t

% ‘ %

1
n-1

t n-3
. 1 (t-s) ' 2
 Lim sup Ly [t 28] ((n-1) pl8)-( 0-5)p"(8) s

which contradicts conditions (H) and (C).

REMARK 1. By setting p(t) =1, ¢t = t, » our theorem leads to
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Kamenev's criterion.
Now we remark that p satisfies (H) for any integer n = 3 if

lim inf p’(t) > —= ,

e
(H") t ' 2
lim sup j; f p(s)ds < » and fm LE—%E%l—-dt < oo,
tao £ e plt

A special case where p is subject to (H') is that p(¢) = t* ,

t = to >0 for o € [0, 1) . So we have the following corollary.
COROLLARY 1. LILet ty > 0. Equation (E) is oscillatory if there

exists a o € [0, 1) such that

1lim sup

it

t
n-1 o
n-1

(t-s) “s als)ds = » for some integer n = 3 .
t
0
Also, when p(t) = logt for t = to >1 , condition (H') is
satisfied by itself. Hence we obtain Corollary 2 below.

COROLLARY 2., [et ty > 1. Equation (E) is oscillatory if

t
! (t—s)n_l log s * als)ds = ©» for some integer n = 3_.

%o

1lim sup ;;l

tre £
Now let us consider the more general differential equation with a

damped term

(E*) x"(t) + q(t)x'(t) +a(t)z(t) =0, t= ty >

where q 1is a continuous real-valued function on the interval [to, )
without any restriction on its sign.

Let 7n be an integer with n =2 3 and p be a positive continuously

differentiable function on [io, uﬁ . We consider a nonoscillatory

solution x of (E¥) with x(t) #0, ¢t =T , for some T > max{to, o}

and we set w = x'fx on [T, ®) . Then a = -w' - quw - w2 on [T, =)

and hence, for every ¢ = T , we obtain
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¢ 1
f (t-8)"""p(s)a(s)ds
T

¢ n-1 t n-1
=~ f (t-s) “p(s)w'(s)ds - f (t-s)" “p(s)q(s)w(s)ds
7 T
¢ 1 2
- f (t-8)"""p(s)w (s)ds
T
n-l t (t_s)n“3 2
= (t-T) “p(Tw(T) + % f *-BTES——'{(n-l)p(8)+(t—3)[p(s)q(s)-p’(s)]} ds
P
2
- ft {(t-s)"’lvBTESQ(s) . (£-0)""3/2 (1) p(s) +(£-5) [p(s)a(s)=p" () 13} ds
T 2vp(s)
n-1 v (ts)" 3 2
= (-1 To(Mw(T) + % f -——5(53—-{(n-l)p(s)+(t-s)[p(s)q(s)-p'(s)]} ds .
t
0

Thus we derive the following generalization of our theorem.

Let n be an integer with n = 3 and P be a positive continuously

differentiable function on the interval [to, W] . Suppose that

i n-3
(H;) lim sup ;_1 f (t—?)) {("—l)p(S)+(t—S)[p(s)q(S)—p'(S)]}zds <o,
too g g P8

Equation (E*) is osctillatory if (C) holds.
We remark that (H1) holds for any intéger 7n = 3 if the function p
satisfies

lim inf [p’(t)-p(t)q(t)] > - ,
)

() .

' 2
o(s)ds < © ana r Lo (0)=p(8)a(0)° 4, < o .

1lim sup j? f

tro  £T /L

0

Also we note that for p(t) =1, ¢t = to , condition (H:) becomes

t
f (t-s)n-3[n—l+(t-s)q(s)]2d3 <.,
%o

" . 1
(1y}) lim sup )

tro £

So we obtain the follecwing result due to Yeh {6].
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Equation (E*) is oscillatory if, for some integer n = 3, (Cy) and
(H}) hold.

REMARK 2. It is easy to see that (ef. [3], [5] and (6]) the results
obtained for the differential equation (E) or for the more general equation
(E*) hold also for the case of the not necessarily linear differential

equation

x"(t) + a(t)fle(t)] =0, t= to ,

or for the case of the equation

z"(t) + q(t)x'(t) + a(t)flx(t)] =0, t = ty

respectively, where f 1is a continuous function on the real line R which

is differentiable on R - {0} and such that, for some constant %k > 0 ,
yfly) >0 and f'(y) =k for y #0 .
REMARK 3. With the use of some well-known transformations the
results of this paper can be extended for more general differential
equations involving the term (rx’)’' in place of the second derivative of

the unknown function x , where r 1is a positive continuous function on

the interval [to, m)
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