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CONJUGACY CLASSES IN ALGEBRAIC MONOIDS II 

MOHAN S. PUTCHA 

ABSTRACT. Let M be a connected linear algebraic monoid with zero and a reductive 
unit group. We show that there exist reductive groups G\,..., Gt, each with an automor­
phism, such that the conjugacy classes of M are in a natural bijective correspondence 
with the twisted conjugacy classes of G,-, i = 1 , . . . , t. 

Introduction. The objects of study in this paper are connected linear algebraic 
monoids M with zero. This means by definition that the underlying set of M is an ir­
reducible affine variety and that the product map is a morphism (i.e. a polynomial map). 
We will assume further that the unit group G is a reductive group. In an earlier paper [6], 
the author found affine subsets M\,..., M*, reductive groups G\,..., Ĝ  with respective 
automorphisms a\,...,(Jk, and surjective morphisms Of.Mi —• G/ such that: (1) Every 
element of M is conjugate to an element of some M;, and (2) If a, b G M/, then a is 
conjugate to b in M if and only if there exists x G Gt such that x9((a) <Ji(x)~l = 0((b). 
However it can happen that an element in M, is conjugate to an element in Mj with / ^ j . 
We were not at that time able to handle this situation. Indeed the problem has baffled us 
since then. Finally we are able to give a complete solution. We show that in the above 
situation, every element of M; is conjugate to an element of M7, and every element of M7 

is conjugate to an element of Mt. We also find necessary and sufficient conditons within 
the Weyl group or the Renner monoid, for this to happen. As an application we show that 
if e = e2 G M and a, b G eMe, then a is conjugate to b in M if and only if a is conjugate 
to b in eMe. 

1. Preliminaries. Throughout this paper Z+ will denote the set of all positive inte­
gers. Let G be a connected linear algebraic group defined over an algebraically closed 
field. The radical R(G) is the maximal closed connected normal solvable subgroup of 
G and the unipotent radical RU(G) is the group of unipotent elements of R(G). We will 
assume that G is a reductive group, i.e. RU(G) = 1. Then R(G) Ç C(G), the center of G. 
Moreover G = R(G)G$ where Go = (G, G) is a semisimple group, i.e. R(Go) = 1. Also 
Go is a product of simple closed normal subgroups of G. We refer to [1], [2] for details. 
If a is an automorphism of G, then we say that a, b G G are a-conjugate ifb = xaa(x)~{ 

for some x G G. 
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Fix a pair of opposite Borel subgroups P, B~ of G so that T = B D B~ is a maximal 
torus. Let W = W(G) = NG(T)/ T denote the Weyl group of G. Let 5 denote the funda­
mental generating set of reflections of W. Then the following axioms of Tits are valid [2; 
Section 29.1]: 

(Tl) 6Ba Ç BaB U B0aB for all a G W, 0 G 5 

(T2) 0B0^B for al lf leS. 

For / Ç 5, P/ = #W/Z? and P^ = P~ W/P~ are a pair of standard opposite parabolic 
subgroups, where Wi is the subgroup of W generated by /. L/ = P/ n Py~ *s a reductive 
group, called a standard Levi subgroup of G. We have, W(P/) = W(Pj) = W(L7) = W/. 
Subgroups of G containing a Borel subgroup, i.e. a conjugate of B, are called parabolic 
subgroups. If P is a parabolic subgroup of G containing P, then there is a unique opposite 
parabolic subgroup P~ of G containing 7 such that L = P n P~ is a reductive group. 
Then L is a Levifactor of P and P = LRU(P),LDRU(P) = 1, where PM(P) is the unipotent 
radical of P. This is called a Levi decomposition of P. If Pi, P2 are Borel subgroups of 
G containing P, then G is expressible as the following disjoint union: 

G= [J PiaP2. 
crew 

This is called the Bruhat decomposition of G. 

LEMMA 1.1. Let P\, P2 &£ parabolic subgroups of G with Levi decompositions P\ = 
L\U\, P2 = L2U2 such that T Ç L\ Pi L2. Suppose a £ U\, b £ L\, a £ W such that 
ab G P2cr. P/i£ft a G P2. 

PROOF. Let a = nT. Then n G P2P\. There exist 0i,02 G W, IJ Ç 5, such that 
px = O^Prfi and P2 = fl^^y^. Then 

p2Pi = e2l(BwJBe20ilB)wIBei 

= e2lBWj020YlBWIB9u by (PI) 

= fl^^Wy^flr^/Bfli, by (PI). 

Since rc G P2Pi, we see by the Bruhat decomposition that 02Or01~
1 G Wj020\xWi. So 

G G 02 1W>02 ' 0 ^ / 0 1 = W(L2) • W(Li). 

Hence there exists m G Nc(T) H Li such that aZ?ra G P2. Since a G U\ and bra G Pi, we 
see by [6; Fact 1.3] that a,bm G P2. • 

LEMMA 1.2. Letl ÇS, L = L/. Letau...9at90\,...,9t G Wsuch that rfi=lail£i ^ 
0. ThenCt^OiWfii^tb. 

PROOF. Let P; = a^Pa ; H L, P- = 0/P0,"1 f l L , / = 1, . . . , f. All of these are Borel 
subgroups of L containing P. By the Bruhat decomposition for L, 

L = P/W/P; Ç a^BaiWrfiBOr1, / = ! , . . . , * . 
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Hence 

(JilAi Ç BdiWrfiB, i= l,...j. 

Thus 

0 ^ f| a/W/ Ç f| BoiWiQiB. 
i=\ i=\ 

By the Bruhat decomposition for G, f|-=1 <7/W/0/ 7̂  0. • 
Now for monoids. By a (linear) algebraic monoid, we mean a monoid M such that 

the underlying set is an affine variety and the product map is a morphism. The identity 
component of M will be denoted by Mc. We will use the same notation for an algebraic 
group. We will assume that M is connected (i.e. M — Mc) and that M has a zero. We 
will further assume that the unit group G is reductive. We call such a monoid a reductive 
monoid. Typically such monoids arise by taking lined Zariski closures of linear represen­
tations of reductive groups. We refer to [5] for the general theory of algebraic monoids. 
We will let %,, L, J7, Di denote the usual Green's relations on M. If a, b G M, then a%b 
if aM = bM, aLb if Ma = Mb,ajb if MaM = MbM, 0< = ^ H L.lfX C M, then 

E(X) = {e G X I e2 = e} 

will denote the set of idempotents in X. If e E E(M), then by the author [3], [4], 

Cc(e) = {g G G I ge = ege) 

Cl
G(e) = {gGG\eg = ege} 

are opposite parabolic subgroups of G with common Levi factor Cc(e). We will let 

Gr
e = Ru(CG(e)), &e = Ru(C

l
G(e)) 

denote the unipotent radicals of Cr
G(e) and Cl

G(e) respectively. Then 

&ee={e), eG'e = {e} 

CG{e) = CG(e) • Gr
e, C

l
G(e) = CG(e) • &e. 

Let 

Ge = {g£G\ge = e = eg}<CG{e), Ge = Gc
e. 

By [6; Fact 1.1], [5; Corollary 4.34] we have, 

CG(e) = Ge • CG(Ge) 

GeCGe- C(CG(e)), CG(Ge) = CG(Ge). 

By [6; Fact 1.3], we have, 
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LEMMA 1.3. Let e,f G E(T). Then 

Cr
G(e) H Cl

G(f) = [&f H CG(e)][CG(e,f)][Gr
e H CG(f)][Gr

e H G}]. 

For e G E(T), a = nT GW, let ea — n xen. This is clearly independent of the choice 
of n. Let 

W(e) = W(CG(e)) = Cw(e) = {a € W \ ea = e}. 

We also let 
We = {aeW\f =ffor a l l / G £(f) with/ < e} 

= {«r | n G NG(T) n Ge] * w(Ge). 

Here/ < e means <?/ = /e = / . Note that Te, rather than 7, is a maximal torus of Ge. By 
[6; Facts 1.1, 1.2, 1.3, Lemma 1.6], we have 

LEMMA 1.4. Leteu...,ete E(T), V = CGOi,. . . , *?,). 77i<?« 

V=CG(G, I , . . . ,G, /)-V, I---V e , 

CG(Tei,..., 7^) = CG(Gei,..., Gef) • T. 

For ^ i , . . . , et G E(T), we let 

W(eu. ..,et) = W(ei) O • • • H W(et) = W(CG(eu . • • ,<?,)). 

By the author [3], the semigroup way of viewing the Borel subgroup B is via the 
cross-section lattice: 

A = A(B) = {ee E(f) | B C CG(e)}. 

Then | A n 7| = 1 for each J7-class (= G x G orbit) J and for all e, f G A, / G MeM if 
and only if e > / . 

The monoid analogue of the Weyl group W(G) is the Renner monoid, 

Rm(M) = NrtTJ/T. 

Ren(M) is a finite fundamental inverse monoid with idempotent set E(T) and unit group 
W. By Renner [7], M is the disjoint union: 

M = [J BrB. 
r€Ren(M) 

For more recent advances in this direction, we refer to Renner [9], where in particular an 
exciting new ^-cross-section submonoid O is found. This new monoid is related to the 
minimum length right and left coset representatives of W/ in W. 
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2. Main section. Let M be a reductive monoid with unit group G. Call two elements 
a,b G M conjugate ifb = ax=x~xax for some x G G. We are interested in the conjugacy 
classes in M. Renner [8] has shown that the conjugacy class of an element is closed if and 
only if the element lies in the closure of a torus. In general the conjugacy classes in M (as 
opposed to the full matrix monoid) can be very complicated. For example in general the 
number of conjugacy classes of nilpotent elements in M is infinite. None the less, major 
progress was made by the author [6]. The story begins with the following affine subset 
ofMJoveeE(T),ae W: 

Me,a = eCG{eb | S G (G))G 

where (a) denotes the cyclic group generated by a. In general ea = er does not imply 
Me7a = Mej. See Example 2.2. Clearly 

M\a = 7T'lMe^iT = Me^ for all TT G W(e). 

Now V — CG{eb | S € (a)) is a reductive group with a closed normal subgroup 

v= n % 
6e(a) 

where as usual Vf = {x E V | xf — fx — / } . Then Ge,a — V/Vf is a reductive group 
and G induces an automorphism G of Ge,a. Clearly there is a natural surjective morphism 
£: Me,a —> Ge,a given by ^(exn) = xV for x G V, G = nT. Following is the main result 
of [6]. 

THEOREM 2.1. Every element of M is conjugate to an element of some Me^, e G A, 
G G W. If a, b G Me,a, then a is conjugate to b in M if and only if a is conjugate to b by 
an element ofV if and only if^(a) and £(£>) are d-conjugate in Ge^. 

If a G Me,a, b G Mffi, e,f G A, and if a is conjugate to b in M, then clearly e = 
f. However it need not be that G — 9. So the main question left open in [6] was the 
consideration of the situation when Me^ and Me$ have conjugate elements. Complicated 
by the fact that unequal M^ ' s can have non-empty intersection, the solution evaded us 
for five years. Finally we are able to give a complete solution. We begin by introducing 
a new closed subset Ne# oïMea (see Lemma 1.4): 

Ne,a = eCG(Té I S G (G))G 

= eCG(Gé I 6 G (G))TG 

= eCG{G^ | 6 G (G))G. 

Clearly 
7V^ = T T ^ T T = Ne^ for all TT G W(e). 

Let ix G WV Then TT — mT for some m <E GeH NG(T). Let a G Ne#. Then a = £g/t 
for some g G CG(G^ | S G (<r)), n G WG(T) with a = nT. Then for all / > 0, régrC1 G 
CG(Ge) and hence is centralized by m. Thus we see by induction on / that 

(mn)lg(mnyl = mnlgn~lm~x = nlgn~l G CG(Ge). 
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Hence g G CG(G^ | 8 G (TTCT)). SO 

egn = emgn = egrarc G Â TTO-

SoNeA Ç A ^ . Similarly A ^ Ç Net(T. Hence 

Â ,<x = Ne,na for all 7T G W*. 

Thus A^a depends only on the element ea in Ren(M). For this reason we write Nea for 

EXAMPLE 2.2. Let M denote the multiplicative monoid of all 5 x 5 matrices over an 
algebraically closed field. Let 

e — 

1 0 0 0 0 
0 1 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

0 0 1 0 0 
0 0 0 1 0 
1 0 0 0 0 
0 1 0 0 0 
0 0 0 0 1 

ro o i o o 
0 0 0 1 0 
0 1 0 0 0 
0 0 0 0 1 
1 0 0 0 0. 

Then Me,a consists of matrices of the form 

TO 0 a b 0] 
0 0 c d 0 
0 0 0 0 0 
0 0 0 0 0 

L0 0 0 0 0J 

ad T̂  be. 

On the other hand eo = ed and Me$ = Nea 

0 0 a 0 0 
0 0 0 b 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0J 

NPa consists of matrices of the form 

a ^ 0, b ^ 0. 

THEOREM 2.3. (i) Ifr.se Ren(M) with NrHNs^ 0, then Nr = Ak 
(ï/j If 6 G Wie6 | 8 G (a)), then Ne9a Ç Me,a and Ne9o = N^ for some IT G W(e* \ 

6 G (a)). 
(7//) A/ry element ofMe,a is conjugate to some element ofNea. 
(iv) Any element of M is conjugate to an element ofNeafor some e G A, a G W. 
(v) The map ̂ :Me^a —> Gea remains surjective when restricted to Nea. Hence the 

conjugacy classes in Nea are in a natural bijective correspondence with the d-
conjugacy classes ofGea. 

PROOF, (i) Let r = ea, e G E(f),a G W. Then e%s and hence s = e6 for some 
6 eW.LetaeNrn Ns. Then there exist g G C^G^ | 8 G (a)), h G CG{G^ \ 8 G (0)), 
m,n G NG(T), such that cr = «r, 0 — raJ and a = egn = ehm. Then a£n~len and 
aLm~lem. Hence n~{en = mTlem. So nw_1 G Cc(e). Thus grc = z/zra for some zE Ge. 
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Let x G CG{G^ \ 8 G (a)). Since n normalizes CG{G^ \ è G (a)), so does gn — zhm. 
Hence for all / > 0, (zhm)lx(zhmyl G CG(Ge). Since z G Ge and CG(Ge) = CG(Ge), we 
see by induction that for all / > 0, 

(hmyxihmy1 = (zhmyxizhmy1 G CG{Ge). 

Now 
(hm)1 = h(mhm~x)(m2hm ) • • • (ml~xhmx~l)ml 

and m!hnrj G CGCG,.) for ally > 0. It follows that rrfxmT1 G CG(Ge) for all / > 0. Hence 
x G CG{Gé I 6 G (0)). Thus CG(G^ | 6 G (a)) Ç CG(G^ | 6 G (0)). So 

exn — egn • (n-1g_1jcn) = ehm • (n-1g_1.xn) = eh • m(ri~x g~x xri)m~x.m 

màm(n^xg'xxn)nrx G CG(^ | 5 G (0)). Thus exrc G A^. So Nea Ç A^. Similarly 
N€0 Ç A^ and A^ = NeQ. 

(ii) By Lemma IA, 0 = pT, p = p0- -psq wi th# G V^ n NG(r), where V = 
CG(^ | 6 G (a)) and <? G Vg r\NG(T), where V0 = CG(G^ | S G (a)). Let Qt = PlT G 
W^ n W(e8 I 6 G (a)), 0' = #7. Then 0' commutes with each element of W^ for ally. 
By (i), Nea = NeB,a. Now 6{ • • • 0, G ttV | (5 G (a)), 

(0! • • • fl.rVo • • • 0*0'<7)(0i • • • 0.) - (01 • • • 0,)~1(^, • • • 0.S0V)(0! • • • 0,) 

= (0 i - - -0 , r l (0 i - - -0^0V0 1 . - -0 , 

= e0'a0i---0s 

= e6'r--6
f
s6

fa 

where 0J = a0;cr_1 G W^-i H W(e* | « G (a)), / = l , . . . , s . Inductively we see that 
ir(e6a)ir~x = eQ'o for some 7r G ttV I « G (a». Hence 

AU = A^,a = AC Ç Af£„ = Me,a 

(v) follows from Lemma 1.4 and then (iii), (iv) follow from Theorem 2.1. • 
Let a G M,,a, b G M^, eCT = / i , ̂  = / 2 . Then e%aLfu e%bLf2. 

LEMMA 2.4. L^ e,/i,/2 G £(7), a,b G M SWC/Î r t o e%^aLf\, e%bLf2. If a and b 
are conjugate in M, then there exists i\ G W(e) such that fI = f2. 

PROOF. There exists x G G such that xax~x = b. Then 

xex~x %xax~x = b%e. 

So x G CG0). Now 

Hence by [5; Chapter 6],/i and/2 are conjugate in CG(e). Hence there exists m G NG(T)n 
Cr

G(e) = NG(T) n CG0) such that nCxf\m = /2. So TT = m l G W(é?) and/f = / 2 . • 
In preparation for our main theorem, we prove the following technical lemma. 
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LEMMA 2.5. Let e,f G E(T). Define a relation = on G as: g\ = g2 if there exist 
x G CG(e,f), a G Gj Pi CG(e), b G Gr

eD Coif) such thataxgi = g2xb. Then 
(i) = is an equivalence relation on G. 
(ii) If a = nT e W, ea =f,ke Z+, x,y G CG{eaJ I j = 0, . . . ,k - 1), x G G' then 

xyn = yn. 
(Hi) Let 6 = mT G W, ee = f, u G CG(G^ | 5 G (0)), z G G*. TTIÉTI r/iere exists 

a — nT G W, v G CG(^ | 5 G (cr)), swc/i /^a/ zum = vn and 9 — TTQ • • • nta for some 
7T7 G W^ H W(^ | 0 <y < /), / = 0,. . . ,t. 

PROOF, (i) Suppose gug2 G G with gi = g2. Then there exist a G Gj H CG(é>), 

x G CG(e,f), b G G£ P CG(/*) such that orgi = g2-*̂ - Then 

( j c - 1 f l - , ^ - I g 2 = ^ " 1 ( J * " ^ " 1 ) 

with JT ^ J C GGJfl CG(e\x G CG(e9f),xb^x'1 eGr
eHCG(f). Thus = is symmetric. 

Clearly = is reflexive. Next let g\,g2,g3 £ G such that g\ = g2 = g3. Then there exist 
a,ceGl

fn CG(e\ x,y e CG(e,f), b,deGr
eH CG(f) such that 

axg\ = g2*b, cyg2 = g3yd. 

Then 
c(yay'l)(yx)g\ = g3(yx)(x~ldx)b 

withc(yay-{) GG}flCc(e), ^ € CG(e,/), (x'ldx)b e Gr
eD CGif). Thus gi = g3 and = 

is an equivalence relation on G. 

(ii) We prove by induction on k. If k = 1, then x G CG(<?) H Gj and the result is clear. 

So let k > 1. Then x G CG(e,f\ nxn~x G C G (^ | j = 0, . . . , £ - 2) H G',,.,. Hence 

v(wxw_1)y_1 G CG(e^ | j = 0, ...,& — 2) PI & ̂  . Thus by the induction hypothesis, 

xyn = ynx = y(nxn~l)y~l .yn = yn. 

(iii) Suppose inductively that 

yeH=i\[CG(e(> \j = 0,...,k)nGe9l]. 
i=0 

Then by [6; Facts 1.1,1.2,1.3], 77 is a reductive group and PP77 is a parabolic subgroup of 
77 for all parabolic subgroups P of G with TCP. Further, P0 = 7̂ , • • • T & is a maximal 
torus of 77. Now Pi = Cl

G(eeM) and P2 = Cr
G(6e6~x) are parabolic subgroups of G 

containing P. Hence Pi P77 and P2P\H are parabolic subgroups of 77 containing 7b. By the 
Bruhat decomposition for 77, there exists/? G NG(T)nH such that y G (PiP77)/?(P2P77). 
So there exist yi G Pi Pi 77, y2 G P2 n 77 such that v = y\py2. By [6; Fact 1.3], y2 = y3y4 

for some y3 G 77P CG(&>#~1), y4 G 7 7 P G ^ , . So by [6; Facts 1.1, 1.2, 1.3], 

m-[y3m G l[[CG(<? 17 = 0, . . . , *+ 1) n G^,] 
i=l 

m-^mGCGtOnGj. 
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Hence 
yum = yxpy^um 

= yiupy2m 

= y\upm(m~ y^m)(m~ y4m) 

= (m~ y^m)y\upm. 

Nowyi = y5y6 for somey5 G HDG1^ , y6 G / / n C G ( / + ' ) . Hence by [6; Facts 1.1, 1.2, 

1.3], ( m - 1 ^ ^ ! - J7J8, where 

j 7 = (m~ly3m)y5(rnTly3m)~l G Gy+, 

Jk+l 

ys = (m-ly3m)y6 G E [ [ C G ( ^ \j = 0 t+l)nG^]. 
i=0 

Let a = pm. We see by induction that for all / > 0, 

(pm)~lu(pm)1 — m~luml G Cc(Ge). 

Hence u G CdG^ \ 6 G (a)). We claim that e°3 = e& for y = 0, . . . , £ + 1. We prove 
this by induction. For j = 0, this is obvious. So assume e& — e°J ,j < k. Now TT — pT G 
CV(/)and<7 = 7r0. So 

e^1 = ( / ) * = (/)** = (*"')* = / + ' . 

Now by (ii), 
ywra = (m~{y3m)y\upm 

= yiiy%u)pm 

= y8w/?ra. 

NOW 7T = 7To ' ' ' 7f£, With 7T; G W ^ H W > , . . . , é* ), / = 0, . . . , k. 

Thus starting with y = z and k = 0, and proceeding inductively to fc = | W\, we find 
d ^ n r e W j G CG(e6 \8 e (a) such that w G CG(G^ | 6 G (a)), 0 = TT0 • • • 7rta with 
7f/ G W «,*• Pi W(e,..., e°l), / = 0 , . . . , t, and zum = yun. This completes the proof. • 

We are now ready to prove our main theorem. 

THEOREM 2.6. The following conditions are equivalent for e G A and <r, 6 G W: 
(7) There exists an element ofMe^a that is conjugate to an element ofMeQ. 

(ii) Every element of Me^ is conjugate to an element of Me# and every element of 
Mej is conjugate to an element ofMe,a. 

(Hi) There exists 7 G Wwith 6 = 7r0 • • • 7rtl and IT t G WennW(e9..., er), / = 0 , . . . , f, 
such that 

Ç\liW(e)a-i^^. 
i>0 

(iv) There exists 7 G W with eO conjugate to el in Ren(M), such that 

f]liW(e)a-i^9. 
i>0 
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(v) N*ea — NeQ for some TT G W(e). 

PROOF, (i) => (iii) Le t / = ea. By Lemma 2.4 there exists 77 G W » such that 
yry _ ^ ^ye c a n r e pi a c e Q ty T ^ - 1 . Then having found the appropriate 7ro,..., 717,7 
with respect to r]0rj~l, we can replace them by r/-17ror/,..., 77_171717, r\~llr), respectively. 
Thus without loss of generality, we can assume that e9 — f. 

There exists A\ G Me^a that is conjugate to some A2 G Mej. By Theorem 2.3, we can 
assume that A2 G /V^. So there exist u G C G ( / | 8 G (cr)), v G CG(G^ \ 8 G (0)) such 
that Ai = eun,À2 = evm, a — nT, 0 — mT. There exists X G G such thatXAiX-1 = A2. 
Since Ai,A2, G é?M/, X G CG(e) H Cl

G(f). By Lemma 1.3, 

cr
G(e) n cG(f) = [cG(<o n G}][cGfo/)][cG(o n <^][G^ n G}]. 

Since Ai, A2 G eM/\ we can assume without loss of generality that 

Jf X G [CG(e) H G£][CGfe/)][CG(0 H <%]. 

So there exist a G CG(e) HÔLx e CG(e,f), b G CG(f) n G£ such that X = orb. From 

X4i = A2X, we get 
eaxwft = evmxb. 

Since ea — ee, nnT1 G CG(e). Hence 

(axun)(vmxb)~l = axu(nb~lx~ln~l)nm~lv G CG(e). 

Hence 

(1) axw« = zvmxb 

for some z G Ge. Since Ge Ç c(CG{e)) • Ge, we can assume without loss of generality 
(by changing u appropriately), that z G Ge. In the notation of Lemma 2.5, un = zvm. 
By Lemma 2.5 (iii), we can change 0, m, v appropriately, so that un = vm with v G 
Cde6 I 8 G (0)). Let us therefore assume that 

(2) axun — vmxb. 

Note that now A2 G M ^ and not /V^. By (2), 

ax = vmxbn~lu~ 

= vmxbm~l(mn~ u~lnm~l)mn~l G Cr
G(6e6~l)9cr~l. 

Since a e Gl
f and x G CG(/°), we see by Lemma 1.1 that a,xnm~l G Cr

G(6e9~l). By [6; 
Fact 1.3], we can factor 

(3) a = c\a\ for some ci G G^-i and 

ax e CG(e,0e6-1)OUI. 
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Similarly we can factor 

(4) JC = y\X\ for some y\ G Gr
ee9^, x\ G CG{8eQ~x)mrCx = OCcie)^. 

Since y\(x\nm~x) = xnm~l G Cc{e,f)(jQ~x, we see by Lemma 1.1 that y\ G Cc{e,f). 

Hence 

(5) X! G CG(*,/) . 

By (2) 

c\a\y\X\un = vmy\X\b. 

Hence 

(6) wa\X\un = vmy\X\ 

where by (3), (4), 

w = vmy\X\n~x u~x x\x a\x 

= C\d\y\x\unb~xn~xuTxx\x a\x 

— c\ - a\ • y\ - (x\nm~x)[m(n~xun)b~x(n~xun)~xm~x](x\nm~x)~x • a\x G Gr
BeQ-\. 

Suppose inductively that for k G Z+, 

(7) x = y\'--yk*k 

where 

(8) tt É G ^ , - , « = 1 A: 

xk e H S>CG(e)a-j. 

Further assume that there exist 

(9) w, G CG(ffeO~j \i+\<j <k)H G^g-i, i = 1 A: 

a* G CG(ffe0-j | 7 = 0 , . . . ,*) 0 Gl
f 

such that 

(10) Wjfe • • • \v\ajcXicUn = vmy^x^. 

By (3)-(6) we see that (7)-(10) are valid for k = 1, since 

CGif) = 0~xCG(e)0 = Q-xCG(e)crÔ-x • 0 = r 1 ^ ) ^ 

Since x^ G &CG(e)(j~j for —1 <j< k, we see that 

(11) xkrim-j G CG(ffe0-j)9 -l<j<k. 
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Hence 

wk- • • w\akxk = vmykxkn~xu~x 

- v • m(ykxkn
km~k)m~x • mk+x(n~k~xu~xnk+x)m~k~x 

-mk+ln-k~l G C ^ ^ 1 ^ - * - 1 ) ^ 1 ^ * - 1 . 

By (9), (11) and the repeated use of Lemma 1.1, we see that 

(12) wi,...,wk,ak,xkrf'+lm-k-1 G Cr
G(6k+le6~k~1). 

Hence we can factor by [6; Fact 1.3], 

(13) xk= yk+\xk+] with^+i G Gk+i^-i and 

xk+i G CG(&+leO-k-l)nt+ln-k-1 = fl^C^é?)*-*""1. 

By (11), (13) and Lemma 1.1, 

yk+ïeCG(ffeO-J), -l<j<k. 

Hence by (11), (13), 

(14) ^ + 1 = yk}xxk G CG(ffe0'j)ffa-j = ffCG(e)cj-j, -l<j<k. 

By (13), (14), 

£+1 

(15) xk+l G f| ffCG(e)a-J. 

By (9), (12) and [6; Fact 1.3], we can factor 

(16) ak~ ck+iak+i, ck+i G Gr
ek+XeQ-k~\, 

ak+l G CG{&e6~j \0<j<k)DGl
f 

and for / = 1, . . . , &, 

(17) wt = qtw'n qi G Gr
gk+le0-k-l, 

wj G CG{ffe6~j | / + 1 < j < k + 1) H G^_f-. 

Now 

(18) /? = vmykm~xv~l G &Qk+XeQ+\ 

and by (10), (13), (16), (17), 

(?*w*) • ' • ( ^ I H ^ X Q + I ^ + O ^ + I ^ + I ^ = wry*** 

= pvmxk 

= pvmyk+{xk+l. 
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Since qu... ,qk,ck+uyk+x,p G G>+ier*-i and since ak+x,w[,... ,w'k G CG(6k+] eO k x) 
we see that 

wk+\wk * ' * w[ak+lxk+lun = vmjik+î +i 

for some w'k+l G G^+,er*-i. This completes the induction step. In particular (15) is valid 
for k — | W\. Hence by Lemma 1.2, 

f| ffW(é)cr-j = f| ffW(e)<y-j ^ 0. 

(iii) => (iv) We show that e8 is conjugate to e7 in Ren(M). We do this by induction on 
t. If t — 0, then eO = el. So let t > 0. Then e# = eit\ • • • 7rf7 = 7ri • • • 7rf<?7 is conjugate 
in Ren(M) to eln\ • • • 7rr = ^ • • • 7^7, where 

TTJ = 77T/7"1 G W^-i H W(e,..., e1^ ), i = 1, . . . , t. 

By the induction hypothesis, ed is conjugate to eo in Ren(M). 
(iv)=> (v) If e# and el are conjugate in Ren(M), then they are conjugate by an element 

of W(e). Thus without loss of generality we can assume that 1 = 9. Let 

7T G f| ^ W a " j . 
/>o 

Then Tra'A"'" G W^'efl-1') for all / > 0. Now 

7r(ecr)it~l = encnT~l = e(ir(m~l6~x)6. 

Clearly 7rNea7r~l = Nenan-\. Now for all / G Z+, 

TrcnT^"1 = ( T r a ' r W - V ~ V 1 )*? ' 1 G WiffeO'1) • 0W(0I""lgfl1",')fl"1 

It follows that TraTT"1^1 G W(e* | 5 G (0)). By Theorem 2.3(ii), Afe7R77r_i is conjugate 
to Nee by an element of W(eP \ S G (6)). It follows that N€Q is conjugate to Nea by an 
element of W(e). 

(v) => (ii) follows from Theorem 2.3, and (ii) => (i) is obvious. • 
By Theorems 2.3 and 2.6, we have, 

COROLLARY 2.7. There exist reductive groups G\,..., Gt with respective automor­
phisms <7i,..., ah such that the conjugacy classes of M are in a natural bijective corre­
spondence with the Oi-conjugacy classes ofGi, i— 1 , . . . , t. 

COROLLARY 2.8. Let a = nT, 0 = mT G W, e G E{f) such that en and em are 
conjugate in M. Then there exists TT = pT G W such that en and ep are conjugate by an 
element in Co(é \ b G (a)), and ed and en are conjugate in Ren(M ). 

The following answers affirmatively [6; Conjecture 2.7]. 
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COROLLARY 2.9. Let e E E(M), a,b G eMe. Then a and b are conjugate in eMe if 
and only if a and b are conjugate in M. 

PROOF. We can assume that e E A. Now eCG(e) is the unit group of eMe. Thus if a 
and b are conjugate in eMe, then they are conjugate in M by an element in CG(e). Assume 
conversely that a and b are conjugate in M. We need to show that they are conjugate by 
an element in CG(e). By Theorem 2.1 applied to eMe, we can assume that a G Mh,a> 
b £ Mh$ for some h G eA and <r, 6 £ W(e). By Lemma 2.4, hG and he are conjugate in 
CG{h). By [5; Chapter 6], ha and h° are conjugate in eCG(h)e. It follows that h° and /ẑ  
are conjugate by an element in W(e, h). Thus without loss of generality we can assume 
that h° = he — b!. By Theorem 2.6, a and b are conjugate by an element in CG(h,hf). 
Now hCG(h) = hCG(e, h) and tiCG(ti) = h'CG(e, h'). Hence 

CG(h) = Gh • CGO, h) = Gh- CG0, G )̂ 

C G ( ^ ) - GA/ • CG{e,ti) = GA/ • CG(e,GA/). 

By [6; Facts 1.1, 1.2], 
CG(Kti)QCG{e)[GhnGh,l 

Since «, /? G /iM/i', it follows that a and 6 are conjugate by an element in CG(e). m 

REFERENCES 

1. R. W. Carter, Finite groups of Lie type: Conjugacy classes and complex characters, Wiley, 1985. 
2. J. E. Humphreys, Linear algebraic groups, Springer-Verlag, 1981. 
3. M. S. Putcha, A semigroup approach to linear algebraic groups, J. Algebra 80(1983), 164-185. 
4. , Determinant junctions on algebraic monoids, Comm. Algebra 11(1983), 695-710. 
5 , Linear algebraic monoids, London Math. Soc. Lecture Note Series 133, Cambridge Univ. Press, 

1988. 
6 , Conjugacy classes in algebraic monoids, Trans. Amer. Math. Soc. 303(1987), 529-540. 
7. L. E. Renner, Analogue of the Bruhat decomposition for algebraic monoids, J. Algebra 101(1986), 303-

338. 
8. , Conjugacy classes of semisimple elements, and irreducible representations of algebraic monoids, 

Comm. Algebra 116(1988), 1933-1943. 
9. , Analogue of the Bruhat decomposition for algebraic monoids II. The length function and the 

trichotomy, to appear. 

Department of Mathematics 
North Carolina State University 
Raleigh, North Carolina 27695-8205 
U.S.A. 

https://doi.org/10.4153/CJM-1994-035-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-035-6

