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CONJUGACY CLASSES IN ALGEBRAIC MONOIDS 11

MOHAN S. PUTCHA

ABSTRACT.  Let M be a connected linear algebraic monoid with zero and a reductive

unit group. We show that there exist reductive groups G, . . . , Gy, each with an automor-
phism, such that the conjugacy classes of M are in a natural bijective correspondence
with the twisted conjugacy classes of G;, i = 1,...,t.

Introduction. The objects of study in this paper are connected linear algebraic
monoids M with zero. This means by definition that the underlying set of M is an ir-
reducible affine variety and that the product map is a morphism (i.e. a polynomial map).
We will assume further that the unit group G is a reductive group. In an earlier paper [6],
the author found affine subsets M|, ..., M, reductive groups Gy, ..., G, with respective
automorphisms oy, ..., oy, and surjective morphisms 8;: M; — G; such that: (1) Every
element of M is conjugate to an element of some M;, and (2) If a,b € M,, then a is
conjugate to b in M if and only if there exists x € G; such that xf;(a) o;(x)~" = 6;(b).
However it can happen that an element in M; is conjugate to an element in M; with i # j.
We were not at that time able to handle this situation. Indeed the problem has baffled us
since then. Finally we are able to give a complete solution. We show that in the above
situation, every element of M, is conjugate to an element of M;, and every element of M;
is conjugate to an element of M;. We also find necessary and sufficient conditons within
the Weyl group or the Renner monoid, for this to happen. As an application we show that
ife = > € M and a,b € eMe, then a is conjugate to b in M if and only if a is conjugate
to b in eMe.

1. Preliminaries. Throughout this paper Z* will denote the set of all positive inte-
gers. Let G be a connected linear algebraic group defined over an algebraically closed
field. The radical R(G) is the maximal closed connected normal solvable subgroup of
G and the unipotent radical R,(G) is the group of unipotent elements of R(G). We will
assume that G is a reductive group, i.e. R,(G) = 1. Then R(G) C C(G), the center of G.
Moreover G = R(G)Gy where Gy = (G, G) is a semisimple group, i.e. R(Gp) = 1. Also
Gy is a product of simple closed normal subgroups of G. We refer to [1], [2] for details.
If o is an automorphism of G, then we say that a, b € G are o-conjugate if b = xao(x)™"
for some x € G.
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Fix a pair of opposite Borel subgroups B, B~ of G so that T = B B~ is a maximal
torus. Let W = W(G) = Ng(T) / T denote the Weyl group of G. Let S denote the funda-
mental generating set of reflections of W. Then the following axioms of Tits are valid [2;
Section 29.1]:

(TDH 0Bo C BoBUBOoB foralloe W, 0 €S

(T2) 6B # B forallf € S.

Forl C §, Py = BW;B and P, = B~ W,;B™ are a pair of standard opposite parabolic
subgroups, where W; is the subgroup of W generated by /. L; = P; M P} is areductive
group, called a standard Levi subgroup of G. We have, W(P;) = W(P;) = W(L;) = W}.
Subgroups of G containing a Borel subgroup, i.e. a conjugate of B, are called parabolic
subgroups. If P is a parabolic subgroup of G containing 7, then there is a unique opposite
parabolic subgroup P~ of G containing T such that L = P M P~ is a reductive group.
Then Lis a Levi factor of P and P = LR,(P), LNR,(P) = 1, where R,(P) is the unipotent
radical of P. This is called a Levi decomposition of P. If B|, B, are Borel subgroups of
G containing T, then G is expressible as the following disjoint union:

G = I__| BIO'Bz.
oeW

This is called the Bruhat decomposition of G.

LEMMA 1.1.  Let Py, P, be parabolic subgroups of G with Levi decompositions Py =
LUy, Py = LyU; such that T C Ly N Ly. Suppose a € Uy, b € Ly, 0 € W such that
ab € Pyo. Thena € P,.

PROOF. Let o = nT. Then n € P,P,. There exist 8;,6, € W, I,J C S, such that
P, = 0?1P101 and P, = 02—11’)]92. Then

P,P; = 6, '(BW;B6,0, ' B)W,Bb,
= 92_'BW1929f'BW1B01, by (T'1)
=0, BW,0,0,'W;B6,, by (T1).

Since n € P,Py, we see by the Bruhat decomposition that 9,00, ! € W,6,0,'W,. So
o€ 92_'W102 . 9('W191 = W(Ly) - W(L)).

Hence there exists m € Ng(T) M L, such that abm € P;. Since a € U; and bm € Ly, we
see by [6; Fact 1.3] that a,bm € P;. n

LEMMA 1.2. LetI1 C S, L=L;. Letoy,...,0.,01,...,0, € Wsuch that "._,0;L0; #
0. Then N'_,0:W0; # 0.

PROOF. Let B; = a[‘Bo—i NL, B = 0,-39;1 NL,i=1,...,t All of these are Borel
subgroups of L containing 7. By the Bruhat decomposition for L,

L= B,WB, C o;'Bo;W,0,B07", i=1,....t.
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Hence
o;L0; C BoW9;B, i=1,...,t.
Thus
t t
0 # () o:l6; C () Bo;Wi:B.
i=1 i=1
By the Bruhat decomposition for G, N!_, o:W8; # 0. L]

Now for monoids. By a (linear) algebraic monoid, we mean a monoid M such that
the underlying set is an affine variety and the product map is a morphism. The identity
component of M will be denoted by M°. We will use the same notation for an algebraic
group. We will assume that M is connected (i.e. M = M) and that M has a zero. We
will further assume that the unit group G is reductive. We call such a monoid a reductive
monoid. Typically such monoids arise by taking lined Zariski closures of linear represen-
tations of reductive groups. We refer to [5] for the general theory of algebraic monoids.
We willlet R, L, 9, H denote the usual Green’s relations on M. If a,b € M, then aR b
if aM = bM, aLb if Ma = Mb,aJb if MaM = MbM, H = R N L.1f X C M, then

EX)={ecX|e =e}
will denote the set of idempotents in X. If e € E(M), then by the author [3], [4],

c(e) = {g € G| ge = ege}
Cile) = {g € G| eg = ege}

are opposite parabolic subgroups of G with common Levi factor Cg(e). We will let
G, = R,(C(), G.=R,(Che)
denote the unipotent radicals of Cy;(e) and C’G(e) respectively. Then

Gle={e}, eG. = {e}
7(e) = Cgle) - G, CL(e) = Csle) - GL.

Let
G.={g€G|ge=e=eg}<aCsle), G,=GE.

By [6; Fact 1.1], [5; Corollary 4.34] we have,

Cs(e) = G, - C(G)
G. C G, C(Cs(e), Co(Ge) = C(G).

By [6; Fact 1.3], we have,
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LEMMA 1.3. Lete,f € E(T). Then

5(e) N C(f) = [G; N Ce(@)][Cole. NG, N CoONG, N GL.

For e € E(T), 0 = nT € W, let ¢ = n"len. This is clearly independent of the choice
of n. Let
W(e) = W(Cole)) = Cwle) = {o € W|e” =e}.

We also let _
W.={oeW]|f’=fforallf € E(T) withf < e}

= {nT | n € No(T)N G} = W(G,).

Here f < e means ef = fe = f. Note that T, rather than 7, is a maximal torus of G,. By
[6; Facts 1.1, 1.2, 1.3, Lemma 1.6], we have

LEMMA 1.4. Letey,...,e; € E(T), V= Cgley,...,e). Then
V=C(Geyy....Ge) Ve, - Ve,
CG(Te,: ceey Te,) = CG(GeI, “e ,Ge,) -T.

Forey,...,e; € E(T), we let

W(ey,...,e)) = Wiep)N---NWe) = W(C(;(el, ... ,e,)).

By the author [3], the semigroup way of viewing the Borel subgroup B is via the
cross-section lattice:

A =AB) = {e € ET) | BC Chle)}.

Then |[ANJ| = 1 for each J-class (= G X G orbit) J and for all e, f € A, f € MeM if
and only ife > f.
The monoid analogue of the Weyl group W(G) is the Renner monoid,

Ren(M) = Ng(T)/T.

Ren(M) is a finite fundamental inverse monoid with idempotent set E(T) and unit group
W. By Renner [7], M is the disjoint union:

M= || BrB.
reéRen(M)

For more recent advances in this direction, we refer to Renner [9], where in particular an
exciting new # -cross-section submonoid O is found. This new monoid is related to the
minimum length right and left coset representatives of W, in W.
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2. Mainsection. Let M be areductive monoid with unit group G. Call two elements
a,b € M conjugateif b = a* = x 'ax for some x € G. We are interested in the conjugacy
classes in M. Renner [8] has shown that the conjugacy class of an element is closed if and
only if the element lies in the closure of a torus. In general the conjugacy classes in M (as
opposed to the full matrix monoid) can be very complicated. For example in general the
number of conjugacy classes of nilpotent elements in M is infinite. None the less, major
progress was made by the author [6]. The story begins with the following affine subset
of M, fore € E(T),0c € W:

M., = eCs(e® | 6 € (o))

where (o) denotes the cyclic group generated by o. In general ec = er does not imply
M., = M, ;. See Example 2.2. Clearly

M, =7 'Mom =M, forallme We).

Now V = Cg(e® | § € (a)) is a reductive group with a closed normal subgroup

V=11 Ve
b€(o)
where as usual V; = {x € V| xf = fx = f}. Then G,, = V/V' is a reductive group
and o induces an automorphism & of G, ,. Clearly there is a natural surjective morphism
&M,., — G, given by E(exn) = xV’ for x € V,o = nT. Following is the main result
of [6].

THEOREM 2.1.  Every element of M is conjugate to an element of some M, 5, e € A,
oceW. Ifa,b € M,,, then a is conjugate to b in M if and only if a is conjugate to b by
an element of V if and only if £(a) and £(b) are G-conjugate in G, ;.

Ifa € Moo, b € Myp, e,f € A, and if a is conjugate to b in M, then clearly e =
f. However it need not be that ¢ = 6. So the main question left open in [6] was the
consideration of the situation when M, , and M, y have conjugate elements. Complicated
by the fact that unequal M, ,’s can have non-empty intersection, the solution evaded us
for five years. Finally we are able to give a complete solution. We begin by introducing
a new closed subset N, , of M, , (see Lemma 1.4):

Neo = eCi(Ty | 6 € (o)
=eCs(Gy | § € (0)To
=eCg(Gy | 6 € (o).
Clearly
Ni, =7 '"Negm = Neor forall m € W(e).
Let m € W,. Then m = mT for some m € G, N Ng(T). Let a € N,,. Then a = egn

for some g € C(Gp | 6 € {0)), n € N(T) with ¢ = nT. Then for all i > 0, nign~"' €
C(G,) and hence is centralized by m. Thus we see by induction on i that

1

(mn)ig(mn)"i = mn"gn*"m’ = n"gn*" € Cg(Go).
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Hence g € Cg(G, | 6 € (n0)). So

egn = emgn = egmn € N, 1.
So N,y € N, 0. Similarly N, ., C N, ,. Hence

Neo = Neyoy forall me W,.

Thus N, , depends only on the element eo in Ren(M). For this reason we write N, for
N,

EXAMPLE 2.2. Let M denote the multiplicative monoid of all 5 X 5 matrices over an
algebraically closed field. Let

1 0 0 0O 001 00 001 0 O
01 0 0 O 00 01 0 0 0 01 O
e=/0 0 0 0 0|, o=1]1 0 O O Of, =101 0 O O
00 0 0 O 01 0 0O 0 0 0 0 1
00 0 0O 00 0 0 1 1 0 0 0 O
Then M, , consists of matrices of the form
0 0 a b O
0 0 ¢ d O
0 00 0 O, addbc.
0 0 0 0 O
00 0 0 O
On the other hand eo = ef) and M,y = N,, = N,y consists of matrices of the form
0 0 a 0O
0 0 0 b O
00 00 0|, a#0,b#£0.
0O 0 0 0 O
0 0 0 0O

THEOREM 2.3. (i) If r,s € Ren(M) with N, \N; # (, then N, = Nj.

(ii) If§ € W(& | § € (0)), then Ny, C M., and Ny, = N”. for some = € W(é |
5 € (o).

(iii) Any element of M, is conjugate to some element of Ne,.

(iv) Any element of M is conjugate to an element of N, for some e € A, 0 € W.

(v) The map & M., — G, remains surjective when restricted to Ne,. Hence the
conjugacy classes in N, are in a natural bijective correspondence with the G-
conjugacy classes of G, ;.

PROOF. (i) Letr = eo, e € E(T),0 € W. Then eRs and hence s = ef for some
6 € W.Leta € N,NN,. Then there exist g € Co(Gp | 6 € (0)), h € Co(Gp | 6 € (0)),
m,n € Ng(T), such that 0 = nT, § = mT and a = egn = ehm. Then aLn 'en and
aLm 'em. Hence n'en = m'em. So nm~" € Cg(e). Thus gn = zhm for some z € G..
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Let x € Co(Gy | 6 € (o). Since n normalizes Cq(G, | 6 € (o)), so does gn = zhm.
Hence for all i > 0, (zhm)'x(zhm) ™" € C4(G,). Since z € G, and C5(G,) = C;(G.), we
see by induction that for all i > 0,

(hm) x(hm)™" = (zhm)'x(zhm) " € Cg(G.).

Now
(hm) = h(mhm™“Ym*hm™2) - - - (m" " hm' ~m’

and mhm~ € Cg(G,) for allj > 0. It follows that m'xm ™" € Cg(G.) for all i > 0. Hence
X € Co(Gy | 6 € (8)). Thus Co(Gp | 6 € (0)) C Co(Gy | 6 € (8)). So

| 1

exn = egn - (rf‘g' xn) = ehm - (n‘lg_lxn) =eh - m(n_lg' xnym ™ m

and m(n~'g~\xmym™' € Cg(e® | 6 € (). Thus exn € N,g. S0 Noy C Nep. Similarly
Ney € Ny and Neg = Nog.

(i) By Lemma 1.4, 8 = pT, p = po---psq withp; € Vi N NG(T), where V =
Cs(é" | 6 € (o)) and g € VSN NG(T), where Vo = Co(G | 6 € (). Let §; = p;T €
W NW( | § € (a)), 0 = qT. Then §’' commutes with each element of W ; for all j.

4

By (i), Ney = Nogo. Now 8 -+ -0, € W(&® | § € (o)),
(O1--05)" ey -+ 0,8'0) (01 -+ 05) = (01 - - 0) (el - - - 0,6'0)(8: - - - 0)
= (010,70, - - 0,)eb00; - - -0,
=ef'ob, -0
=el---0.0c
where 8] = obio™! € W NW(e’ | 6 € (0)),i = L,...,s. Inductively we see that
m(efo)ym! = e o for some T € W(e* | § € (0)). Hence
Nego = N:{}’o = Nzg - Mg,g = Me,cr
(v) follows from Lemma 1.4 and then (iii), (iv) follow from Theorem 2.1. u
Leta € My, b € Moy, ¢° = f1, ¢’ = f. Then eR aLfi, eRbLf>.

LEMMA 2.4. Lete,fi.f» € E(T), a,b € M such that eR aLf,, eRbLf. If a and b
are conjugate in M, then there exists m € W(e) such that f|" = f.

PROOE. There exists x € G such that xax~! = b. Then
xex 'Rxax"' = bRe.

So x € C(e). Now
xflx"[,xax'l =bLf,.

Hence by [5; Chapter 6], fi and f; are conjugate in Cf;(e). Hence there exists m € Ng(T)N
Ci(e) = Ng(T) M Cg(e) such that m~'fim = f5. So ™ = mT € W(e) and f|" = f>. =
In preparation for our main theorem, we prove the following technical lemma.
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LEMMA 2.5. Let e,f € E(T). Define a relation = on G as: g, = g if there exist
x € Cgle,f), a € Gj’c NCgle), b € G; N Cq(f) such that axg, = gyxb. Then

(i) = is an equivalence relation on G.

(i)lfo=nTeW, e =f kel xy€Cqe |j=0,....,k—1), x€ G, then
Xyn = yn. ‘

(iii)Let 0 = mT € W, ¢ = f,u € Co(Gy | & € (6)), z € G,. Then there exists
o=nT € W,v e Cse | § € (o)), such that zum = vn and 0 = o - - - 7,0 for some
mEW, MW [0<j<i),i=0,...,z

PROOF. (i) Suppose g1,g2 € G with g; = g,. Then there exist a € G} N Cg(e),
x € Cole,f), b € G, N Cs(f) such that axg, = goxb. Then

(xilaflx)x*‘gz = glx“'(xb‘lel)

withx g7 lx € G} N Cgle), x € Cgle,f), xb~'x~! € G N Cs(f). Thus = is symmetric.
Clearly = is reflexive. Next let g, g2, 23 € G such that g, = g, = g3. Then there exist
a,c € G} N Cgle), x,y € Cgle,f), b,d € G; M Ce(f) such that

axgy = gxb, cyg» = giyd.

Then
cyay (g1 = g3 dx)b

with c(yay™") € G; N Cg(e), yx € Cole,f), (x 'dx)b € G, N Co(f). Thus g1 = g3 and =
is an equivalence relation on G.
(ii) We prove by inductionon k. If k = 1, then x € Cg(e) N Gf’- and the result is clear.

Solet k > 1. Then x € Cgle,f), nxn™' € Cg(e” | j =0,....k — 2)mc”;lenk,,. Hence
ynxn~ Nyt € Cg(e”j [j=0,....k—2)N quk,, . Thus by the induction hypothesis,

xyn = ynx = y(nxn~ )y~ yn = yn.

(iii) Suppose inductively that

k
yEH= H}[CG(J |j=0,....,00NG 4l

Then by [6; Facts 1.1, 1.2, 1.3], H is areductive group and PNH is a parabolic subgroup of
H for all parabolic subgroups P of G with T C P. Further, T, = T, - - - T 4 is a maximal
torus of H. Now P; = CL(¢*") and P, = Cr(0ed™") are parabolic subgroups of G
containing 7. Hence PMH and P,MH are parabolic subgroups of H containing 7y. By the
Bruhat decomposition for H, there exists p € Ng(T)H such thaty € (PyNH)p(P,NH).
So there exist y, € Py M H, y, € P, N H such that y = y,py,. By [6; Fact 1.3], 2 = y3y4
for some y3 € HN Cg(0ef™ 1), y4 € HN Ggeg,,.. So by [6; Facts 1.1, 1.2, 1.3],

k+1 .

m~'ysm € [[[Co(e” |j=0,....,k+ DN G 4]
i=1

=

m~'yym € Co(f)N G,

https://doi.org/10.4153/CJM-1994-035-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1994-035-6

656 MOHAN S. PUTCHA

Hence
yum = y\pyum
= yiupym
= yiupm(m ™" ysm)(m™"' ysm)
= (m~'ysm)yupm.

Now y; = ysye for some ys € HﬂG’gw,,yﬁ € HNCg(e”™). Hence by [6; Facts 1.1, 1.2,
1.3], (m'1y3m)y1 = y7y8, Where

yr = (m~ ysmys(m™ysm)™ € Gl

k+1 .
yg = (m~'ysm)ys € H[C(;(ea j=0,....k+ DNG ]

=

Let 0 = pm. We see by induction that for all i > 0,
(pm)‘iu(pm)i =m um' € Cs(Ge).

Hence u € Ci(Gy | 6 € (0)). We claim that ¢ = ¢ forj = 0,....k+1. We prove
this by induction. For j = 0, this is obvious. So assume e’ = e”,j <k Nowm=pTc
Cw(e”)and 0 = 76. So

elf’” :(ew)a:(89,)7{6:(891)9:@9”,.
Now by (ii),
yum = (m”'y3sm)y upm
= y7(ysu)pm

= ygupm.

Now 7 = 7y - - - my, with m; € Wea" ﬂW(e,...,e"k),i: 0,....,k.

Thus starting with y = z and k = 0, and proceeding inductively to k = |W|, we find
oc=nT €W,y € Cs(e |6 (o)suchthatu € Co(Gy | 6 € (0)),0 = 7o - - -0 with
m € Weoi NWee,... ,e”i), i=0,...,t, and zum = yun. This completes the proof. ]

We are now ready to prove our main theorem.

THEOREM 2.6. The following conditions are equivalent fore € A and 5,0 € W:
(i) There exists an element of M, , that is conjugate to an element of M., 5.
(ii) Every element of M, is conjugate to an element of M,y and every element of
M.,y is conjugate to an element of M, ;.
(iii) There existsY € Wwithf = mp---m,Y andm; € WaiNWle, . .. ,e“’i), i=0,...,¢
such that

N YW #0.

>0

(iv) There exists ¥ € W with ef conjugate to €Y in Ren(M), such that

N Y W(ea™ # 0.

i>0
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(v) N7, = N.g for some 7 € W(e).

PROOE. (i) = (iii) Let f = ¢°. By Lemma 2.4 there exists € W(e) such that
f" = €. We can replace 0 by nn~'. Then having found the appropriate m, ..., 7, Y
with respect to 70n~!, we can replace them by n~'mon, ..., n~'mmn, 170, respectively.
Thus without loss of generality, we can assume that ¢/ = f.

" There exists A; € M., that is conjugate to some A, € M,y. By Theorem 2.3, we can
assume that Ay € Ng. So there exist u € Cg(e® | § € (0)), v € Co(Gy | § € (6)) such
that A; = eun, Ay = evm, 0 = nT, 8 = mT. There exists X € G such that XA; X~ = A,.

Since A1, Ay, € eMf, X € Ci(e) N C’G(f). By Lemma 1.3,
Ci(e) N CG(f) = [Cole) N G[Cale, NICe(f) N GLIIG, N Gl
Since Aj,A; € eMf, we can assume without loss of generality that
X € [Cg(e) N G{[Ca(e. NICa(f) N G

So there exist a € Cg(e) N G}, x € Cgle.f), b € C(f) N G such that X = axb. From
XA = Az X, we get

eaxun = evmxb.

 nm~' € Cg(e). Hence

Since ¢ = ¢
(axun)(vmxb) ™! = axu(nb™'x 'n"Hnm~ v € Cgle).
Hence

(n axun = zvmxb

for some z € Ge. Since Ge ccC (Cg(e)) - G,, we can assume without loss of generality
(by changing u appropriately), that z € G,. In the notation of Lemma 2.5, un = zvm.

By Lemma 2.5 (iii), we can change 6, m,v appropriately, so that un = vm with v €
Cs(€ | 6 € (B)). Let us therefore assume that

2) axun = vmxb.
Note that now A, € M,y and not Ny. By (2),
ax = vmxbn 'y~

= vixbm ™ (mn " 'u " nm Yymn! € C&(Be@‘l)ﬁa‘l.

Since a € G} and x € Cg(f), we see by Lemma 1.1 that a,xnm™"' € C;(6e6~"). By [6;
Fact 1.3], we can factor

3) a=cya; forsomec; € G[M,‘; and
a; € Cgle, 6e971) N G}.
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Similarly we can factor
4) x=yx; forsomey; € G[’,ee,,, x1 € Co(Bed ymn™" = 6Cg(e)o".

Since y;(x;nm ™) = xnm™' € Cgle,f)of~!, we see by Lemma 1.1 that y; € Cg(e,f).

Hence
&) x1 € Cgle.f).
By (2)

ciayy\xjun = vmy x1b.
Hence
(6) wa X un = vmyXx
where by (3), (4),

1, -1

w=vmyjxin u !

1 —
X1 a4y
= cia1y1x unbilnfluflx,_la',"

=c -a -y - (x]nm;l)[m(nflun)b'l(n*'un)"mil](xlnm")'l -a]" e Ggeg,l.

Suppose inductively that for k € 7*,

N X =Y Vi
where
(®) ¥i € Ghpgis i=1,...,k
X € {f] G Csle)a™.
j=—1
Further assume that there exist
) wi € Co@eb™ | i+1 <j<k)NGhin i=1,... .k
a, € Co@ed™ | j=0,....00 NG}
such that
(10) W - W QgXg Ul = VI Xy.

By (3)-(6) we see that (7)—(10) are valid for k = 1, since
Co(f) = 07"'Cs(e)d = 07" Cgle)ad™" -0 = 671 Cs(e)o.
Since x; € #Cgle)a for —1 < j < k, we see that

(an xn’m? € Co@ed™), —1<j<k
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Hence

Wi+ WX, = vmykxkrflu_l

- m(ykxknkm"‘)m*' o (R A
. mk+ln-k~l I= CrG(0k+lee—k——])9k+IU~k~l‘

By (9), (11) and the repeated use of Lemma 1.1, we see that

(12) Wi s Wi g, ' m ™1 € CE;(@I‘*leG*k_l).

Hence we can factor by [6; Fact 1.3],

(13) Xk = Ve Xesr With Yy € Gl g and
Xl € CG(0k+lee—k-l)mk+ln~k~l — €k+]CG(€)0'_k_l.

By (11), (13) and Lemma 1.1,
Vel € Co(@eb™), —1<j<k.

Hence by (11), (13),

(14) Xerl = Yok € Co(@ed 7)o = HCse)o™, —1<j<k
By (13), (14),

k+1 .
(15) X1 € [) @Cgle)a™.

j=—1

By (9), (12) and [6; Fact 1.3], we can factor

(16) Ak = a1t Chet € Gt ggics
a1 € Co@ed ™ | 0 <j <kNG;

andfori=1,...,k,

7 wi = qwl, qi € Gl g,
w, € Co@ed” | i+1<j<k+1)NGj,..

Now
(18) p= vmykm_'v'l € Ggmegﬁk‘]
and by (10), (13), (16), (17),

(@ewp) -+ (IW))(Chal Qps 1) Vir 1 Xy 1 UR = VITYRX
= pvmxy

= PVMYji1 Xk -
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. = . / / K+l n—k—1
Since g1, ..., Gk, Cks15 Yir1:P € Gl ygicr and since gy, wi, ..., wy € C(07 el )
we see that
! !/ /
Wi iWi s W Oga 1 Xgr | UL = VY ey Xt

for some ch + € ng“eefk-' . This completes the induction step. In particular (15) is valid
for k = |W/|. Hence by Lemma 1.2,

k
NOW(e)a™ = N FW(e)o # 0.
jz0 j=1

(iii) = (iv) We show that ef is conjugate to ¢y in Ren(M). We do this by induction on
t. 1ft = 0, then e = ¢7. Solett > 0. Then ef = em, - - - Y = 7 - - - €Y is conjugate
inRen(M) to ey, - - - m, = em| - - - m,Y, where

M=y e W NWe,... e ), =11

By the induction hypothesis, ef is conjugate to eo in Ren(M).
(iv)= (v) If ef and eY are conjugate in Ren(M), then they are conjugate by an element
of W(e). Thus without loss of generality we can assume that ¥ = 6. Let

e (oW

>0
Then 10’0~ € W(#'ef™) for all i > 0. Now
mea)yn ' = enon ! = e(mor 07 10.
Clearly ©Nym ' = N,,,r1. Now forall i € Z*,
mon 107" = (a9 HOO o I T € W(lTed ) - WO e 0!
= W(@'ed™).

It follows that o '6~! € W(e’ | § € (#)). By Theorem 2.3(ii), N,yor1 is conjugate
to N9 by an element of W(¢’ | § € (0)). It follows that N, is conjugate to N,, by an
element of W(e).
(v) = (ii) follows from Theorem 2.3, and (ii) = (i) is obvious. =
By Theorems 2.3 and 2.6, we have,

COROLLARY 2.7. There exist reductive groups Gy, ..., G; with respective automor-
phisms o1, ... ,0,, such that the conjugacy classes of M are in a natural bijective corre-
spondence with the g;-conjugacy classes of G, i = 1,...,t.

COROLLARY 2.8. Let o = nT, 8§ = mT € W, e € E(T) such that en and em are
conjugate in M. Then there exists m = pT € W such that en and ep are conjugate by an
element in Cg(é’ | § € (o)), and ef and e are conjugate in Ren(M).

The following answers affirmatively [6; Conjecture 2.7].
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COROLLARY 2.9. Lete € E(M), a,b € eMe. Then a and b are conjugate in eMe if
and only if a and b are conjugate in M.

PROOF. 'We can assume that e € A. Now eCg(e) is the unit group of eMe. Thus if a
and b are conjugate in eMe, then they are conjugate in M by an element in Cg(e). Assume
conversely that a and b are conjugate in M. We need to show that they are conjugate by
an element in Cg(e). By Theorem 2.1 applied to eMe, we can assume that a € M,
b € Myp for some h € eA and 0,0 € W(e). By Lemma 2.4, h° and h are conjugate in
T(h)' By [5; Chapter 6], h” and he are conjugate in eT(h)e. It follows that 4% and A’
are conjugate by an element in W(e, 7). Thus without loss of generality we can assume
that k% = K’ = h’. By Theorem 2.6, a and b are conjugate by an element in Cg(h, h').
Now hCg(h) = hCg(e, h) and W' Cg(h') = h'Cgle, i'). Hence

Ce(h) = Gy, - Cole, h) = Gy, - Cgle, Gy)
Co(h') = Gy - Cgle,h") = Gy - Cgle, Gy).
By [6; Facts 1.1, 1.2],
Co(h,h") C Cs(e)[GL N Gyl.

Since a,b € hMHF/, it follows that a and b are conjugate by an element in Cg(e). »
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