PROJECTIVE CHARACTERS WITH PRIME POWER DEGREES

YANG LIU

(Received 24 May 2018; accepted 26 June 2018; first published online 28 August 2018)

Abstract

We consider the relationship between structural information of a finite group G and $\operatorname{cd}_{\alpha}(G)$, the set of all irreducible projective character degrees of G with factor set α . We show that for nontrivial α , if all numbers in $\operatorname{cd}_{\alpha}(G)$ are prime powers, then G is solvable. Our result is proved by classical character theory using the bijection between irreducible projective representations and irreducible constituents of induced representations in its representation group.

2010 *Mathematics subject classification*: primary 20C15; secondary 20C25. *Keywords and phrases*: finite groups, projective representation, character degrees.

1. Introduction

Throughout this paper, G will be a finite group. Let N be a normal subgroup of G and $\lambda \in Irr(N)$ be G-invariant. Define $Irr(G \mid \lambda) = \{ \chi \in Irr(G) \mid [\chi_N, \lambda] \neq 0 \}$ and $\operatorname{cd}'(G|\lambda) = \{\chi(1)/\lambda(1) \mid \chi \in \operatorname{Irr}(G|\lambda)\}$. A great deal of information about the quotient group G/N is encoded in the set $cd'(G|\lambda)$. In [2, 3], Gluck and Wolf proved the following theorem, now called the Gluck-Wolf theorem: if G is a p-solvable group and no number in $cd'(G | \lambda)$ is divisible by p, then G/N has an abelian Sylow psubgroup. They gave a proof of the Brauer height zero conjecture for p-solvable groups based on this result. To prove the Brauer height zero conjecture for general groups, a generalised Gluck–Wolf theorem is needed. Recently, Navarro and Tiep [13] proved the generalised Gluck–Wolf theorem: if no number in $cd'(G | \lambda)$ is divisible by p, then G/N has an abelian Sylow p-subgroup. Finite groups G for which $cd'(G|\lambda)$ has other special forms have also been studied. Higgs [5] proved that if all numbers of cd'($G \mid \lambda$) are powers of p for a fixed prime p, then G/N is solvable. In [6] Higgs conjectured that if all numbers of $cd'(G|\lambda)$ are odd, then G/N is solvable. Higgs' conjecture was proved by Moretó [10]. In this paper, we consider finite groups such that all numbers of $cd'(G | \lambda)$ are prime powers.

The author is supported by NSFC of China (grant no. 11701421) and Introduction of talent research start-up fund of Tianjin Normal University (grant no. 5RL145).

^{© 2018} Australian Mathematical Publishing Association Inc.

THEOREM 1.1. Let G be a finite group, $L \subseteq G$ and $\lambda \in Irr(L)$. If λ does not extend to G and $\chi(1)/\lambda(1)$ is a prime power for any $\chi \in Irr(G \mid \lambda)$, then G/L is solvable.

Projective representation theory is an important part of group representation theory. It is well known that λ does not always extend to G (as an ordinary character), but it may extend to an irreducible projective character of G. (A projective character is a character of the projective representation; see [7, Ch. 11] for more details.) Furthermore, there is a bijection $\eta \mapsto \chi_{\eta}$ from $\mathrm{Irr}(\mathbb{C}_{\alpha}G/N)$ to $\mathrm{Irr}(G \mid \lambda)$ such that $\chi_{\eta}(1)/\lambda(1) = \eta(1)$, where $\mathbb{C}_{\alpha}G/N$ is a twisted group algebra of G/N over \mathbb{C} with factor set α (see [11, Ch. 3, Theorem 5.6]). Set $\mathrm{cd}_{\alpha}(G) = \{\eta(1) \mid \eta \in \mathrm{Irr}(\mathbb{C}_{\alpha}G)\}$. Thus $\mathrm{cd}_{\alpha}(G)$ is the set of degrees of irreducible projective representations of G with factor set G. Compared with the many results about the relationship between $\mathrm{cd}(G)$ and the structure of G, much less is known about the influence of $\mathrm{cd}_{\alpha}(G)$ on the structure of G. However, as Navarro remarked in [12]: 'it would be a mistake to underestimate the importance of these projective degrees in character theory and all questions about $\mathrm{cd}(G)$ should have a twisted version'. Based on Theorem 1.1, we can easily obtain the following result, which can be viewed as a criterion for solvability based on projective character degrees.

Theorem 1.2. Let G be a finite group. If all numbers of $cd_{\alpha}(G)$ are prime powers for a nontrivial factor set α , then G is solvable.

2. Preliminaries

In this section, we give several important results that will be used in the proof of Theorem 1.1.

First, we give a classification of simple groups which have a solvable subgroup with prime-power index (see [14, Proposition 5.2] or [4, Theorem 1]).

Lemma 2.1. Let G be a nonabelian simple group which has a solvable subgroup H < G with $|G:H| = p^n$, where p is a prime. Then one of the following holds:

- (a) $G = A_5$ and $H \cong A_4$ has index 5;
- (b) $G = PSL_3(2)$ and H is a subgroup of index 7;
- (c) $G = PSL_3(3)$ and H is a subgroup of index 13;
- (d) $G = PSL_2(q)$ and H is a subgroup of index q + 1, where q + 1 is a prime power.

The next result was first proved by Higgs [5] and there is a short proof in [10].

Lemma 2.2. Let N be a normal subgroup of a finite group G and let $\phi \in Irr(N)$ be G-invariant. Assume that $\chi(1)/\phi(1)$ is a power of a fixed prime p for every $\chi \in Irr(G|\phi)$. Then G/N is solvable.

Finally, we present a result about finite groups with prime-power character degrees from [9] and [15, Proposition B].

LEMMA 2.3. Let G be a finite group such that cd(G) consists of prime powers. If G is solvable, then $|\rho(G)| \le 2$. If G is nonsolvable, then $G \cong A_5 \times A$ or $G \cong PSL_2(8) \times A$, where A is an abelian group.

3. Proof of Theorem 1.1

PROOF OF THEOREM 1.1. We argue by induction on |G:L|. We assume that G/L is not solvable and seek a contradiction. Let N/L be the largest normal solvable group of G/L and choose $\beta \in Irr(N \mid \lambda)$.

Step 1. β cannot be extended to G.

Otherwise, we may assume that $\chi \in \operatorname{Irr}(G)$ is an extension of β . It follows that $\operatorname{Irr}(G|\beta) = \{\chi \phi \mid \phi \in \operatorname{Irr}(G/N)\}$. So every irreducible character G/N has prime power degree and $G/N \cong A_5$ or $\operatorname{PSL}_2(8)$ by Lemma 2.3. If $G/N \cong A_5$, there exist two irreducible characters in $\operatorname{Irr}(G|\beta)$ with degrees $3\beta(1)$ and $4\beta(1)$, respectively. Then $3\beta(1)/\lambda(1)$ and $4\beta(1)/\lambda(1)$ are prime powers. So $\beta(1) = \lambda(1)$, that is, λ extends to β . Therefore χ is an extension of λ , which is a contradiction. If $G/N \cong \operatorname{PSL}_2(8)$, then there exist two irreducible characters in $\operatorname{Irr}(G|\beta)$ with degrees $7\beta(1)$ and $8\beta(1)$, respectively, and we obtain a contradiction in the same way.

Step 2. G/N is nonabelian simple group.

If there is a proper normal subgroup M such that M/N is a minimal normal subgroup of G/N, then M/N is nonsolvable. For any $\eta \in Irr(M \mid \beta)$, $\eta(1)/\beta(1)$ is a prime power. So β extends to M by induction and every irreducible character of M/N has prime power degree. By Lemma 2.3, $M/N \cong A_5$ or $PSL_2(8)$.

Next we show that M/N is the unique minimal normal subgroup of G/N. Otherwise K/N is another minimal normal subgroup of G/N and, as before, $K/N \cong A_5$ or $PSL_2(8)$. Choose $\gamma \in Irr(M \mid \beta)$ with $\gamma(1) = 4\beta(1)$ (respectively, $8\beta(1)$) according as $M/N \cong A_5$ (respectively, $PSL_2(8)$). Then γ is the unique irreducible constituent in $Irr(M \mid \beta)$ with degree $\gamma(1)$, that is, γ is MK-invariant. For any $\theta \in Irr(MK \mid \gamma)$, $\theta(1)/\gamma(1)$ is a 2-power because $\theta(1)/\lambda(1) = \theta(1)/\gamma(1) \cdot \gamma(1)/\beta(1) \cdot \beta(1)/\lambda(1)$ is a prime power. Then $MK/K \cong K/N$ is solvable by Lemma 2.2, which is a contradiction. Therefore M/N is the unique minimal normal subgroup of G/N and $C_{G/N}(M/N) = 1$, that is, $G/N \le Aut(M/N)$. Since $|Out(A_5)| = 2$ and $|Out(PSL_2(8))| = 3$, it follows that G/N = Aut(M/N). Denote by $\chi \in Irr(M)$ an extension of β . By the theory of character extensions and information about the character degrees of A_5 or $PSL_2(8)$), χ is the unique irreducible constituent of β^M with degree $\beta(1)$. Thus χ is G-invariant and extends to G because G/M is cyclic. So β extends to G in contradiction to Step 1.

Step 3. $I_G(\beta) = G$.

Set $T = I_G(\beta)$. If T < G, then |G:T| is a p-power and so $\gamma(1)/\beta(1)$ is a p-power for any $\gamma \in Irr(T | \beta)$ and T/N is solvable by Lemma 2.2. Thus the simple group G/N is one of the cases listed in Lemma 2.1.

We claim that (|G:T|, |T/N|) = 1. This is trivial for the first three cases and so we may assume that $G/N \cong PSL_2(q)$. If q is even, then |G/N| = q(q-1)(q+1) and

|G:T|=q+1, so (|G:T|,|T/N|)=(q+1,q(q-1))=1. If q is odd, then q+1 is a 2-power and $q+1=|\mathrm{PSL}_2(q)|_2$. So the claim is true and $\gamma(1)=\beta(1)$ for any $\gamma\in\mathrm{Irr}(T|\beta)$. Therefore T/N is abelian and we obtain a contradiction.

By the theory of isomorphic character triples, there exists a finite central extension (Γ, M, ϕ) of G/N having the projective lifting property (that is, $M \le Z(\Gamma)$, $G/N \cong \Gamma/M$ and there is a bijection τ of $\operatorname{Irr}(G|\beta)$ onto $\operatorname{Irr}(\Gamma|\phi)$ such that $\chi(1)/\beta(1) = \tau(\chi)(1)/\phi(1)$ for any $\chi \in \operatorname{Irr}(G|\beta)$; for more details, see [7, Theorem 11.28]). So we may assume that N is cyclic and central and that β is faithful. Then N = Z(G) and G = G'N for $N \subseteq Z(G)$ and G/N is a nonabelian simple group. Let $M = N \cap G'$. Then M = Z(G') and $G'/M \cong G/N$ is a simple group, so G' is a quasisimple group.

Next we show that $\operatorname{Irr}(G'|\beta_M) = \bigcup_{\chi \in \operatorname{Irr}(G|\beta)} \operatorname{Irr}(G'|\chi_{G'})$. To see that the left side is included in the right side, choose $\eta \in \operatorname{Irr}(G'|\beta_M)$. Then $0 \neq [\eta_M, \beta_M] = [(\eta_M)^N, \beta] = [(\eta^G)_N, \beta]$ by Frobenius reciprocity and the Mackey formula. Hence there exists $\chi \in \operatorname{Irr}(G|\eta)$ such that $\chi \in \operatorname{Irr}(G|\beta)$. Next we prove the reverse inclusion. For any $\chi \in \operatorname{Irr}(G|\beta)$ and $\gamma \in \operatorname{Irr}(G'|\chi_{G'})$,

$$[\gamma_M, \beta_M] = [(\gamma_M)^N, \beta] = [(\gamma^G)_N, \beta] \ge [\chi_N, \beta] > 0.$$

So all the irreducible characters of G' lying over β_M have prime power degrees. By Lemma 2.2, $|\operatorname{cd}(G'|\beta_M)| > 1$. Because G is a central product of N and G', β_M cannot extend to G'. By [8, Theorem 1.1] and the result in [1], G' is one of the following cases: $\operatorname{SL}_2(q)$ for some q, $2.\operatorname{Sp}_6(2)$, $3.\Omega_7(3)$, $3.G_2(3)$, $4_1.\operatorname{L}_3(4)$, $2.\Omega_8^+(2)$, or $2.A_n$ where $n = 2^{m+1} + 2$. Take the group $2.\operatorname{Sp}_6(2)$ as an example. Suppose that $\chi \in \operatorname{Irr}(2.\operatorname{Sp}_6(2))$ with prime power degree p^n . Then $\chi(1) \in \{8, 64, 2^9\}$ and p = 2 by [8, Theorem 1.1]. Similarly, we can check that every number in $\operatorname{cd}(G'|\beta_M)$ is a power of a fixed prime for the other groups. Thus G'/M is solvable by Lemma 2.2, which is a contradiction.

For a set *X* of positive integers, define $\rho(X) = \{p \text{ prime : } p | n \text{ for some } n \in X\}.$

COROLLARY 3.1. Let G be a finite group, $L \subseteq G$ and $\lambda \in Irr(L)$. If $\chi(1)/\lambda(1)$ is a prime power for any $\chi \in Irr(G \mid \lambda)$, then $|\rho(\operatorname{cd}'(G \mid \lambda))| \leq 3$.

PROOF. Let $T = I_G(\lambda)$. If T < G, then $\operatorname{cd}(G \mid \lambda) = \{|G:T|\beta(1) \mid \beta \in \operatorname{Irr}(G \mid \lambda)\}$. So $|\rho(\operatorname{cd}'(G \mid \lambda))| = 1$. Next we assume that T = G, that is, λ is G-invariant. If λ extends to G, then $\operatorname{cd}'(G \mid \lambda^G) = \operatorname{cd}(G/L)$ and the corollary follows from Lemma 2.3. If λ cannot be extended to G, then G/L is solvable by Theorem 1.1. By the theory of isomorphic character triples [7, Ch. 11], we may assume that L is a central group and $\lambda(1) = 1$. So $\operatorname{cd}(G \mid \lambda) = \operatorname{cd}'(G \mid \lambda)$ consists of prime powers. Denote by K the maximal normal subgroup which has an extension of λ . Then $\operatorname{cd}(K \mid \lambda) = \operatorname{cd}(K/L)$ and $|\rho(\operatorname{cd}(K \mid \lambda))| \le 2$ by Lemma 2.3. Choose a chief factor M/K with order p^n for prime p. For any prime $q \ne p$ with $q \in \rho(\operatorname{cd}(G \mid \lambda))$, choose $\gamma \in \operatorname{Irr}(G \mid \lambda)$ with q-power degree and $\beta \in \operatorname{Irr}(M)$ such that $[\beta, \gamma|_M] \ne 0$. By the choice of K, it follows that β has nontrivial q-power degree and β_K is irreducible for (|M/K|, q) = 1. So $q \in \rho(\operatorname{cd}(K \mid \lambda))$, that is, $|\rho(\operatorname{cd}(G \mid \lambda)) - \{p\}| \le 2$, and so $|\rho(\operatorname{cd}(G \mid \lambda))| \le 3$.

Acknowledgement

The author would like to thank Professor Jiping Zhang for his encouragement.

References

- [1] C. Bessenrodt and J. B. Olsson, 'Prime power degree representations of the double covers of the symmetric and alternating groups', *J. Lond. Math. Soc.* **66**(2) (2002), 313–324.
- [2] D. Gluck and T. R. Wolf, 'Brauer's height conjecture for *p*-solvable groups', *Trans. Amer. Math. Soc.* **282** (1984), 137–152.
- [3] D. Gluck and T. R. Wolf, 'Defect groups and character heights in blocks of solvable groups. II', J. Algebra 87 (1984), 222–246.
- [4] R. Guralnick, 'Subgroups of prime power index in a simple group', J. Algebra 81 (1983), 304–311.
- [5] R. J. Higgs, 'Groups whose projective character degrees are powers of a prime', Glasg. Math. J. 30(2) (1988), 177–180.
- [6] R. J. Higgs, 'Projective characters of odd degree', Comm. Algebra 26 (1998), 3133–3140.
- [7] I. M. Isaacs, Character Theory of Finite Groups (Academic Press, New York, 1976).
- [8] G. Malle and A. E. Zalesskiĭ, 'Prime power degree representations of quasi-simple group', Arch. Math. 77 (2001), 461–468.
- [9] O. Manz, 'Endliche auflösbare Gruppen, deren sämtliche Charaktergrade Primzahlpotenzen sind' [Finite solvable group all of whose character degrees are prime powers]', J. Algebra 94(1) (1985), 211–255.
- [10] A. Moretó, 'An answer to a question of Isaacs on character degree graphs', Adv. Math. 201 (2006), 90–101.
- [11] H. Nagao and Y. Tsushima, Representations of Finite Groups (Academic Press, Boston, 1988).
- [12] G. Navarro, 'Variations on the Itô-Michler theorem on character degrees', Rocky Mountain J. Math. 46(4) (2016), 1363–1377.
- [13] G. Navarro and P. H. Tiep, 'Characters of relative p'-degree over normal subgroups', Ann. of Math.(2) 178(3) (2013), 1135–1171.
- [14] G. Navarro, B. Späth and P. H. Tiep, 'On fully ramified Brauer characters', Adv. Math. 257 (2014), 248–265
- [15] W. Willems, 'Blocks of defect zero and degree problems', in: *Proc. Sympos. Pure Math. 47, part I* (American Mathematical Society, Providence, RI, 1987), 481–484.

YANG LIU, College of Mathematical Science,

Tianjin Normal University, Tianjin 300387, PR China

e-mail: liuyang@math.pku.edu.cn