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Abstract
The optimization of laser pulse shapes is of great importance and a major challenge for laser direct-drive implosions. In
this paper, we propose an efficient intelligent method to perform laser pulse optimization via hydrodynamic simulations
guided by the genetic algorithm and random forest algorithm. Compared to manual optimizations, the machine-learning
guided method is able to efficiently improve the areal density by a factor of 63% and reduce the in-flight-aspect ratio
by a factor of 30% at the same time. A relationship between the maximum areal density and ion temperature is also
achieved by the analysis of the big simulation dataset. This design method has been successfully demonstrated by the
2021 summer double-cone ignition experiments conducted at the SG-II upgrade laser facility and has great prospects for
the design of other inertial fusion experiments.

Keywords: double-cone ignition; genetic algorithm; pulse optimization; random forest

1. Introduction

Laser-driven fusion[1–3] is a promising approach for the
realization of controlled fusion energy. Many laser-driven
fusion schemes have been proposed in the past decades,
including the indirect-drive central ignition[4–6], the direct-
drive central ignition[7–9], the hybrid-drive ignition[10–12], the
cone-guided fast ignition[13–16], the shock ignition[17,18], the
impact ignition[19] and the double-cone ignition (DCI)[20]. In
the DCI scheme, the conventional central ignition process
is replaced by four progressive processes: quasi-isentropic
compression, acceleration, collisional preheating and mag-
netic field assisted fast ignition. The requirements for the
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drive laser energy can be reduced significantly because the
compression and acceleration of fuels are performed in two
head-on gold cones. The need for fast ignition laser energy
can also be relaxed to an affordable level of the current
PW laser technology with head-on collisional preheating and
magnetic field collimated fast electrons.

However, one of the challenges remains in the optimization
of the drive laser pulse to obtain a desired implosion with
high areal density, high ion temperature and small in-flight-
aspect ratio (IFAR) with a given drive energy. At least three
shocks should be controlled precisely to achieve a high
areal density with relatively small IFAR. This requires to
efficiently optimize 22 independent parameters of the laser
pulse in a vast parameter space.

With the rapid development of supercomputers and
data science, machine learning has been successfully
applied in laser fusion research[21–26]. For example,
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Figure 1. Schematic of the DCI target structure and laser pulse to be optimized in this paper.

Gopalaswamy et al.[23] established the relationship between
1D hydrodynamic simulations and 3D experiment data by
using Bayesian inference, leading to a tripled increase of
neutron yield at the OMEGA laser facility. Humbird et al.[24]

used transfer learning to train the deep neural network with
simulation data and experiment data, greatly improving the
prediction ability of the calculation model. Peterson et al.[25]

used the random forest algorithm to build a surrogate model
based on 60,000 2D HYDRA simulations and discovered
a new class of robust implosion at the National Ignition
Facility (NIF). Rose et al.[26] used the genetic algorithm to
optimize the laser pulse at the OMEGA laser facility and
obtained an increased neutron yield.

In this paper, we propose a machine-learning method with
the combination of the genetic algorithm and random forest
algorithm to guide hydrodynamic simulations for the design
of the drive laser pulse in the DCI scheme. The 1D code
MULTI-IFE[27,28] is employed to efficiently determine the
areal density and ion temperature corresponding to a given
laser pulse under spherical symmetry approximation. This
intelligent approach is not only suitable for the DCI scheme,
but is also applicable to other laser drive fusion schemes. For
example, if the laser pulse is replaced with an X-ray pulse,
this method can be used to optimize the X-ray pulse shape
for laser indirect-drive experiments.

This paper is organized as follows. Section 2 describes
the details of the optimization method. Section 3 presents
the optimization results and demonstrates the effectiveness
of the method with preliminary DCI experimental results.
Finally, a summary is given in Section 4.

2. Method

A schematic of the DCI target structure and the drive laser
pulse is illustrated in Figure 1. The target is made of a CH
plastic shell (C16H16). The target structure described by the
inner radius R1 and the outer radius R2 remains unchanged
in this paper, although it can be included as an independent
variable. The laser pulse shape is described by 13 points. The
first point is used to define the start of the laser pulse, with
its time t1 and power p1 set to 0. The last point is used to

define the end of the pulse with its power p13 set to 0. The
penultimate point is used to define the peak of the pulse,
with its power p12 set to the maximum power allowed by the
laser facility. In total, there are 22 independent parameters
([t2, . . ., t13; p2, . . ., p11]). These parameters can vary freely
in a huge parameter space, which makes it time-consuming
to find an optimal pulse shape manually. Typically, at least
2 weeks would be needed to find an optimal pulse for
the experimental campaign. In order to optimize the pulse
duration flexibly, the time intervals between adjacent points
([dt1, dt2, . . ., dt12]) rather than the time of each point ([t2, t3,
. . ., t13]) are used to describe the laser pulse shape.

The laser pulse optimization for a given drive energy can
be written as follows:{

[ρ,Ti,IFAR] = f (dtlaser, plaser), (1)∑i=12
i=1 0.5(pi +pi+1)dti ≤ Elaser, (2)

where ρ is the peak areal density, Ti is the peak ion temper-
ature, IFAR is the peak IFAR, dtlaser and plaser are the time
intervals and powers, dti and pi are the ith time interval and
laser power, respectively, and Elaser is the drive laser energy.

During the optimization, we pursue a comprehensive
implosion performance with a well-balanced high areal
density, high ion temperature and small IFAR. The fitness
evaluation function used by the genetic algorithm is
constructed as follows:

fitness = k1ρ + k2Ti − k3IFAR/40, (3)

where ρ is the shell areal density in g/cm2, Ti is the shell ion
temperature in keV, IFAR is the peak IFAR of the plasma
shell, and k1, k2 and k3 are weight coefficients between
0 and 1. The negative sign before the IFAR implies that a
small IFAR is preferred during the optimization.

The simulation dataset obtained by each round of
genetic algorithm optimization is analyzed with the
regression model of the random forest algorithm. The
feature importance of each independent variable can be
extracted by the random forest algorithm and utilized
to set the initial laser pulse shape of the next round of
optimization. Typically, three to five rounds of genetic
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Figure 2. Plasma implosion diagram and laser pulses obtained by (a) manual optimization and (b) machine-learning optimization.

algorithm optimizations are needed to obtain a candidate
laser pulse shape for the experiments.

3. Results

3.1. One-dimensional optimization guided by the genetic
algorithm

Figure 2 shows the target implosion trajectory and the laser
pulse shape obtained by manual optimization and machine-
learning optimization. The target is made of CH with an
inner radius of 450 µm and a thickness of 45 µm. The
manually optimized laser pulse is carefully tuned according
to the requirements of isentropic implosion with a cost of
2 weeks during the 2020 winter DCI campaign. The laser
pulse is then optimized under the same constraints, except
that the drive energy is reduced from 12 to 10 kJ and the laser
contrast is reduced from 100 to 15 for non-zero points. The
minimum time intervals between two adjacent points are set
as 200 ps based on the arbitrary waveform generator (AWG)
tuning precision of the SG-II upgrade laser facility.

The code MULTI-IFE[27,28] used in the simulations is a
1D hydrodynamics program with separated temperatures for
electrons and ions, a multi-group for radiation transport and
a fusion package. The fusion reaction is turned off during
the simulations. The equations of state and opacity are taken
from the models of MPQEOS[29] and SNOP[30], respectively.

It can be seen that the laser pulses are similar over-
all because both of them meet the requirements of quasi-
isentropic compression, which needs low powers at an early
time to launch weak shocks and high powers at a late time
to generate higher ablation pressure. However, some new
features appear in the machine-learning optimized pulse
and can be interpreted as follows. More points are used to
describe the laser pulse so that the launch and propagation
of the shocks can be controlled more precisely. Thirteen
points are used to define the laser pulse on the balance
of shocks control and pulse implementation at the SG-II

Table 1. Typical properties of manual optimization and machine-
learning optimization.

Properties Manual optimization Machine learning optimization
ρ (g/cm2) 0.38 0.62
Ti (keV) 0.25 0.23
V (km/s) 233 233
IFAR 35 28

Energy (kJ) 2 × 6 2 × 5

upgrade facility. The low power foot at the beginning is
replaced by a picket as a result of the reduced laser contrast
and the preference of a small IFAR. A ramp rather than a flat
top is used at the end of the pulse to better match the increase
of material pressure during implosion.

The implosion performances before and after machine-
learning optimization are shown in Table 1. It can be seen
that the areal density has been increased by 63% (from 0.38
to 0.62 g/cm2) because the shock sequence is better con-
trolled so that the CH shell stagnates closer to the spherical
center. The implosion velocity decreases a little (from 233
to 223 g/cm2) due to the reduced drive energy. Besides, the
IFAR is also reduced by 30% (from 35 to 28) due to the better
control of the shock sequence and higher adiabat on the
target outer surface. A better control of the shock sequence
means the shocks are launched by the laser pulse at a proper
time and break out the target inner surface at a proper radius.
In the genetic algorithm optimized implosion, a moderate
picket at 0.2 ns is employed to set a relatively high adiabat on
the target surface while keeping the shock strength satisfying
the requirement of isentropic compression. It is suggested to
keep the IFAR smaller than 30 to mitigate the development
of hydrodynamic instability[7].

3.2. Data analysis with the random forest algorithm

In order to better understand the physical mechanism behind
the genetic algorithm optimization, the typical laser pulses
and individual fitness obtained by the genetic algorithm
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Figure 3. (a) Typical laser pulses searched by the genetic algorithm and (b) the evolution of population fitness during the optimization.

are visualized in Figure 3. The individual fitness is defined
as fitness = 0.65ρ

[
g/cm2

]+ 0.3Ti [keV] − 0.05IFAR/40 to
obtain a high areal density and moderate ion temperature. It
can be seen that the laser pulses are distributed in a wide
range for early generations and converge to a narrow region
later because of the genetic algorithm guidance. For the early
generations, there are some laser pulses that have small drive
energies because the powers are too low, or the pulses are
too short. These pulses with small energies are less likely to
survive during the natural selection of the genetic algorithm
because they have low fitness. Due to the random gene
mutation, there are always some pulse shapes corresponding
to low fitness. A general tendency of the genetic algorithm
is that the maximum fitness increases rapidly at an early
time because the initial population has a good diversity, and
then increases slowly as the average fitness approaches the
maximum fitness.

The random forest algorithm is powerful in helping the
genetic algorithm to jump out of local optimal trap via
the analysis of feature importance. The feature importance
obtained by the random forest algorithm is presented in
Figure 4. It can be seen that all variables of the laser power
are important, but the variables dt1 and p2 are particularly
important. This is because they describe the picket in the
laser pulse and determine the first shock before the main
pulse arrives. Therefore, we can modify these values (dt1, p2

and so on) to obtain the initial laser pulse for the next round
of genetic algorithm optimization. The feature importance of
some variables is zero, because these variables are assigned
with constants during the optimization. For example, the
powers (p3 and p4) of the laser pulse are set as zero,
because we found that a period of low powers is required
after the relatively high-power picket, and laser pulses with
powers close to zero are less reproducible at the laser
facility.

Many rounds of optimization can be performed to obtain
the final laser pulse, but three to five rounds are usually
enough for experimental designs. One reason is that the dif-
ferences of the optimal laser pulses between two rounds will
become very small as the optimization converges. Another

reason is that other fluctuations in experiments would be
larger than these small differences due to the complexity of
laser-driven implosions. In this work, the optimal pulse of
the fourth round, as shown in Figure 2(b), is selected as the
candidate laser pulse of the 2021 summer DCI experiments,
although the shell areal density can be increased from 0.62
to 0.68 g/cm2 with another round of optimization, as shown
in Figure 4(b).

It is interesting to see that both the areal density and
ion temperature have upper limits for a given drive energy,
since there always exists some entropy increase during the
implosion and the maximum imploding velocity is limited
by the hydrodynamic instability (IFAR). In Figure 4(b), the
upper border of the Ti − ρ scatter can be fitted as Ti =
0.62/(1+ρ)2, where Ti is the shell ion temperature in keV
and ρ is the peak areal density in g/cm2. This implies that we
cannot obtain an implosion with high temperature and areal
density at the same time. The final goal to achieve a high ion
temperature or areal density depends on the preference of
the ignition scheme. For fast ignition schemes, implosions
with high areal density and moderate ion temperature are
preferred, since the ion temperature will be greatly increased
by the heating of fast electrons.

Although the final optimized laser pulse of the genetic
algorithm depends on the choice of k1, k2 and k3 in the
fitness function fitness = k1ρ + k2Ti − k3IFAR/40, which
determines whether an individual will survive or not during
the natural selection, the relationship Ti = 0.62/(1+ρ)2

in Figure 4(b) has little dependence on the choice of the
fitness function. The reason is that most kinds of laser pulses
are searched and evaluated during the random optimization
guided by the genetic algorithm at given laser energy and
intensity.

3.3. Demonstration with DCI experimental results

The above machine-learning design method, a combination
of machine-learning and hydrodynamic simulations, has
been demonstrated by the 2021 summer DCI experiments

https://doi.org/10.1017/hpl.2022.4 Published online by Cambridge University Press

https://doi.org/10.1017/hpl.2022.4


Machine-learning guided optimization of laser pulses 5

Figure 4. (a) Feature importance obtained by the random forest algorithm and (b) scatter diagram of the ion temperature and the areal density for the last
two rounds of optimization.

Figure 5. (a) Typical laser pulse power in a cone and (b) double-cone target used in the 2021 DCI summer experiments.

conducted at the SG-II upgrade facility. The typical laser
pulse and double-cone target are presented in Figure 5. The
laser pulse is implemented by overlapping four beams with a
total energy of 5 kJ on one side. It can be observed that the
machine-learning designed laser pulse can be well realized at
the SG-II upgrade facility, including the time intervals and
laser powers of the pulse. The double-cone target is made
of a CH shell, gold cone and target holder. The CH shell
has an inner radius of 450 µm and a thickness of 45 µm.
The gold cone has a thickness of 20 µm and an open angle
of 100◦.

Although the detailed experimental results are being inter-
preted and will be published in other papers, preliminary
analysis indicates that the main experimental results are in
good agreement with the machine-learning simulations, as
shown in Table 2. For example, the measured imploding
velocity before collision is about 210 km/s, the peak ion
temperature during the collision is about 200 eV and the
time cost is about 0.85 ns. These agreements imply that the
main part of the CH shells implodes spherically in the gold
cone, although there exist high-dimensional perturbations
caused by hydrodynamic instabilities and non-uniform laser
irradiance.

The experimental results for the 2020 winter DCI
campaign designed with the manual optimization method

Table 2. Comparison of the predicted and observed results in the
DCI experimental campaign.

Properties 2021 summer 2021 summer 2020 winter
simulations measurements measurements

Ti (eV) 230 200 ± 50 165 ± 50
Vimp (km/s) 223 210 ± 25 135 ± 25
tcost (ns) 0.60 0.85 ± 0.2 1.19 ± 0.2
ρ (g/cm2) 0.62 0.20 ± 0.1 0.13 ± 0.08

(Figure 2(a)) are also included in Table 2. It can be
observed that the experimental results are indeed improved
significantly with the machine-learning optimizations. The
physical mechanism may be the laser–plasma instability,
and hydrodynamic instabilities are better suppressed with
the machine-learning designed laser pulse. Further analysis
of the experimental results is under the way and will be
published elsewhere.

However, it should be noted that some differences exist
between the predictions and measurements. The biggest
difference is that the simulated areal density is smaller than
the measured areal density. One reason is that the simulated
result is time-resolved while the experimental result is time-
integrated. If the simulated areal density is averaged by the
‘moving average method’ with a time period of 200 ps,
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the simulated areal density will decrease to 0.56 g/cm2 and
become closer to the measurements. The other reason is
that the areal density is more sensitive to the perturbations
caused by the laser pulse shape, hydrodynamic instabilities
and implosion asymmetry. A better match between the simu-
lations and measurements may be achieved by optimizing the
laser pulse power towards a more robust pulse shape with a
higher CH shell adiabat or replacing the 1D hydrodynamics
simulations with 2D simulations in the future.

4. Conclusions

A machine-learning approach is proposed for the optimized
design of pulse shapes in laser drive fusion experiments
based on efficient hydrodynamic simulations guided by the
genetic algorithm and random forest algorithm. The opti-
mization period of laser pulse shapes for an experiment
campaign could be reduced from 2 weeks to 2 days with sig-
nificant higher areal density (an increase of 63%) and smaller
IFAR (a decrease of 30%) under similar laser conditions. The
efficiency and effectiveness of this method have been well
demonstrated with the 2021 summer campaign of the DCI
experiments conducted at the SG-II upgrade laser facility.

In the future, we will use this intelligent method to design
laser pulses and target structures for the upcoming DCI
experiments with larger drive laser energies. The hydrody-
namic instabilities and implosion asymmetry will also be
considered and optimized with an upgrade version of the
MULTI-2D program, so that a more predictive optimization
can be achieved.

Acknowledgments

This work was supported by the Strategic Priority
Research Program of Chinese Academy of Sciences (Nos.
XDA25051200 and XDA25050200) and Startup Fund for
Young Faculty at SJTU (No. 21X010500627).

References

1. N. Basov, P. Kriukov, S. Zakharov, Y. Senatsky, and S.
Tchekalin, IEEE J. Quantum Electron. 4, 864 (1968).

2. J. Nuckolls, L. Wood, A. Thiessen, and G. Zimmerman, Nature
239, 139 (1972).

3. J.-L. Miquel and E. Prene, Nuclear Fusion 59, 032005 (2018).
4. O. Hurricane, D. Callahan, D. Casey, P. Celliers, C. Cerjan, E.

Dewald, T. Dittrich, T. Doppner, D. Hinkel, and L. B. Hopkins,
Nature 506, 343 (2014).

5. A. Zylstra, A. Kritcher, O. Hurricane, D. Callahan, K. Baker,
T. Braun, D. Casey, D. Clark, K. Clark, and T. Doppner, Phys.
Rev. Lett. 126, 025001 (2021).

6. A. B. Zylstra, O. A. Hurricane, D. A. Callahan, A. L. Kritcher,
J. E. Ralph, H. F. Robey, J. S. Ross, C. V. Young, K. L.
Baker, D. T. Casey, T. Döppner, L. Divol, M. Hohenberger,
S. Le Pape, A. Pak, P. K. Patel, R. Tommasini, S. J. Ali,

P. A. Amendt, L. J. Atherton, B. Bachmann, D. Bailey, L. R.
Benedetti, L. Berzak Hopkins, R. Betti, S. D. Bhandarkar, J.
Biener, R. M. Bionta, N. W. Birge, E. J. Bond, D. K. Bradley,
T. Braun, T. M. Briggs, M. W. Bruhn, P. M. Celliers, B. Chang,
T. Chapman, H. Chen, C. Choate, A. R. Christopherson, D.
S. Clark, J. W. Crippen, E. L. Dewald, T. R. Dittrich, M. J.
Edwards, W. A. Farmer, J. E. Field, D. Fittinghoff, J. Frenje,
J. Gaffney, M. Gatu Johnson, S. H. Glenzer, G. P. Grim, S.
Haan, K. D. Hahn, G. N. Hall, B. A. Hammel, J. Harte, E.
Hartouni, J. E. Heebner, V. J. Hernandez, H. Herrmann, M. C.
Herrmann, D. E. Hinkel, D. D. Ho, J. P. Holder, W. W. Hsing,
H. Huang, K. D. Humbird, N. Izumi, L. C. Jarrott, J. Jeet, O.
Jones, G. D. Kerbel, S. M. Kerr, S. F. Khan, J. Kilkenny, Y.
Kim, H. Geppert Kleinrath, V. Geppert Kleinrath, C. Kong,
J. M. Koning, J. J. Kroll, M. K. G. Kruse, B. Kustowski, O.
L. Landen, S. Langer, D. Larson, N. C. Lemos, J. D. Lindl,
T. Ma, M. J. MacDonald, B. J. MacGowan, A. J. Mackinnon,
S. A. MacLaren, A. G. MacPhee, M. M. Marinak, D. A.
Mariscal, E. V. Marley, L. Masse, K. Meaney, N. B. Meezan,
P. A. Michel, M. Millot, J. L. Milovich, J. D. Moody, A. S.
Moore, J. W. Morton, T. Murphy, K. Newman, J.-M. G. Di
Nicola, A. Nikroo, R. Nora, M. V. Patel, L. J. Pelz, J. L.
Peterson, Y. Ping, B. B. Pollock, M. Ratledge, N. G. Rice, H.
Rinderknecht, M. Rosen, M. S. Rubery, J. D. Salmonson, J.
Sater, S. Schiaffino, D. J. Schlossberg, M. B. Schneider, C.
R. Schroeder, H. A. Scott, S. M. Sepke, K. Sequoia, M. W.
Sherlock, S. Shin, V. A. Smalyuk, B. K. Spears, P. T. Springer,
M. Stadermann, S. Stoupin, D. J. Strozzi, L. J. Suter, C. A.
Thomas, R. P. J. Town, E. R. Tubman, C. Trosseille, P. L.
Volegov, C. R. Weber, K. Widmann, C. Wild, C. H. Wilde,
B. M. Van Wonterghem, D. T. Woods, B. N. Woodworth, M.
Yamaguchi, S. T. Yang, and G. B. Zimmerman, Nature 601,
542 (2022).

7. S. Atzeni and J. Meyer-ter-Vehn, The Physics of Iner-
tial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot
Dense Matter (Oxford University Press, Oxford, 2004),
Vol. 125.

8. V. Goncharov, T. Sangster, T. Boehly, S. Hu, I. Igumenshchev,
F. Marshall, R. McCrory, D. Meyerhofer, P. Radha, and W.
Seka, Phys. Rev. Lett. 104, 165001 (2010).

9. R. Ramis, B. Canaud, M. Temporal, W. J. Garbett, and F.
Philippe, Matter Radiat. Extremes 4, 055402 (2019).

10. X. He, J. Li, Z. Fan, L. Wang, J. Liu, K. Lan, J. Wu, and W.
Ye, Phys. Plasmas 23, 082706 (2016).

11. K. Lan, J. Liu, Z. Li, X. Xie, W. Huo, Y. Chen, G. Ren,
C. Zheng, D. Yang, and S. Li, Matter Radiat. Extremes 1, 8
(2016).

12. X. He, High Energy Density Phys. 36, 100804 (2020).
13. M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks,

J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason,
Phys. Plasmas 1, 1626 (1994).

14. R. Kodama, P. Norreys, K. Mima, A. Dangor, R. Evans, H.
Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, and N.
Miyanaga, Nature 412, 798 (2001).

15. Z. Sheng, Y. Sentoku, K. Mima, J. Zhang, W. Yu, and J. Meyer-
ter-Vehn, Phys. Rev. Lett. 85, 5340 (2000).

16. W.-M. Wang, P. Gibbon, Z.-M. Sheng, and Y.-T. Li, Phys. Rev.
Lett. 114, 015001 (2015).

17. R. Betti, C. Zhou, K. Anderson, L. Perkins, W. Theobald, and
A. Solodov, Phys. Rev. Lett. 98, 155001 (2007).

18. R. Scott, K. Glize, L. Antonelli, M. Khan, W. Theobald, M.
Wei, R. Betti, C. Stoeckl, A. G. Seaton, and T. Arber, Phys.
Rev. Lett. 127, 065001 (2021).

19. M. Murakami, H. Nagatomo, T. Johzaki, T. Sakaiya, A.
Velikovich, M. Karasik, S. Gus’ Kov, and N. Zmitrenko,
Nuclear Fusion 54, 054007 (2014).

https://doi.org/10.1017/hpl.2022.4 Published online by Cambridge University Press

https://doi.org/10.1017/hpl.2022.4


Machine-learning guided optimization of laser pulses 7

20. J. Zhang, W. Wang, X. Yang, D. Wu, Y. Ma, J. Jiao, Z. Zhang,
F. Wu, X. Yuan, and Y. Li, Philos. Trans. R. Soc. A 378,
20200015 (2020).

21. P. Hatfield, S. Rose, and R. Scott, Phys. Plasmas 26, 062706
(2019).

22. P. W. Hatfield, J. A. Gaffney, G. J. Anderson, S. Ali, L.
Antonelli, S. B. du Pree, J. Citrin, M. Fajardo, P. Knapp, and
B. Kettle, Nature 593, 351 (2021).

23. V. Gopalaswamy, R. Betti, J. Knauer, N. Luciani, D. Patel,
K. Woo, A. Bose, I. Igumenshchev, E. Campbell, and K.
Anderson, Nature 565, 581 (2019).

24. K. D. Humbird, J. L. Peterson, B. Spears, and R. G. McClarren,
IEEE Trans. Plasma Sci. 48, 61 (2019).

25. J. L. Peterson, K. Humbird, J. E. Field, S. T. Brandon, S.
H. Langer, R. C. Nora, B. K. Spears, and P. Springer, Phys.
Plasmas 24, 032702 (2017).

26. S. Rose, P. Hatfield, and R. Scott, Philos. Trans. R. Soc. A 378,
20200014 (2020).

27. R. Ramis and J. Meyer-ter-Vehn, Comput. Phys. Commun. 203,
226 (2016).

28. F. Wu, R. Ramis, Z. Li, Y. Chu, J. Yang, Z. Wang, S.
Meng, Z. Huang, and J. Ning, Fusion Sci. Technol. 72, 726
(2017).

29. A. Kemp and J. Meyer-ter-Vehn, Nucl. Instrum. Methods Phys.
Res. Sect. A 415, 674 (1998).

30. K. Eidmann, Laser Particle Beams 12, 223 (1994).

https://doi.org/10.1017/hpl.2022.4 Published online by Cambridge University Press

https://doi.org/10.1017/hpl.2022.4

	1 Introduction
	2 Method
	3 Results
	3.1 One-dimensional optimization guided by the genetic algorithm
	3.2 Data analysis with the random forest algorithm
	3.3 Demonstration with DCI experimental results

	4 Conclusions

