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REDUCING THE CLASSICAL MULTIPLIERS £°°, c0 AND bv0

by STEPHEN A. SAXON and WILLIAM H. RUCKLE

(Received 24th August 1995)

For R e {bv0, c0, 1°°} a multiplier of FK. spaces, the classical sectional convergence theorems permit the
reduction of R to any of its dense barrelled subspaces as a simple consequence of the Closed Graph Theorem.
(Cf. the Bachelis/Rosenthal reduction of R = I°° to its dense barrelled subspace m,,.) A natural modern
setting permits the reduction of R to any of the larger class of dense fiq> subspaces. Bennett and Kalton's FK
setting remarkably reduced R = l°° to any of its dense subspaces. This extreme reduction also obtains in
the modern pep setting since, surprisingly, every dense subspace of l°° is a P<p subspace. Moreover, the
standard results, including the Bennett/Kalton reduction, easily follow from their fiip versions and the Closed
Graph Theorem. Our two supporting papers find relevant "Non-barrelled dense Pep subspaces" and study
"Generalized sectional convergence and multipliers". Here we specialize the (i<p approach to ordinary,
particularly unconditional, sectional convergence.

1991 Mathematics subject classification: Primary 46A08, 46B45.

1. Introduction

Two companion papers [7, 8] establish the P<p approach for a generalized notion of
sectional convergence. For ordinary sectional convergence, the approach proves simple
and quite general, and quickly includes the standard multiplier space results upon
application of the Closed Graph Theorem. Simplicity and unification are achieved with
some knowledge of locally convex spaces [4, 10].

We briefly recall (cf. [7, 8]) that a locally convex sequence space is a ^ space if it is
continuously included in the space of all sequences a> = KN with its usual product
topology, where K denotes the (real or complex) scalar field, and is an FK or BK space
if it is, in addition, a Frechet or Banach space, respectively. A K space that densely
contains the space q> of eventually zero sequences is an AD space.

If the canonical unit vectors en form a(n unconditional) Schauder basis for a K space
S, then S is said to be an (unconditional) AK space and to have (unconditional) AK.
Schauder basis results in a locally convex space may be translated into statements
about the associated AK space of coefficients. If S has AK, then x e S implies
x = limn Pnx in S, where each Pnx agrees with x on the first n coordinates and is 0
thereafter, proving S is an AD space.

Among the treasures of Schauder basis IK space theory are three intensely studied
multiplier results historically linked (cf. [7]) to Toeplitz, Kothe, Kadec, Pelczynski,
Yamazaki and Garling. (The multiplication ab of two sequences a and b is
coordinatewise, so that, for each j , (ab)(j) = a(j)b(j). For sets A and B of sequences,
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AB = [ab : a e A,b e B], and [AB] denotes the smallest sequence space containing AB
and q>.) These three results have a unified K space presentation:

I. Let R be {either V° or c0) (bv0). An AD FK space S has {unconditional AK) (AK)
if and only ifRSc S.

Since the space c of convergent sequences is spanned by c0 and (1, 1,...), we have
cS c S if and only if c0S c S. Reducing R — £°° to c0 does not change the conclusion on
S, but further reduction to bv0 — {x e c0: £ n \x(ri) - x(n + 1)| < oo} does. Bachelis and
Rosenthal [1] complemented Kadec and Pelczynski [5] by reducing R = l°° to its dense
subspace m^ of finite range sequences. Now m0 is known to be barrelled, and a general
principle applies:

(a). If S is any FK space and Q is a dense barrelled subspace of a K space R, then
RS<zS if (and only if)QSc S.

Proof. Given s e S and the definition of K space, the linear mapping qi-^qs from
the barrelled space Q into the Frechet space S has a closed graph and is therefore
continuous, and may be continuously extended to R by density of Q and completeness
of S, implying RS c S by the definition of K space. •

Reductions of l°°, c0 and bv0 are immediate:

II. Let R be a dense barrelled subspace {of either t°° or co> (of bv0). An AD FK space
S has {unconditional AK) (AK) if and only if RS C S.

In the case of l°°, Bennett and Kalton [2] succeeded with dramatically weaker
hypotheses on both R and S which: (i) do not require R to be barrelled, only dense,
and (ii) require S D q> to be merely separable instead of AD. In the cases of c0 and bv0,
neither relaxation is possible: (i) take R = q> and take S as in [7, Example 3.7]; (ii) take

2. fi(p spaces

If s and t are scalar sequences, (s, t) denotes the sum £ n s(n)t(ri), provided the series
converges. If s is a member of any K space S and t e q>, the series, having only finitely
many non-zero terms, must converge; moreover, by definition of K space, the linear
functional (•, t) is continuous, and we may view t as a member of the topological dual
S' of S. A subset A of the algebraic dual E* of a vector space E is E-bounded if it is
o(E*, £)-bounded. If £ is a sequence space and A is a set of sequences with
{(s, t) : t € A] defined and bounded for each s e E, we also say A is E-bounded. We refer
to the p(S, <p) topology on any sequence space S as its Pep topology [6], which has a base
of neighbourhoods of zero all polar sets of the form
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A" = {s e S : \(s, t)\ < 1 for all t e A]

as A ranges through all S-bounded subsets of cp. With its Pep topology, S is a
Pep space. Multiplication spaces of the form [RS] are assumed to have the Pep topology
unless otherwise indicated. The familiar FK and BK spaces are (barrelled) Pep spaces,
including w, £'(1 < p < oo), c0 and bv0, as is the (non-metrizable) strong dual cp of eo. If
in its relative topology a subspace of a K space is (barrelled) [a Pep space], then we
say the subspace is a {barrelled) [pep] subspace. The following facts (cf. [7, 8]) are easily
proved:

• Every barrelled K space has a topology stronger than its pep topology.
• Every barrelled subspace of a Pep space is a ficp subspace.
• ([8, Theorem 2.2]). A subspace of cp, eo, c0 or lp(\ < p < oo) is a barrelled subspace

if {and only if) it is a flcp subspace.

The previous fact requires

• ([8, Lemma 2.1]). Let E be a locally convex space and let M be a subspace of E' such
that each E-bounded subset of M is equicontinuous. If A is an E-bounded subset of
E and there exists an equicontinuous subset C of E' with A c M + C, then A is
equicontinuous.

Proof. For each v e A choose u, e M and v2 € C such that v = u, 4- v2, and set
B — {t>, : v e A}. Being equicontinuous, C is £-bounded, and thus so is B c A - C.
Therefore B c M i s equicontinuous, and so is B + C and its subset A. •

The existence of non-barrelled dense /?<p subspaces [8] of 1°°, I1 and bv0 ensure that
for two of the three classical multipliers, dense ficp subspace reductions properly include
the dense barrelled ones. Moreover,

(*) ([8, Theorem 3.1]). Every dense subspace oft°° is a Pep subspace,

and while isomorphisms do not generally preserve /?<p-ness,

(**) ([8, Corollary 2.7]). The $<p subspaces of bv0 are precisely the images of such
subspaces under the canonical isomorphism from •£' onto bv0.

Another basic result is

(***) ([7, Corollary 3.5]). Every barrelled AK space is a Pep space.

Unlike some metrizable barrelled AD spaces, every Pep space S has a (unique) K
space completion S (cf. [6, 7]). Familiar basis arguments show that an AD ficp space S
has AK if and only if bv0S C S : indeed, S has AK if and only if for each x e S,
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{Pnx : n e N} is bounded in S (cf. [7, Theorems 3.2, 3.3]). Let x e S. If {Pnx : « e N} is
bounded in S and r e bi;0, then [r(\)]x + £ ~ i [ r ( " + 1) - r(ri)][x - Pnx] is absolutely
Cauchy and must converge to rx in S; on the other hand, if {Pnx : n e N] is not
bounded, then some S-bounded A c (p is not uniformly bounded on [Pnx : n e N ) and
induction yields r e bv0 such that the equicontinuous A is not bounded at rx, implying
rx is not in S.

The /J<p hypothesis on S embraces (***) but is technically neither weaker nor stronger
than FK-ness. The fi<p analogue to (a) is simpler to state and prove:

(b). For R, S P<p spaces, RS C S (if and) only if RS C S.

The proof is the same as for (a), except that in place of the Closed Graph Theorem
we use

(c). (Cf. [7, Theorem 2.1]). If R and T are sequence spaces and w is a sequence such
that wR c T, then the map r H-> wr from R into T is continuous with respect to the
P<p topologies on R and T.

Proof. For B a T-bounded subset of q>, the equality (r, wu) — {wr, u) for r e R and
u e B implies that wB is an R-bounded subset of q> whose polar (wB)° in R is the pre-
image of the polar B° in T. •

The same simplicity shines in Theorem 5.1 of [7]:

(d). If R is an AK f}q> space and S is any sequence space, then [RS] has AK.

Proof. Continuity yields rs — (lim Pnr)s — lim(Pnr)s = lim Pn(rs). •

3. fi(p reductions

There are P<p reductions of bv0 in both the classical and f}q> settings.

(e). (Cf. [7, Theorems 5.7, 5.8]). If R is a dense fiq> subspace of bv0 and S D q> is
any (fl<p space) (FK space), the following statements are equivalent:

1. ShasAK;

2. S has AD and (RS C S) (RS C S);

3. [RS] is a dense fly subspace (of S) (of S);

4. [RS] is a dense barrelled subspace (of S) (of S).

Proof. Consider the case of S a /?<p space. We have already sketched the equivalence
of 1 and 2, and [4 =» 3] is obvious. But Theorem 5.7 of [7] completely covers the /?<p
case via (**).
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Now we assume the parenthetical options, with S an FK space. Denote the barrelled
space S with its coarser jS<p topology by T. If 1 holds, then ("*) yields S=T = f.
Indeed, if any one of 1-4 holds, the previous j}q> case implies [RS] = [RT] is a dense
barrelled subspace of T, implying T itself is barrelled, so that T = S by the Closed
Graph Theorem. •

A series in an AD fiq> space S is unconditionally convergent if and only if it is
subseries convergent in S. Thus if S has unconditional AK, then rS c S for each r with
range {0,1}; rr^S c S. It is very easy to see that m0 is a dense subspace and therefore,
by (*), a /?<p subspace of €°°. [In fact, m^ is a barrelled subspace of £°°, but the proof
(Grothendieck) takes some work.] We conclude from (b), then, that l°°S c S.
Conversely, if l°°S c S, then (b) yields i°°S c S, so that bv0S cS — S implies, by (e),
that S has AK, and then because nigS c S, expansions are subseries convergent in S,
which implies S has unconditional AK. We have proved

(f)- An AD fi<p space S has unconditional AK if and only ifl°°S C S.

Now all the unconditional AK reductions, including Bennett and Kalton's [2], will
follow from

Theorem 3.1. Let R c l°° be a sequence space whose f}q> completion R contains c0.

For any (AD /?</> space) (AD FK space) S the following are equivalent:

(i) S has unconditional AK;

(ii) (RS c S) (RS c S);

(iii) [RS] is a dense (icp subspace (of S) (of S);

(iv) [RS] is a dense barrelled subspace (of S) (of S).

Note. We cannot delay the AD hypothesis until (ii), as we did in (e) 2, nor can we
relax it to merely require S D <p be separable, since cc = c is non-AK. If a sequence
space T satisfies c0 c T c l°°, then T is a /?<p subspace of i°° (Uniform Boundedness
Principle). Thus the hypothesis on R is equivalent to: "Let R be a Pep subspace of l°°
whose closure contains c0".

Proof. As in the proof of (e), the case with S a f}q> space implies, via the Closed
Graph Theorem, the case with S an FK space, and so we consider only the former.

[(i) => (ii)] follows from (f), and [(iv) => (iii) => (ii)] is trivial. It remains to show that
(ii) =*• [(i) A_(iv)]. Assume (ii) holds. By (b), RS C S, so that S is an AD f}q> space with
bv0S CS — S, which implies S has AK by [2 => 1] of (e). In particular, r e R and s e S
imply the sequence (Pnrs)n converges to rs in S. Since [RS] contains q> it is dense in the
AD space S, and to prove (iv) we must show that if G c S' is [KS]-bounded, then G is
equicontinuous. First we prove (i). Given s € S, for each g e G we compose continuous
functions to obtain h3g e R' defined by hsg(r) — g(rs). If r e R is, in fact, an element of
R, then rs e RS and \hsg(r): g e G] = {g(rs) : g e G] is bounded; i.e., A = {/iJ9 : g e G}
is K-bounded.
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A has a stronger property. For any r e R,

h,,g(r) = g(rs) = lim g(Pn(rs))

= lim g((Pnr)s) = lim hsg(Pnr) = (r, (Kg(en)\),

and c0 c R C l°° implies the fSq> topologies on R and R are given by the sup norm, so
we may identify each hsg with the sequence (hsg(en))n e tx C (p + C, where C is the unit
ball in I1. Since C acts equicontinuously on any subspace of t°°, so does A on R ([8,
Lemma 2.1], proved above), and thus on R, by density. Given w e £°°, then, A is
uniformly bounded on the bounded subset {Pnw : n e N} of R, so that B — {g(Pnw-) e
S' : g e G, n € N} is bounded at s and represents an S-bounded subset of q>. Since the
f}<p space S has AK, there exists M such that m > M implies

S - P . S E B° (polar in S).

Therefore n > m > M and g e G imply

1 > |9(Pnw(s - Pms))\ - |g(Pnws - PnwPms)\ = \g(Pn(ws) - Pm(ws))|,

which yields

{Pn(ws) - Pm(ws) : n > m > M) C G°.

Hence (Pn(ws))n is Cauchy and converges in S, necessarily to ws, since S is a K space.
We conclude that £°°S c S, and (i) holds by (f).

For the special case w — (1, 1,...), B° is still a neighbourhood of 0 in S, and
whenever g e G and x e B ° we have

|g(x)| = lim |<7(Pnx)| = lim |g(Pnwx)| < 1,
n n

so that G° D B°; i.e., G is equicontinuous on the dense subspace S, thus on S, and (iv)
holds. •

Corollary 3.2. If R is a dense ficp [equivalently [8], barrelled] subspace of c0 and
S D <p is any (Pq> space) (FK space), the following are equivalent:

(i) S has unconditional AK;
(ii) S has AD and [RS C S) (RS C S);

(iii) [RS] is a dense f}q> subspace [of S) (of S);
(iv) [RS] is a dense barrelled subspace (of S) (of S).

Note. The AD hypothesis on S delays to (ii), but cannot relax to mere separability
and containment of q> since coc — c0 c c.
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Proof. As above, the Closed Graph Theorem reduces the proof to the case of S a
P<p space. If any of (i)-(iv) holds, then S has AD and the Theorem applies. This is
obvious for (i) and (ii). If (iii) holds, then by (b), [cQS] is a dense /}<p subspace of S and
has AK by (d). Thus [c0S], then S, and then S must have AD. Finally, since any
barrelled subspace of a fi(p space is a /}q> subspace, (iv) likewise implies S has AD. •

For R = l°° we relax the AD hypothesis on S via

Lemma 3.3. If S D <p is a f}q> space and £°°S C S, then S is an AD space if (and only
if)S is separable.

Proof. Suppose S is non-AD. We shall show that S is non-separable by showing S
is non-separable, and for this it suffices to find uncountably many disjoint
neighbourhoods in S.

Since the /?<p space S is non-AD, there exist x e S and an S-bounded subset A of q>
such that x + A° misses <p. Thus 0 £ x + A° = x - A", so that x £ A", and there exists
y, e A with |(x, y,)| > 1. Since y, e cp, there exists n, e N such that y, = Pn{yt. N o w
Fn]x is in <p, thus not in x 4- /4°, so there exists y2 e A with |(x — Pn]x, y2)| > 1; there
exists n2 e N such that y2 = Pn2y2- Of necessity, «2 > n,. We continue inductively to
choose positive integers n, < n2 < ... and y,, y 2 , . . . € A such that, defining n0 = 0 and
P^ = 0, we have

(x - Pnt_,x, yk)\>l and Pnjk = yk for all /c e N.

Given any D c N , define (5(£>) C N and rD e l°° so that

5(D) = {j e N : nk_t <j <nk for some ke D], and

Now suppose C and D are distinct subsets of N. Let q denote the least positive
integer in (C U D)\(C n D). A routine check shows that

\(rc • x - rD • x, yq)\ = |(±(Pn?x - Pn,.,x), yq)\ = |(±(x - Pn,_,x), yq)\ > 1.

It follows that rc • x — rD • x ^ A", and rc • x + \A° misses rD • x + \A°, so that there are
c disjoint neighbourhoods in S. •

Below, the FK version of [(i) o (ii)] is the Bennett and Kalton reduction [2].

Corollary 3.4. If R is a dense subspace of l°° and S D <p is any separable (f}q> space)
(FK space), the following statements are equivalent:

(i) S has unconditional AK;

(ii) (RS c S) (RS C S);
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(iii) [RS] is a dense fl<p subspace [of S) (of S);

(iv) [RS] is a dense barrelled subspace {of S) (of S).

Note. We cannot delay separability until (ii), since t°°l°° = l°° is now-AK.

Proof. For S a &q> space, use (*), (b), 3.3 and 3.1. D

Remark. Our reductions (e), 3.2 and 3.4 validate a simple and unified /?<p approach.
However, it should be pointed out that some of the older FK versions put Rx with x
a single point of S in place of our RS. Thus, for example, the Bennett and Kalton
reduction [2] actually says that, in the above language, for x e S, the series 5Z x(.n)e»
converges unconditionally in S if and only if Rx c S. Many of our arguments have
similar pointwise interpretations. To illustrate, the argument of 3.3 proves the
following: If S D cp is a separable 0<p space and for some x s S we have l°°x c S, then
[£°°x] has AD in the topology induced by S.
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