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Abstract
Aircraft maintenance is a multifaceted process that requires highly skilled, qualified and experienced personnel.
Effective maintenance processes optimise aircraft operational lifespan, minimise lifecycle costs and improve relia-
bility by reducing the probability of unexpected maintenance events. The initial diagnostic phase relies on detailed
visual inspections conducted by certified technicians. Following inspections, data assessment leads to the develop-
ment of a comprehensive maintenance plan, along with the sourcing of necessary resources and spare parts. As the
maintenance, repair and overhaul (MRO) sector transitions into the era of Industry 4.0, there is a growing empha-
sis on integrating data analytics and cyber-physical systems into maintenance practices. A key objective in this
evolution is the adoption of robotic systems for inspection tasks. This shift requires the reconfiguration of formal
inspection procedures to ensure compatibility with robotic operations. Moreover, it is critical to address the spe-
cific requirements of robotics and to incorporate smart hangar technologies that take advantage of real-time data to
improve both efficiency and effectiveness in maintenance operations. This study provides a comprehensive review
of the MRO landscape and maintenance checks, with a particular focus on robotic aircraft inspection systems, nav-
igation and smart hangar infrastructure. The discussion concludes with an examination of defect detection methods
using machine vision along with relevant metrics to compare with human performance.

Nomenclature
MRO maintenance, repair and overhaul
NDT non-destructive testing
OEM original equipment manufacturers
IT information technology
AI Artificial Intelligence
I4.0 Industry 4.0
IoT Internet of Things
ML machine learning
CAA Civil Aviation Authority
AMOS aircraft maintenance and operations system
I5.0 Industry 5.0
EC European Commission
WLI white light interferometry
MDP maintenance planning data
UWB ultra-wideband
RFID radio-frequency identification
ANDI automated non-destructive inspector
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CIMP crown inspection mobile platform
MORFI mobile robot for fuselage inspection
CFRP carbon fibre-reinforced plastics
DL deep learning
CNN convolutional neural networks
Mask RCNN mask region-based CNN
YOLO you only look once
ICAO International Civil Aviation Organization
NOTAM notice to airmen
FAA Federal Aviation Administration
API application programming interfaces
GSE ground support equipment
CCTV closed-circuit television
SLAM simultaneous localisation and mapping
FastSLAM Rao-Blackwellized particle filter
GPS global position system
IMU inertial measurement unit
RTK-GNSS real-time kinematics global navigation satellite system
DBSCAN density-based spatial clustering of applications with noise
RRT rapidly exploring random trees
DWA dynamic windows approach
ArUco augmented reality University of Cordoba
RGB red green blue
RGB-D red green blue-depth
ROS robot operating system
GNSS global navigation satellite system
LiDAR light detection and ranging
ANFIS adaptive-network-based fuzzy inference system
EKF extended Kalman filter
RMSE root mean square error
BPNN backpropagation neural network
BIM building information modelling
LOS line of sight
V2X vehicle to everything
V2V vehicle to vehicle
V2N vehicle to network
V2I vehicle to infrastructure
SL side link
5G NR 5G new radio
5G NR URLLC 5G NR ultra reliable and low latency communications
WiFi wireless fidelity
AP access points
RSS received signal strength
DARTeC Digital Aviation Research and Technology Centre
SR-LS squared range least square
RTAB-Map real-time appearance-based mapping
VO visual odometry
RTS robotic total station
IPS internal positioning system
AMCL adaptive Monte Carlo localisation
QR quick response
PAUT phased array ultrasonic testing
DFF-NN deep feed forward neural network
HMI human-machine interfaces
GUI graphical user interfaces
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TSN time-sensitive networking
IEEE Institute of Electrical and Electronics Engineers
IEC International Electrotechnical Commission
EASA European Union Aviation Safety Agency
IATA International Air Transport Association
RTCA Radio Technical Committee for Aeronautics
OT operation technology
NIS network and information security
TOPS tera operations per second
SMS safety-management-system
FPS frames per second
mAP mean average precision
FOD foreign object debris

1.0 Introduction
Aircraft maintenance is a critical component of aviation, both in terms of safety and operational
efficiency. As the aviation industry continues to evolve, there is an increasing need for innovative
approaches to aircraft inspection and maintenance processes. The vision of Industry 4.0 – and its human-
centric successor Industry 5.0 – places data, connectivity and collaborative robotics at the heart of this
transformation, promising a step change in the way maintenance is planned, executed, and certified
[1–8].

The COVID-19 restrictions starkly exposed the fragility of the global maintenance, repair and over-
haul (MRO) workforce. Sector revenues fell by 35% in 2020, and staff levels decreased by up to 89% in
Western Europe [9–11]. Although forecasts indicate steady 2.9% compound annual growth to 2033 [12]
(Fig. 1), the retirement of experienced technicians and the difficulties of attracting new talent continue
to constrain capacity.

Automation, therefore, moves from a nice-to-have to a strategic necessity. However, adoption remains
slow. Stringent airworthiness regulation demands exhaustive validation of every new process, and
smaller MROs struggle with the capital outlay for robotic systems [13, 14]. Many inspections still rely
on maintenance engineers’ experience-based skills; legacy IT and paper task cards hinder seamless data
flow, and technicians may resist technologies perceived as threatening job security [15–17].

In parallel, aircraft are evolving into sensor-rich ‘digital assets’ that feed advanced health manage-
ment systems such as the one described in the Conscious Aircraft paradigm [18] (Fig. 2). Using those
data streams inside a smart hangar enables predictive maintenance, dynamic workpackage generation
and real-time optimisation of ground support equipment. When collaborative robots, drones and fixed
non-destructive inspector (NDI) cells are integrated within that digital backbone, heavy maintenance
inspections can be shortened from days to hours while human experts are firmly in the loop.

This review explores the development of versatile, non-destructive robotic-based approaches for
automated aircraft inspections, with a focus on leveraging emerging technologies in a smart hangar
environment to improve the accuracy, reliability and efficiency of maintenance procedures. As a case
of the suggested digital transformation, an example of a task in 1a-check is included that showcases
how a manual inspection process currently in use, featuring task card samples and common man-hour
statistics, can be transformed into a robotic-aided automated method.

The review examines the current state of aircraft maintenance practices, as well as the potential for
technological advances to revolutionise the field. The manuscript comprehensively explores various
aspects of automated aircraft evaluation, including robotic frameworks, navigational techniques, locali-
sation systems and their implementation in the real world. Moreover, the next section suggests principles
to consider when planning smart hangars to ensure that these environments are both conducive to robots
and secure for human-robot interactions. For increased safety, the article introduces frameworks intended
to ensure effective human-robot collaboration, while also exploring the possible integration of various
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Figure 1. MRO market forecast growth for the period 2019–2033 (based on the data presented by
B. Prentice et al. in Ref. (12)).

Figure 2. The conscious aircraft concept. Credits Cordelia M. Ezhilarasu, Ian Jennions and Jim Angus
[18] (CC BY-NC-ND). (High-resolution image: https://images.app.goo.gl/EqwZKQBnjpGD9szAA)

system components to enable real-time functionality in the smart hangar environment. To our knowledge,
no detailed study on these aspects has been conducted in the literature. Lastly, a short review of deep
learning (DL) algorithms that are utilised in automated defect detection tasks is presented, analysing
their performance compared to human performance in similar tasks.

2.0 Aircraft maintenance processes
In 1935, during the Second World War, pilot checklists were formally introduced. An early B-17 bomber
flew without following a checklist. The aircraft attempted to fly with the controls still secured, climbed
to 300 feet, then stalled and crashed, resulting in the loss of all crew members [19]. After that event, the
preflight list was introduced Ensuring airworthiness and safety is of paramount importance in aircraft
maintenance. To achieve that, scheduled maintenance of different types is performed, which takes place
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depending on some well-defined metrics. These metrics are relevant to the following parameters of air-
craft usage: flight hours, flight cycles and calendar days [20]. The formal definition of the flight cycle is
one complete phase that starts with the take-off and ends with the landing. Based on the original equip-
ment manufacturer (OEM) guidelines, following these metrics when the aircraft reaches the predefined
threshold it is grounded and undergoes the corresponding check.

The most popular types of scheduled maintenance are the following:

• Pre-flight checks are performed by the pilot before every flight and involve a visual inspection
of the exterior and interior components of the aircraft, checking fluid levels, testing systems and
ensuring everything is in good working order.

• Line maintenance checks are routine checks performed every 24–60 flight hours, often overnight
at the airport gate. They include inspection of the wheels, brakes, fluid levels and checking for
visible damage.

• A-checks, also known as light maintenance, occur approximately every 400–600 flight hours
or 200–300 flight cycles. The aircraft is taken to a hangar, and maintenance technicians perform
detailed inspections, change filters, lubricate systems and check emergency equipment. A-checks
take 6–24 hours for narrow-body jets.

• C-checks, also known as heavy maintenance visits, take place every 18–24 months. They involve
a thorough inspection of the aircraft’s systems, components and structures. The interior of the
cabin is removed, and detailed checks are performed on the load-bearing structures, control sur-
faces and the skin of the aircraft. C-checks can take 1–2 weeks and require thousands of hours
of labour.

• D-checks are the most comprehensive checks and occur approximately every 6–10 years. They
involve a thorough teardown inspection and overhaul of the aircraft, including disassembly of
landing gear, inspection of control surfaces and repainting of the fuselage. D-checks can take
6–8 weeks.

In order to complete the picture, B-checks are also mentioned in the literature. However, in reality,
B-checks have been largely phased out and incorporated into A-checks [21].

On the lightweight side of aircraft maintenance, A-checks include inspection and servicing of spe-
cific components in order to lower effort in daily inspections. The aim is to assess the airworthiness of
the aircraft and ensure it is safe to continue. There are different types of A-checks depending on the
degree of thoroughness of the examination of the aircraft parts. The most basic type is the 1A check,
but there are also 2A, 3A, 4A and 6A, which can be characterised as intermediate checks. The 1A for
Boeing 737-300/400/500 aircraft, according to the maintenance planning data (MPD) document, occurs
every 90 days, 600 flying hours or 300 flight cycles. The MPD document review assigns 31 tasks for
the 1A check, of which 24 are visual inspections. Table 1 includes some compatible tasks for robotic
inspection. The estimated work times shown in the table correspond to the performance of individual
check items and do not include the time to position work stands and equipment preparation. According
to the MPD document, these standards are based on best judgement factors, the use of skilled personnel
and the availability of tools and equipment. The hourly rate calculation for licenced aircraft engineers
(B1 licence) in the UK was based on research on a relevant recruitment website [22]. The research has
shown an annual salary range from £55,000 to £75,000 (approximately 40 hours per week).

Another valuable source of information providing general guidance on various aspects related to
civil aircraft, including MRO, maintenance, operation and relevant procedures, is CAP 562 [23]. The
document, which describes civil aircraft airworthiness information and procedures, was issued by the
UK Civil Aviation Authority (CAA).

The ATA iSpec 2,200 provides a structured framework [24] to organise technical data, which is essen-
tial for modern MRO operations. A key element of this standard is the aircraft zoning system, which
categorises the aircraft into major zones, sub-major zones, and zones using a three-digit numbering
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Table 1. Extract from Boeing’s maintenance planning data document showing the visual checks for
the 1A-check

# Zone Task Description MH Cost (£) Type
1 306 Visually check the left aileron, aileron tab,

and exposed linkages for condition and
security of installation.

0.1 2.82 Aerial

2 406 Visually check the right aileron, aileron tab,
and exposed linkages for condition and
security of installation.

0.1 2.82 Aerial

3 302, 303, 307, 309 Visually check the left-wing leading-edge
flaps, slats, spoilers and visible actuating
mechanisms for condition and security of
installation.

0.2 5.64 Aerial

4 402, 403, 407, 409 Visually check the right-wing leading-edge
flaps, slats, spoilers, and visible actuating
mechanisms for condition and security of
installation.

0.2 5.64 Aerial

5 216, 310 Visually check the left main landing and
wheel well hydraulic components for
leakage and obvious damage.

0.05 1.41 Ground

6 217, 410 Visually check the right main landing gear
and wheel well hydraulic components for
leakage and obvious damage.

0.05 1.41 Ground

method. This system enables accurate identification and localisation of components for maintenance
tasks. Jong et al. [25] presented a pilot study on identifying aircraft parts that are exposed more fre-
quently to damage, based on a questionnaire survey that was carried out asking for feedback from 40
professionals working in MRO. According to the responses received (Fig. 3), the door area (ATA Zone
800) was found to be the most frequently affected by damage, accounting for 57.5%. The upper surface
of the wing (ATA Zone 500 or 600) was the second most cited area, at 17.5%. In a maintenance context,
the impact damage responses were almost evenly distributed between the wing/flap region (ATA Zone
500 or 600) and the lower surface of the aircraft (ATA Zone 100), each representing 35%. The elevator
(ATA Zone 300) was also mentioned by 19% of the respondents.

3.0 Robotic platforms for automated aircraft inspections
In this section, various robotic platforms explored in the literature are classified according to their mobil-
ity modality. By examining the respective sensing payloads, degrees of freedom and level of technology
readiness, the functional envelope within which navigation and inspection strategies must operate is
established.

3.1 Crawlers and surface-climbing robots
In 1986, Schultz [26] discussed various concepts using robotic systems in aircraft maintenance, but did
not present any implementations. While the emphasis was primarily on military operations, the ideas
remain relevant as they outline the framework for possible refueling systems, damage repairs and more.
In 1998, Siegel et al. published an article [27] promoting robot-assisted aircraft inspection, presenting
different platforms and skin defects (cracks and corrosion) detection algorithms. This was one of the first
attempts to automate aircraft inspection, describing the three phases of the development of a platform,
called automated non-destructive inspector (ANDI), for aircraft skin inspection, which started in 1991
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Figure 3. Illustration depicting the percentage of participants’ feedback regarding (a) the aircraft com-
ponents that experience most of the impact damage (represented by dark grey shaded boxes) and (b) the
locations on an aircraft that are most susceptible to damage from impact in a maintenance context
(indicated by light grey shaded boxes). Credits C.M. Jong et al. [25] (CC-BY).

Figure 4. The ANDI crawler was tested in a curved sample, and an eddy current probe was deployed.
Credits to M.W. Siegel et al. [28].

at Carnegie Mellon University and performed its first inspection in 1994 on DC-9 aircraft [28] (Fig. 4).
The platform used a suction cup vacuum system to stick to the surface and crawl to the desired trajectory.
The onboard nondestructive testing (NDT) sensor was eddy current to measure the thickness of cracks
and corrosion. The robot also had a camera. In addition to the robotic platform, the report mentions the
use of neural networks for rivet segmentation, which unfortunately produced poor results and forced
them to use conventional segmentation techniques. However, it is impressive, as it happened during the
second AI winter1.

1The first AI winter (1974–1980) resulted from AI’s limited applicability, leading to funding cuts. The second (1987–1994)
arose when existing reasoning methods proved insufficient.
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Figure 5. The CIMP crawler on top of a Boeing 747 in the hangars of Northwest Airlines in
Minneapolis, Minnesota. Source online: Ref. (29).

In the following years, there were more efforts to inspect the skin of the aircraft using robotic crawlers,
usually teleoperated, tethered and using vacuum suction cups, vortex or custom wheeled structures, such
as the second version of the crawler developed by Carnegie Mellon University, robot-CIMP (Crown
Inspection Mobile Platform) [30] (Fig. 5). Zhiwei et al. [31] presented a crawler that had a cruciform
structure, cameras and the ability to identify rivet cracks using a fuzzy SVM approach. The comparative
advantage of using this type of robot compared to others is that it is the best for applying contact-
type NDT methods such as eddy current, phased array ultrasonics or active sources for thermography.
Rodriguez et al. [32] describe a wheeled robot that can climb on non-ferrous surfaces using the vortex
adhesion technique. It was a versatile platform, but with a low payload (0.2kg), and could carry only a
camera system. In 2014, Lufthansa Technik presented a similar system explicitly developed for aircraft
inspections [33]. The mobile robot for fuselage inspection (MORFI) was using active vacuum pads,
an active thermography source (inductor coil) and a thermal camera to identify cracks in carbon fibre-
reinforced plastics (CFRP). In 2019, Papadimitriou et al. [34] presented a more advanced design of a
crawler called the ‘Vortex robot’, which could support up to 5.9kg payload. When deployed on a Boeing
737-400, they managed to demonstrate excellent manoeuvrability on curved surfaces, such as the fuse-
lage. In 2022, Samarathunga et al. [35] described another wheeled platform with ducted fans that move
on the surface of the aircraft. The platform was using a thermal camera to monitor water ingression in
honeycomb composite structures. They selected to provide power using batteries, which is extremely
critical in the balance between weight and operation duration. Ramalingam et al. [36] described a more
recent and advanced approach using a reconfigurable climbing robot (Fig. 6) that can stick to the aircraft
surface and perform a visual inspection. The focus of the paper was mainly on describing the perfor-
mance of DL approaches in identifying defects. The robot was teleoperated without any sensors that
could be used for autonomous navigation.

3.2 Unmanned aerial vehicles
If one type of platform has attracted the most interest in aircraft inspection, it is unmanned aerial vehicles
(UAV) or drones. An argument that supports this could be that two commercial inspection providers,
Mainblades and Donecle, already provide this as a commercial service using off-the-shelf and custom-
made drones, respectively. UAVs are not very popular in contact NDT methods. Various efforts are being
made to use ultrasound probes, such as those of Zhang et al. [37] and Kocer et al. [38]. However, most
aerial inspections are still visual and use normal red-green-blue (RGB) cameras mounted on gimbals.
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Figure 6. Reconfigurable climbing robot for visual inspection. Credit Balakrishnan Ramalingam et al.
[36] (CC-BY).

Aerial inspection has certain advantages that help it gain traction. One of the first reported examples
was the cooperation of EasyJet and the University of Bristol in 2014, flying a teleoperated drone to
identify lightning strikes on the skin of the aircraft [39]. Maintenance personnel do not work at height
when using UAVs, and there are cost reductions because there is no need to build scaffolds or pay for
liability insurance. There is also improved mobility, as any upper part of the aircraft can be accessed, and
the data are high quality and consistent because the platform performs a specific optimised flight path.
Yet, failing to recognise the role of DL algorithms in facilitating the automatic detection of artefacts
in captured images would be a significant oversight. After Alexnet’s breakthrough performance [40],
the research community became confident in the capabilities of convolutional neural networks (CNN)
and explored different architectures to classify and localise issues on the skin of the aircraft [41]. In the
following years, researchers have employed one-stage detectors (proposal-free) such as You Only Look
Once (YOLO) as presented by Connolly et al. [42], but also two-stage detectors such as mask RCNN as
described by Dogru et al. [43].

Many research teams have also decided to design custom drones to optimise performance, reduce
weight and increase safety. Papa and Ponte [44] implemented a micro-UAV with a high definition camera
that performs visual inspection on aircraft. They used sonic range sensors to detect and avoid obstacles.
They focused primarily on the design of the drone and did not mention any navigation strategy.

Another interesting approach that involves a rolling cage is the design presentedby Borik et al. [45].
Although the inspection task did not target aircraft, it was still a valuable concept. In the drone design,
they integrated a shock-absorbing 3D-printed rolling cage that allows them to inspect parts in close
proximity and improve the safety of both the asset under inspection and the human operators. In their
application, the concept was to inspect the walls of a duct, so the target was to maintain a constant
distance from the asset, which is also relevant in an aircraft inspection.

In conjunction with performing visual inspections, there is also the possibility of using UAVs carrying
thermal cameras. There are two modes of operation. The popular approach is passive thermography,
which is used in inspecting buildings, power lines, etc. The more advanced approach is to use active
thermography, using optical thermal excitation sources. The latter approach is suitable for identifying
defects in composite structures by injecting external energy and monitoring the transient phase of the
cooling stage. As aircraft fleets increasingly transition from metal to composite aircraft, the demand for
active thermography methods is increasing, highlighting their enhanced value in ensuring safety and
efficiency. However, employing active thermography sources on a drone is challenging, considering the
power consumption requirements. An example was a thermal drone carrying four halogen lamps (total
of 1 kW). The aim was to identify defects in composite structures, such as voids and delamination,
using active thermography and DL classifiers on the cloud. The experiments are described in detail by

https://doi.org/10.1017/aer.2025.10048 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2025.10048


10 Plastropoulos et al.

Figure 7. Active thermography UAV experiment on wind turbine blade (composite structure). Credit:
Deane et al. [46] (CC-BY).

Deane et al. [46] (Fig. 7). Another effort of using an infrared (IR) camera on a drone is described by Hruz
et al. [47]. Their method integrated the use of passive thermography with a commercially available drone
(DJI Mavic 2 Thermal) alongside radio-frequency identification (RFID) tags for labelling purposes. In
terms of navigation, a waypoint approach was followed using the supported navigation modes of the
platform.

3.3 Ground mobile robots and cobots
It is clear that there are benefits in using aerial robotics in aircraft inspection, but there are also lim-
itations. Ground robotics have difficulties in capturing areas on top of the aircraft or moving freely
in the open space since the ground is shared with other inhabitants, static or moving, but they also
have unique capabilities that can be utilised. Robotic ground platforms are not weather-dependent; they
are not affected by strong wind or rain. They have a reduced setup time with minimal preparation to
go live. They have extended operation times supported by large batteries and autonomous charging
in dedicated bays. They have significant payload capabilities, carrying sensors and cobots; for exam-
ple, Husarion’s Panther has an 80kg payload. They are safer and are perceived as more user-friendly by
humans. Mobile ground platforms are less likely to face stringent regulatory hurdles compared to drones
(shared airspace). Drones require special permissions and must comply with aviation regulations, which
can complicate their use in certain areas, especially in airport environments. Ground mobile platforms
are generally less expensive to operate as they do not require specialised training for operators (pilot
certifications), frequent battery replacements, etc.

A very interesting case study related to contact-based NDT inspections comes from the cooperation
between Universal Robots and Olympus [48]. They demonstrated a scenario of ultrasonic inspection of
the skin of the aircraft using a cobot (Fig. 8). Although additional information has not been disclosed, it
appears that the cobot is mounted on a fixed platform, allowing access to the aircraft, which is positioned
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Figure 8. Ultrasonic inspection using a cobot on a static base. Credits: Universal Robots and Olympus
[48].

Figure 9. Panther platform can support a cobot and add mobility to the inspection. Credits: Husarion
[49].

within the manipulator’s reach. Ideally, the cobot should be mounted on a mobile platform to allow
enhanced mobility and flexibility during inspection. The Husarion Panther mobile platform [49], which
has a payload of 80kg and a compatible battery, can support this operation, as illustrated in Fig. 9.

3.4 Comparative assessment of robotic inspection modalities
Each of the crawler, drone and ground robotic platform systems presents a distinctive balance between
accessibility, sensory capabilities, regulatory constraints and scalability at the fleet level. To make these
trade-offs explicit, Table 2 summarises the main operational, economic and regulatory attributes. The
optimal platform for deployment varies according to the specific requirements of each application,
favouring the one that fulfils the most significant number of criteria.
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Table 2. Features comparison among different robotic platforms

Feature Crawlers Drones Ground Platforms
Contact NDT sensors Yes In general, no. Only a few

examples using ultrasound
probes with a custom design
[37, 38].

Yes. If a cobot is installed on top,
but with limited workspace
[48].

Non-contact NDT sensors Yes Yes Yes
Power tether Yes, it is the most common case

due to the power consumption
of the vacuum adhesion
mechanism (e.g. Ref. (28))

No No

Accessibility on the upper aircraft
surface

Yes Yes No

Accessibility on the side of the
aircraft surface

Yes Yes No

Accessibility on the lower aircraft
surface

Yes Yes (if there is a gimbal) Yes

Payload capability Low to mid Low to mid High
Maturity of autonomous

navigation algorithms
Medium High High

Integration with the localisation
services of smart hangar

Medium High High

Safety Medium. Crawlers have a risk of
vacuum loss. They usually do
not have a dead-man switch
onboard, but a tethered control
station and fail-safe lanyards

Medium. Any failure will cause
the drone to fall and a loss of
control will cause it to fly
uncontrollably; they could have
a ‘shielded prop’ or use elastic
cages on board

High. Mobile platforms move
slowly and have deadman
switches

Motion freedom/easiness Medium. The transition from
different aircraft parts (e.g.,
wing to fuselage) must be
manual

High. The drone flight workspace
is unrestricted

Medium. Many cables and
equipment are lying on the floor
unless a dedicated FOD-free
lane is available or a quadruped
is used
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Table 2. Continued

Feature Crawlers Drones Ground Platforms
Custom vs off-the-shelf Most of the time, it is a custom

build
Both options are valid; many

off-the-shelf solutions can
perform the service with
additional customisations

Both options are valid; many
off-the-shelf solutions can
perform the service with minor
customisations for hosting the
payload

Scalability/fleet management Low. Adhesion limits the speed; it
is power tethered; fleet
schedulers for wall crawlers are
not mature. Typically, one unit
per aircraft.

High. Cloud mission planners
allow multi-drone operations;
however, battery swaps and
prop-wash separation could
restrict the concurrent numbers
inside one bay.

High. Fleet controllers can
orchestrate fleets (e.g., ROS
2-Nav2 [50], OpenRMF [51]).
Long duty cycles and
auto-docking.

Regulatory hurdle Medium. They must show
drop-prevention and no surface
damage (tether or lanyard).
They must comply with the CE
Machinery Directive
2006/42/EC [52], Machinery
Regulation (EU) 2023/1230
[53], and ISO 10218-2 (2025
rev.) [54] task-risk operation,
and Part-145 MOE addendum
for contact NDT on primary
structure.

High outdoors/Low indoors If
flying outdoors falls under EU
Reg. 2019/947’s ‘specific’
category [55]. If flying indoors
could be covered by
occupational health and safety
rules and industrial machinery
standards.; it needs SORA or
FAA approval (outdoor), a
licensed remote pilot, and
indoor geo-fencing. Only a few
tasks have been approved so far
[56, 57].

Low. They could be treated as
industrial mobile robots and
comply with ISO 10218-2
(2025 rev.) [54]/ISO-TS 15,066
[58] and OSHA 1910.212 [59].

Cost High (typical range £100k –
£120k)

Medium (typical range £50k –
£70k)

Medium (typical range £50k –
£80k)
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4.0 Navigation and localisation for aircraft-inspection robots
Reliable navigation is the prerequisite for any automated aircraft inspection. The robot must know both
where it is and where it must go before the sensor data have any value. This section presents various
approaches onboard navigation algorithms, and it complements with analysis on potential external posi-
tioning systems. The last section explores indoor demonstration cases to define a benchmark for the
navigation of robotic NDT platforms inside the hangar.

4.1 Robotic navigation in aircraft inspection
Robotic navigation is the ability of mobile robots to perceive the environment, decide the destination, and
move toward it in the most efficient way. There are various core components that work together to enable
robots to navigate in various environments autonomously, efficiently and safely. Each component plays
a critical role in ensuring that the robot can locate itself, plan routes, map its surroundings and control
its movements effectively. The first is localisation, which is the process of determining the position of
the robot within an environment. Path planning involves determining the optimal route that the robot
should follow to reach its destination while avoiding obstacles. Finally, mapping is the process of creating
a representation of the environment that the robot can use for navigation.

Navigation is a concept that is relevant in all mobile robotic platforms, whether they are moving on
the ground or in the air. There are many factors that influence and form the optimal approach selected.
It depends on the environment and the task. Additionally, the kinematic model of the robot and its
perception capabilities are the building blocks on which the navigation approach is built. In our case,
the environment is either the hangar or the ramp area, and the mission is the digitalised aircraft inspection
task of a formal routine check.

The concept of simultaneous localisation and mapping (SLAM) was first introduced in 1986 in San
Francisco by Smith et al. [60] at the International Conference on Robotics and Automation (ICRA)
conference. In this study, it was suggested that it is possible to estimate the uncertainty in the relation-
ship between two frames. Reducing uncertainty can be achieved by incorporating sensory information
from the frames, regardless of where the measurement is taken. Durrant-Whyte et al. [61] presented
SLAM as a probabilistic problem, emphasising the importance of handling uncertainty in robot motion
and its onboard sensor measurements. They described two primary computational approaches to solve
the SLAM problem: the Extended Kalman Filter (EKF-SLAM) and Rao Blackwellized particle filters
(FastSLAM). It is intriguing that even though the authors recognise that SLAM is theoretically resolved,
challenges persist in actual applications, especially with complex outdoor settings and the creation of
perceptually detailed maps.

Thrun et al. [62] discussed robotic navigation as a key application of probabilistic techniques in
robotics. They emphasised the importance of handling uncertainty in robotic navigation, using prob-
abilistic methods to deal with imperfect sensor data and unpredictable environments. The authors
presented probabilistic algorithms for these navigation tasks, such as Markov localisation, grid-based
and Monte Carlo approaches to localisation and SLAM. They also introduced Bayesian filtering tech-
niques, like Kalman filters and particle filters, which are fundamental to many probabilistic navigation
algorithms.

In the field of aircraft inspections and maintenance, one of the most relevant cases is the air cobot,
which was implemented as part of Airbus’s “Hangar of the Future.” In Refs [63, 64], the authors
described their concept in which a ground platform, called air-cobot (4MOB by Sterela), performed
maintenance checks using a camera. The robot was equipped with two laser range finders and two
stereo cameras (front and back), a global position system (GPS) receiver and an inertial measurement
unit (IMU). The robot navigated around the aircraft, passing through specific waypoints and using the
aircraft as a reference. The latter was very important since the platform performed localisation based on
the object of interest. This is particularly significant given that the operational settings are expansive,
open territories lacking distinctive landmarks. In their localisation approach, they matched the gener-
ated point cloud with the known aircraft model but also performed visual localisation, using pattern
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recognition on the distinct components of the aircraft (windows, landing gears, etc.). This method rep-
resents a notable accomplishment, particularly when recognising that it relies on pure computer vision
algorithms rather than DL models. The authors claimed that the target achieved was the decrease in
inspection time, but they did not define tasks and a specific number to quantify the optimisations. There
was no mention of navigation accuracy, repeatability or overall inspection duration.

In a similar task, Lie et al. [65] used a mobile platform (Warthog by Clearpath) for the inspection and
maintenance of a railroad. The task consists of many phases, including the navigation to load location,
railroad conversion and the navigation to the location on the track. The first part was essentially the phase
in which the robot moves from its base, passes through various checkpoints and reaches its destination,
where it is loaded onto the rail track conversion unit. The platform was equipped with 3D Lidar, a
camera, real-time kinematics global navigation satellite system (RTK-GNSS), IMU and depth camera.
In the article, the authors demonstrated that their development implemented autonomous navigation
employing sensor localisation, path planning, path tracking and obstacle avoidance. They mentioned
that the platform moves towards the waypoints, ensuring a 1.5m precision for safety.

In the object avoidance core component during the last years and with the rise of DL algorithms, there
is increasing involvement in combining the traditional point cloud processing approaches with real-time
object detectors like you-only-look-once (YOLO). Hu [66] presented an approach that combines moving
obstacles clustered from laser point clouds using the density-based spatial clustering of applications
with noise method (DBSCAN) and the output of a YOLOv3 algorithm. In the experimental tests, it
was mentioned that the maximum error in obstacle estimation is approximately in the range of 0.6m,
without describing how they calculate the ground truth. The authors reported that object detection is not
fast enough to be responsive, but considering the progress since the version 3 era and the proper selection
of onboard hardware, this could be less of a problem. Several years later, Adiuku et al. [67] presented a
more advanced and complete approach to integrate YOLOv7 into the robot operating system [68] (ROS)
navigation stack for ground robots operating inside hangars. They integrated rapidly exploring random
trees (RRT), dynamic windows approach (DWA) and object detection into a new module called NAV-
YOLO. The authors reported improvements in performance compared to the standard non-customised
ROS navigation stack based on the number of collisions, path length and duration. Similarly, with the
previous case, the computational complexity was so high that the new navigation module was operating
at 0.3Hz.

Mohan et al. [69] combined machine vision and navigation, specifically in aircraft maintenance. At
the beginning of the procedure, the robot moves into the hangar to build the map using FastSLAM and
build a semantic map in parallel using a DL object detector (VGGnet-16) that identifies aircraft parts
that potentially need maintenance. They claimed that they can recognise if the part needs replacement
and send a notification (report) to the technical team. It was assumed that the aircraft was always parked
in the same place and that the spare parts were placed in a robot-friendly store so that the robot could go
and retrieve the spares. They did not use information on aircraft type or use hangar infrastructure to infer
further information, assuming that they do not operate in a smart hangar. Furthermore, they presumed
that the sensors could detect damages solely through visual cues and that all relevant components would
be within the robot’s sight range.

Ruiqian et al. [70] have proposed an interesting approach using UAV and fiducial augmented reality
University of Cordoba (ArUco) markers. In the suggested procedure, the drone starts flying in teleop-
eration mode to create the 3D model of the aircraft. They did not use stereo cameras; instead, they took
pictures from different positions and used a photogrammetry application (PIX4Dmapper) to create the
3D model. During their experiments, they realised that there was an inaccuracy in the drone flight route,
and they decided to introduce fiducial markers as external references to correct and improve the localisa-
tion performance. Cazzato et al. [71] progressed this approach further by assuming that there are known
textured planar patches (graphs) on the surface of the aircraft, such as the airline flag, and a known 3D
model with the same graph stored online. The focus was on determining the aircraft’s pose (position
and orientation) relative to the UAV. The authors proposed a vision-based solution that uses monocu-
lar images from an on-board RGB camera to estimate the six-degree-of-freedom (6-DoF) pose of an
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aircraft. After feature detection on the patches and pose estimation is performed, an error correction
update on the UAV is performed in real-time.

An alternative surface-centred path-planning paradigm is also a valuable option to consider when
inspecting complex structures such as the surface of the aircraft. Recent advances in UAV path planning
demonstrate significant potential for aerial structural inspection optimisation. Wang et al. [72] developed
a 3D surface inspection algorithm that employs normal vector filtering and integrated viewpoint evalua-
tion, achieving a reduction in flight path length by 72% and total inspection time by 80% through Monte
Carlo tree search optimised viewpoint selection compared to other techniques. The geometric filtering
approach of their method uses surface normals to constrain camera alignment, ensuring optimal sen-
sor incidence angles during aerial inspections of complex curvatures. This method exhibits significant
promise for the inspection of aircraft that have complex surface structures.

In the context of aircraft inspection, another approach is to use a combination of robotic platforms
to assist in navigation. Some of the works, such as the one described by Sun et al. [74], present a
combination of aerial and ground robotic platforms using red-green-blue-depth (RGB-D) cameras to
scan the aircraft surface for potential defects, such as dents and cracks. The drone first builds a coarse
model of the aircraft, and then a 3D high-precision laser scanner performs a detailed scan using an
iGPS system with millimetre accuracy. They employed a coverage path planning algorithm based on
a custom version of the Monte Carlo Tree Search method to generate the waypoints that cover the
regions of interest. However, they presented the results only in simulation without describing a real
application.

4.2 External positioning systems
It is a common strategy to fuse onboard sensor feedback and external localisation sources, which report
the position (or pose if Euler angles are known), to improve the accuracy and reliability of robot naviga-
tion. Depending on the environment, indoor or outdoor, there are solutions that can be used to support
the execution of the mobile robot’s task. If the operational workspace is outdoor, the usual approach is
to integrate the (GPS and the global navigation satellite system (GNSS) [75], assuming that the environ-
ment allows for clear reception of satellite signals. In addition, there is also the option of RTK-GNSS,
which can significantly enhance the accuracy of GNSS, making it suitable for applications requiring
high precision, such as autonomous robots. In indoor workspaces, an ultra-wideband (UWB) system is
the most common solution for positioning and tracking and was one of the technologies included in the
concept of the ‘Hangar of the Future’ [76]. UWB systems sends very short and low-power pulses of
radio waves. It simultaneously spreads its signal across many different frequencies (no licence required)
[77], occupying a wide bandwidth. Receivers (mini-tags) are transceivers that can transmit and receive
signals. Mini-tags are mounted on mobile robotic platforms. Anchors (or antennas) are typically fixed
reference points strategically placed throughout the environment.

In outdoor applications, such as precision agriculture, RTK-GNSS is widely used, as it offers
centimetre-level accuracy. Thepsit et al. [78] combined a 3D light detection and ranging (LiDAR) within
a range of 90 to 270 degrees employing an adaptive network-based fuzzy inference system (ANFIS) for
data fusion instead of the preferred approach of using an extended Kalman filter (EKF) [79]. In the
training process, they achieved a minimum root mean square error (RMSE) of 0.4m. In addition, they
performed tests at various speeds (1–10km/h) using a small golf cart as a platform, getting an average
percentage error of approximately 2.6%. In another case related to agriculture, Pini et al. [80] described
the performance of RTK-GNSS under different conditions. The first experiment was conducted in an
open field with a maximum error of approximately 3cm. The second experiment was in a vineyard with
dense foliage that partially blocked the line of sight. In this case, the positioning error was around 10cm.
The last and most interesting experiment was inside a greenhouse. In this case, there was a plastic or glass
roof, unlike metallic ones mostly found in hangars. The positional error in this case was increased to
1.3m. This is a sign, as expected, that this approach regarding the aircraft inspection could be considered
only in the ramp area, but not indoors.
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In indoor environments, UWB systems are the usual way to provide the position of the robotic
platform in the operational space. In robotic navigation, the estimated position feedback is fused with
onboard signals utilising encoders and/or the IMU, often called dead reckoning. Yue et al. [81] used a
mobile platform with tracks and four beacons in an open field environment. They fused IMU and UWB
using a backpropagation neural network (BPNN), and they managed to achieve a positioning error of
2cm, moving up to 1cm. However, the receiver tag had a full line-of-sight (LOS) with the four beacons.
Another case was described by Park et al. [82], but in construction sites. Apart from the dead reckoning
and a four-beacon UWB system, they used the site’s building information modelling (BIM). The latter
was used in path planning as it can act as a map of the environment when projected in 2D. The test bed
was 2m x 2m and four different fusion algorithms were used. In terms of the accuracy achieved, they
mentioned that, on average, the estimated path was within 0.5m compared to ground truth. Another sim-
ilar case by Marquez et al. [83], in a comparably small testbed, presented sub-centimetre accuracy using
three beacons and EKF for fusion without any obstruction. However, in a natural working environment,
such as a hangar, in many positions, occlusions in the LOS are expected. Another example following a
three-stage experiment using a clear field, a field with static interference, and one with dynamic interfer-
ence (polluted by noisy signals), presented by Sbirna and Sbirna [84] targeting warehouse environments.
The experiments were carried out in a room in a 3.5m x 4.8m space, and the platform was small (approx-
imately the size of a Turtle Bot 3). In the first case, the accuracy was close to 2cm. In the presence of
interference, static led to 20cm deviations from the ground truth and dynamic to 10cm, proving the
robustness of UWB systems in signal jamming.

In addition to RTK-GNSS, mainly for outdoor environments, there is the option to use 5G new radio
(NR) technology for robot localisation [85]. There are many benefits in addition to the fact that there is
already an infrastructure in place for robot navigation, such as wide coverage, high throughput, band-
width and carrier frequency, low latency and MIMO2 technology. Networks using 5G have introduced
a new reference signal in the downlink for robot localisation known as a positioning reference signal,
which allows the extraction of these measurements. The V2X (vehicle-to-everything) features, such
as V2V (vehicle-to-vehicle), V2N (vehicle-to-network) and V2I (vehicle-to-infrastructure), are quite
interesting. The V2X cellular standard, which is based on the 5G air interface, can be used in robot
fleets through the side link (SL). This technology enables direct data exchange between vehicles with-
out involving the rest of the network. It will be essential for collaborative tasks and localisation, whether
within or outside the base station coverage area.

In a more detailed study, Karfakis et al. [86] performed tests using three setups, considering 5, 10
and 15 ground node B base stations using a Gazebo simulation. In their approach, they considered
three metaheuristics, hyperbola crossing points, particle swarm optimisation and genetic algorithms for
estimating the position in 5G NR network topologies. The best result in terms of position accuracy
was 3.813 ± 1.862 metres, with an overall mean execution time during the movement in the path of
0.050 ± 0.042 seconds. Overall, there is potential for improving the accuracy, although there are no
reports from real experiments. In general, it seems that in later stages, with more mature approaches and
a dense network (airports are places with good coverage), there is the option to integrate 5G localisation
into the toolkit of available techniques.

In indoor environments, an alternative method that can contribute to robot navigation is WiFi-
based localisation. In most of the described methodologies, the WiFi fingerprinting technique is usually
adopted. This method is based on the creation of a database of the strengths of WiFi signals at vari-
ous locations within an environment, which can then be used to estimate the position of a robot [87].
In addition to that, there is the option to use trilateration, which is based on measuring the strength of
WiFi signals received from multiple access points (APs) in the area. The strength of these signals is typ-
ically measured as the received signal strength (RSS). There is also the assumption that there are more
than three APs in known locations. Biswas and Veloso [88] described their methodology in combining

2Multiple-Input Multiple-Output (MIMO) is a wireless technology that uses multiple transmitters and receivers to transfer more
data at the same time.
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WiFi signal measurements to create a perceptual model of the robot position hypothesis. Using that in
combination with odometry and a particle filter, they managed to estimate the location. In their experi-
ments, they achieved a mean positional estimation error of 1.2m and a maximum error of 1.8m in 80%
of the duration of the experiment. In addition to other approaches, researchers employ machine learning
algorithms. These algorithms can learn from multidimensional measured data with position labels to
reduce the impact of RSS fluctuation and improve fingerprinting accuracy and system reliability [89].
Lee et al. [90] presented an approach that combines SLAM and WiFi positioning methods. They used
WiFi fingerprinting to collect data and link them with the mapping process. After that, they built the
WiFi radio map using the RSS values collected, and during the localisation, they compared the trained
signatures with the measured values. The interesting result was that with a minimum number of 40 APs,
the position accuracy was close to 1m. In the hangar environment, with many changes in the configura-
tion (different number of aircraft in maintenance, different types, scaffolding, etc.), this approach might
be a challenging case.

4.3 Indoor navigation case studies
In the design and testing of the novel automated inspection approaches, reference systems are required to
compare performance. In addition to the concept presented in 2017 by Leiva et al. [63], there are no other
experiments that are directly relevant to aircraft inspections that combine mobile robotics and NDT. Even
in this work, there are no specific references related to the accuracy of the solution. However, knowing
the characteristics of the operational environment, the nature of the tasks that should be performed, and
the available equipment in terms of both the platform and the smart hangar, similar concepts can be
identified and capture metrics of the achieved performance which can be used as guidelines even if the
end application is not strictly an aircraft inspection.

Bostanci et al. [91] presented navigation experiments using a Turtle Bot 3 robot and a four-beacon
UWB internal positioning system (IPS) manufactured by Pozyx. The robot uses the ROS standard navi-
gation stack and moves on a 10m x 10m test bench. They used UWB to estimate both the initial position
and assist in the localisation. Since the platform cannot support heavy-lifting computational algorithms,
they adopted the squared range least squares (SR-LS) algorithm for the fusion. They reported that the
accuracy of open space cases with good LOS is approximately 10cm. Szrek et al. [92] experimented
with a custom mobile platform that is supposed to perform inspections in a GNSS-denied environment.
The robot was not equipped with a LiDAR, but has an IMU, wheel encoders, a visual camera and a
UWB-based INS. They mentioned using a real-time appearance-based mapping (RTAB-Map) [93] as
visual odometry (VO). The test was carried out in a parking lot and ground truth data was provided
by a robotic total station (RTS), which is used for surveying and building construction (submillimeter
and subdegree accuracy). The reported mean error in position estimation was 15cm, mainly based on
inertial and UWB feedback, since the VO was relatively inaccurate in their test case.

Navigation without external IPS is also possible, but accuracy and reliability depend on the case.
Suleymanoglu et al. [94] performed tests in an office building corridor. The space was restricted, and
there was no report of moving obstacles. However, there is a lack of distinctive features as the corridors
are featureless environments. They used a specific variation of a graph-based simulation on the SLAM
algorithm and achieved a localisation error of 0.3m. Abdullah et al. [95] presented another example of
indoor navigation without IPS to detect cracks. The visual detection part was performed using a YOLO
object detector, but at this point the focus was on localisation. They used a relatively small platform,
such as Turtle Bot 2, equipped with a Kinect v2 RGB-D camera to create the point cloud. In terms of
navigation, they used ORB-SLAM2 [96]. Unfortunately, they do not report the accuracy of using the
approach in a real environment; they only base their evaluations on experiments on the TUM dataset
[97], a benchmark evaluation of RGB-D systems. Liu et al. [98] suggested a modified version of adaptive
Monte Carlo localisation (AMCL) algorithms that is applicable to 3D LiDARs. The AMCL is part of
the classic navigation stack in ROS and is suitable for planar LiDARs. They used an absolute tracker to
evaluate performance using a tracked mobile platform. In addition to their custom AMCL derivative,
they reported the accuracy of the ROS navigation stack and Google’s Cartographer [99]. The mean error
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in the positions was 10cm for the former and 8cm for the latter, and the error in the heading was 9o and
5.5o, respectively. The results revealed that the heading accuracy of a skid-steering robot with tracks is
generally lower than that of robots with explicit steering due to inherent slippage and complex wheel-
ground interactions. However, the location estimation was satisfactory. Supper et al. presented a similar
custom robot, but this time using differential drive kinematics with very similar sensors [100]. They
conducted the experiment in an area of approximately 46m2 and used a motion capture system to record
the ground truth. It was an interesting experiment, since they performed it outdoors, using only on-board
sensors and without the assistance of GNSS. In terms of software, they used the ROS navigation stack.
After performing 21 tests for different positions within the test bench, they came up with approximately
20cm positional accuracy and 5o in heading.

5.0 Smart infrastructure and enabling considerations
Moving from individual robots to the operational environment, this section explains how hangar lay-
out, embedded sensors and communication networks converge to support safe real-time human-robot
collaboration. Sustainability and cybersecurity are treated as first-class design constraints rather than
afterthoughts.

5.1 Smart hangar
Perhaps one of the most notable efforts to introduce automation and data-driven aircraft maintenance
was when Airbus presented the concept Hangar of the Future in 2016 (Fig. 10) as an innovative ini-
tiative to revolutionise aircraft maintenance through digitalisation and automation [101]. The project
combined technologies such as drones, collaborative robots, sensors and data analytics with aircraft
documentation and in-service data to optimise maintenance processes. A key component was the devel-
opment of robotic inspection systems, including an advanced drone that can inspect an entire aircraft
in just 30 minutes. Using these technologies, Airbus was aiming to improve maintenance efficiency,
reduce aircraft downtime and improve the quality of inspections. The Hangar of the Future represented
a significant step towards transforming the aircraft MRO sector, leading to substantial cost savings and
improved safety in the aviation industry. Shin et al. presented another approach to the concept cited
also as Hangar of the Future, specifically for composite aircraft [102]. Their concept integrates fixed
ultrasonic propagation imaging devices and tilting mirrors to scan the skin of the aircraft, emitting laser
ultrasonic beams at a scanning rate of 20kHz. They tested their systems using two CFRP coupons, man-
aging to identify defects in the scale of 24mm × 24mm, but the system was far from able to fully scan
a commercial aircraft in a real hangar. They also did not mention anything about additional automation
and data analysis of alternative data sources. It was rather a proof of concept of a potential fixed NDT
system in the hangar. Rice et al. [103] presented another interesting example of how researchers think of
the concept of the Hangar of the Future. In their approach, fixed cameras, drones and handheld devices
capture images from the aircraft. The images were sent to a central server that processes the images
using advanced computer vision techniques. The results could be visualised on maintenance personnel
tablets and allow them to decide if the issues require further investigation. In addition, by combining
stereo cameras and the 3D aircraft model, they could provide image localisation, which was eventually
linked to defect localisation.

Another strategic factor relevant to I5.0 is sustainability, pushing the aviation industry to evolve from
focussing on economic benefits to embracing the ‘triple bottom line’, which encompasses social and
environmental impacts alongside financial performance. The International Civil Aviation Organization
(ICAO) Global Coalition for Sustainable Aviation monitors progress in this area. In the near term, oper-
ations and infrastructure present significant opportunities to improve sustainability. The concept of a
sustainable hangar, beyond the smart features, is closely linked with the Hangar of the Future concept.
This smart sustainable hangar represents an excellent opportunity for innovation by integrating advances
in hangar infrastructure, robotics and artificial intelligence technologies [104]. Successfully developing
such a hangar could lead to better safety and environmental impact.
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Figure 10. The Hangar of the Future demonstrator. Credits to Airbus [101].

Although building a smart hangar from the ground up with all the enabling technologies at once is still
a distant goal, new hangars are incorporating some of these technologies, and current hangars might be
updated to include them. In Singapore, ST Engineering’s 84,000m2 hangar complex opens by end-2026;
the facility is designed around Industry 4.0 workflows, paperless operations, and autonomous GSE [105].
In 2024, Delta TechOps achieved FAA approval for the use of autonomous drones for visual inspections,
with plans to implement them at their Atlanta hubs in 2025 [57]. Virgin Atlantic started using digital
sign-off to confirm flight readiness of an aircraft as part of its Engineering Transformation Programme
[106]. Engineers, pilots and other personnel now exchange digital information about the aircraft’s status,
all of which is consolidated into a unified data storage. According to a Royal Aeronautical Society work-
shop, by 2050, fully decarbonised hangars managed by AI are expected to become standard throughout
the industry. The primary barriers to faster adoption include significant initial capital expenditure, chal-
lenges in integration with existing IT infrastructure, the certification of hybrid human-robot processes,
cybersecurity for a broadened data boundary and the need for reskilling the workforce. These challenges,
rather than the technology’s readiness, are the main concerns for widespread implementation.

5.2 Robot-enabling hangar environment considerations
New hangars should be designed assuming that autonomous robotic platforms will perform maintenance
and repairs together with technical personnel in the near future. Emphasising operational and naviga-
tional elements, as well as collaboration between humans and robots, is essential for guaranteeing safety
and expediting the advancement of novel automation and robotic implementations. Integrating robotics
into hangar operations requires deliberate environmental design to optimise functionality, safety and
efficiency. Although there are no dedicated articles related to hangars, it is possible to draw on research
on robot-friendly facilities such as hotels, residential, hospitals and industrial settings. The following
principles could be adapted for hangars:

• Physical Infrastructure and Spatial Design
Hangars should emphasise flexible configurations to support various robotic functions, including
aircraft inspection, parts transport and maintenance. It is vital to maintain wide and clear paths
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for mobile robots, such as autonomous guided vehicles, to safely manoeuvre around aircraft
and equipment, preventing collisions, as presented by Ivanov and Webster [107] for hospital-
ity facilities. Sufficient overhead clearance is necessary for drones or robotic arms to carry out
inspections on the sides and upper sections of the fuselage. Utilising high-contrast visual mark-
ers or Quick Response (QR) tags on floors and walls can assist robots with navigation, allowing
accurate localisation and path planning, as cited by Niechwiadowicz and Khan [108] for hospital
facilities. Modular storage units with standardised interfaces can facilitate quick robotic access
to tools and spare parts. Dedicated areas for robots equipped with wireless charging pads will
reduce idle time. Incorporating sloped floors or drainage systems can help alleviate slip risks in
hangars where hydraulic fluids or de-icing chemicals are present.

• Embedded Sensors, Networks and Digital Integration
A robot-inclusive hangar requires embedded sensor arrays, such as UWB, RFID and/or cameras,
for real-time mapping and localisation. These systems enable robots to track aircraft positioning,
detect human workers in shared spaces, and monitor hazardous conditions (e.g., fuel leaks).
Centralised data hubs, akin to the certification model of network security protocols, facilitate
secure interactions between robots, aircraft systems and maintenance databases. High-speed data
networks and edge computing nodes, as advocated in Tan et al. [109] robot inclusion framework,
reduce latency for time-sensitive tasks such as emergency response.

• Safety and Human-Robot Collaboration
Safety is paramount in environments where robots and humans coexist. Hangars should imple-
ment safety protocols, such as geofencing to restrict robot movement in areas occupied by
humans, sensitive equipment or dangerous areas for the robots themselves, for example, close
to the hangar roof. Collaborative robots equipped with advanced sensors can work in conjunc-
tion with human technicians to perform tasks such as component assembly or inspections safely.
Visual and auditory alerts can also be used to signal robot activity, ensuring clear communication
between human workers and machines.
In manufacturing environments such as the automotive industry, there is already a well-defined
framework that ensures safe collaboration. The task-level analysis refers to the harmonised
collaborative robot safety standards ISO10218-1:2025 (industrial robots [110]), ISO 102218-
2:2025 (industrial robot applications and robot cells [54]) and ISO/TS15066:2016 (robots and
robotic devices – collaborative robots [58]), which set specific requirements such as speed
and separation, power and force and contact force limits. The methodology outlined in RIA
TR R15.306 [111] establishes the framework to define the requirements of a formally doc-
umented, task-oriented risk assessment. Specifically for the MROs, there is no evidence that
a similar framework exists. However, EC Implementing Regulation (EU) 2021/1963 made
Safety Management System (SMS) mandatory for all EASA Part-145 organisations, where
although there is no specific mention in robotic applications, the introduction of collaborative
or autonomous robots could be treated as a new technology/working method and enter the haz-
ard identification and risk assessment cycle of that SMS. Moreover, the EASA AI Roadmap
2.0 [112] outlines a human-centric framework for integrating AI in aviation, prioritising safety,
ethical considerations and structured rulemaking to ensure trustworthy AI deployment.

• Maintenance of Robotic Platforms
To sustain long-term operations, hangars must include provisions for robotic maintenance and
scalability, as detailed by Ivanov and Webster [107]. Dedicated maintenance zones equipped
with diagnostic tools can facilitate quick repairs or upgrades for robotic systems.

• Scalability Considerations
Additionally, scalable designs that allow for the integration of new robotic technologies will
future-proof the hangar as advancements in automation continue to evolve. Moreover, transform-
ing current ground support machinery, such as scissor lifts and cherry pickers, into autonomous
units could facilitate the conversion of native equipment into new robotic forms. Additionally,
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non-engine-driven devices, like tool cribs, have the potential to be transformed into autonomous
systems. According to Nakamura and Yuta [113], the situation becomes particularly challenging
when the robot is tasked with pulling a trailer. The robot needs to manoeuvre around people or
obstacles around the trailer safely.

• Certification and Standardisation
As more wok and research will be carried out, policymakers should compile a smart hangar-
specific certification framework that could integrate metrics from multiple domains such as:
- Mobility Index: Pathway width, grade, and slope compliance.
- Task Efficiency: Time-to-completion benchmarks for robotic inspections versus human per-

sonnel linked with key performance indexes related to accuracy.
- Safety Score: Incident rates linked to environmental factors (e.g. lighting, surface friction).
- Interoperability: Compatibility with the work carried out under the ISO TC184/SC2 service

robot standards [114].

By integrating these interdisciplinary insights, hangar designers can develop settings that align
robotic self-governance with the distinct requirements of aviation operations, addressing aspects such
as spatial flexibility and cybersecurity robustness.

• Cybersecurity and Data Governance
As in modern MRO initiatives, it is expected to have interconnected mobile robots, industrial IoT
sensors, aircraft data buses, and back-office systems, the smart hangar digital perimeter becomes
a high-value target. Therefore, a defence-in-depth architecture is mandatory. Incorporating these
recommendations into the ecosystem technologies of the smart hangar ensures that the extended
data perimeter is secure, enabling regulators to jointly assess both cyber and physical safety.
Some of the suggestions to improve the digital security of the smart hangar are the following:
- Align systems that exchange data with the aircraft with the process of the Trusted Aerospace

Cybersecurity Framework Guide Process of the Radio Technical Committee for Aeronautics
(RTCA) DO-326/ED-202 [115] (often addressed as Cyber DO-178) and its assurance levels.
Architectures should satisfy the obligations of EASA Part-IS [116] and the EU Network and
Information Security Directive (NIS 2) regarding ensuring the resilience of critical entities
[117]. IATA Aviation has also published controls that present a cybersecurity strategy that
involves recommendations from a specific working group and a restricted forum of experts
[118].

- Implement zero-trust principles for mobile robots by mandating certificate-based authen-
tication for each robot, deactivating unnecessary protocols and deploying digitally signed
over-the-air updates to mitigate vulnerabilities.

- Designing security-aware workflows involves integrating cyber-risk assessment with current
safety-hazard analysis, facilitating comprehensive route planning. Consequently, procedures
such as warehouse access and task-card synchronisation are performed solely after successful
authorisation confirmation. In instances of spoofing detection or integrity compromise, the
robots are programmed to return to a secure state.

- Apply industrial operation technology hardening. The different networks, such as
IT/OT/safety, should be segmented according to the zones and conduits described in IEC62443
[119]. Moreover, each robotic cell can incorporate applicable security measures, including the
concept of control families outlined in NIST SP800-82 rev3 [120].

- Improve personnel competence and improve auditing. As an example, Part-145 internal audits
could be enhanced to include ISO 27,001 [121] controls, penetration testing and phishing drills
so maintenance personnel are aware and follow safety guidelines.
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5.3 Real-time enabling technologies and control
Robotic platforms, navigation systems and smart hangar infrastructure have been demonstrated to offer
essential spatial capabilities for automated NDI. The integration of these capabilities, essential for robots
to co-exist safely with human technicians, depends on their ability to sense, decide and act within defined
time constraints. Consequently, real-time execution is important, not merely an optimisation, but essen-
tial to obtain safety certification, allow human-robot interaction and gain regulatory approval. This
subsection delineates the specific timing constraints in smart hangar robotics and reviews the sensor,
communication and computing technologies capable of consistently satisfying these requirements.

The assured autonomy in a smart hangar ultimately depends on whether sensing, communication,
computation and actuation can be closed in real-time behaviour. Modern industrial LiDARs stream
up to 2 million pulses per second, generating dense point clouds, with rates ranging from 1Gbps to
10Gbps, while high-speed RGB-D cameras routinely deliver 60–90fps. When these sensors are paired
with embedded GPUs like NVIDIA Jetson Orin (275 TOPS), end-to-end latencies will be reduced to
just a few tens of milliseconds. This ensures that robotic platforms receive the essential data promptly
to make navigation route decisions.

UWB anchors offer 50 to 100Hz pose updates with 3 to 5ms time-of-flight latency, filling the gap
when GNSS is denied. Deterministic communication inside the hangar is a feasible option provided
by time sensitive networking (TSN). As an example, the emerging IEEE P802.1DP [122] aerospace
profile reports sub-µs jitter across gigabit Ethernet backbones, allowing distributed control across
mobile platforms and fixed NDT cells. General profiles also exist for Ethernet beyond aerospace-specific
applications. These profiles are defined in IEC/IEEE 60,802 [119] and provide the foundational mecha-
nisms for deterministic industrial communication. When wireless communication is necessary, 5G NR
URLLC links (less than 1ms air latency) have been tested in cloud robotic repair cells [123]. Similarly,
Wi-Fi 7 (IEEE 802.11be) incorporates targeted features designed to accommodate real-time applications
that demand latency constraints and can support soft real-time operations [124].

In mobile robots, critical safety processes could be executed in real-time loops under a PREEMPT-
RT kernel or micro-ROS executor. The ROS 2 real-time working group and vendor drivers have
demonstrated bounded worst-case execution times for navigation and actuator control [125].

Although the design of the entire hangar ecosystem adhering to hard real-time behaviour is more
than a challenging task, through the collaborative design of robots integrated with advanced sensors,
utilising systems such as TSN/5G for efficient transport, and the implementation of time-deterministic
computation and control mechanisms, the smart hangar is adept at ensuring deterministic outcomes. This
capability can facilitate the alignment with regulatory standards, which are imperative for facilitating
safe and effective operations in environments where human and robotic interactions coexist.

6.0 Comparison between manual and automated inspection
Nowadays, the current inspection process is mainly manual. A typical task begins with the initiation
of a task card. In larger MRO businesses, Maintenance Control generates a work order in the back-end
system and assigns it to a licensed engineer. In contrast, smaller MROs might utilise a paper-based task
or a line in a spreadsheet. The team member assigned to the task must set up and organise supporting
equipment, including wheel stands, scaffolding and fall arrest barriers, and ensure that all necessary
tools, such as a calibrated flashlight or mirror, are on hand. In inspection-related tasks (visual/handheld),
the engineers walk around and touch inspection; the typical sequence is fuselage, left wing, right wing
and empennage. They record discrepancies on the task card, including the ATA zone and rough size. If
a lightning strike or dent is found, a second specialised inspection is triggered using specific equipment
(e.g. PAUT, HFEC). Finally, the inspector signs the Part-145 release [126], and the feedback is retyped
by the planning staff into AMOS/M&E software.

The setup time may differ depending on the inspection type and location. As an example, 1A check
inspection on the ailerons (zones 306/406) for B737, as described in rows 1 and 2 of Table 1, includes
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access (move a wheeled two-step platform to the trailing edge of the wing, secure brakes), visual
(examination of the surface and mechanical components with a torch), record (manually on notes and
take photographs) and close-up (move platform back to the base and fill task card).

Operators and MRO facilities typically adjust OEM MPD recommendations using multipliers that
reflect their specific operational efficiencies [127]. As a general rule of thumb, highly efficient mainte-
nance teams with optimal conditions use a multiplier of 1.25. The industry standard for most operations
is generally regarded as a 1.5 multiplier. In more demanding situations or when dealing with less expe-
rienced crews, a multiplier of 2 is ultimately used. In this case, adopting the 1.5 multiplier results in a
9-minute inspection for each side (6 minutes x 1.5).

Automating aileron inspection could involve employing a quad-rotor capable of hovering near the
trailing edge of a B737 and capturing video as it navigates a predetermined path along the hinge line.
An estimate of the duration to complete an aileron sweep is approximately 4 minutes per side. The
typical aileron length of a B737 is assumed to be between 3 and 3.5 metres. A drone flying slowly at
0.1m/s, executing four passes (top, front, back angle and overlap), could complete the task in less than
3 minutes, with an additional 0.5 minutes each for take-off and landing. Using an object detector for
defect detection, such as YOLOv9, the system can achieve an mAP50 of approximately 0.70 to 0.75 in the
identification of various artefacts when using, as an example, the approach suggested by Suvittawat et al.
[128]. Consequently, the use of drones can eliminate the need for work-stand logistics, allow technicians
to remain on the ground, provide digitised task card entries that seamlessly integrate with the M&E
system, and reduce overall time to less than 4 minutes per side, which is a reduction in time of more
than 50% compared to the manual approach. In addition, it eliminates the possibility of transcription
error in the report, and feedback would be filled in automatically as the output of the procedure. The last
step of signing the Part-145 release is still a responsibility of the inspector, keeping the human in the loop,
and ensuring the control of the procedure. This example aptly demonstrates the digital transformation
of a traditionally manual procedure within the smart hangar, enhancing the working environment for
maintenance engineers and involving them in the decision-making process.

Within the commercial industry, certain companies provide specialised services for inspecting drone
aircraft. The concept proposed by Airbus through its Hangar of the Future initiative highlighted that
integrating a ground platform with drone technology can significantly reduce the data acquisition time
from 2 hours to 15 minutes [101]. Half a decade later, Airbus has officially included Donecle drones in
its Aircraft Maintenance Manual (AMM), specifically to perform lightning inspections on A320 family
aircraft [129]. This indicates the endorsement of both the EASA and FAA, which is expected to lead to
the overcoming of regulatory obstacles worldwide. In less than 45 minutes, the system inspects all upper
areas of the aircraft to identify lightning strikes [56]. Mainblades asserts that, in contrast to the typical
time required for a manual visual assessment of a widebody aircraft, their drone inspection method sig-
nificantly reduces the time required by a factor of eight [130]. This reduction in inspection time leads
to resource savings in excess of £6,600 per aircraft, while the operational benefit, estimated through
the lease cost savings from reduced downtime, exceeds £15,800. Applying industry-standard averages
for out-of-service costs of aircraft, the operational benefit per widebody inspection would amount to
£165,000. Thus, implementing a comprehensive strategy that incorporates the smart hangar infras-
tructure and facilitates robotic-assisted maintenance can provide substantial financial advantages while
enhancing flight safety.

7.0 Advanced technologies for defect detection and human factors
Machine vision has evolved significantly, moving from traditional methods to advanced DL techniques.
This evolution has greatly enhanced the detection capabilities of defects in various industries, including
aircraft maintenance [131]. Numerous examples exist in which different algorithms are used to identify
artefacts in aircraft inspections. After 2010, when the research community began to experience an AI
spring, DL models, CNNs, were developed to identify features directly from raw images through training
on large datasets [132]. This process eliminates the need for manual feature definition.
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Table 3. Comparison summary of different detection approaches

Study (Year) Algorithm and Sensor Drones Metric Result
Avdelidis et al. (2022) Custom CNN, UAV RGB 576 Overall accuracy ≈ 80%
Plastropoulos et al. (2024) Efficientdet-d1 CNN, UAV

RGB
1,518 APdent = 0.44 ≈ 71%

Ding et al. (2022) Mask Scoring R-CNN,
hand-held RGB

276 mAP50 ≈ 87%

Wang et al. (2025) Attention-enhanced YOLO
(TunnelScan), UAV RGB

1,220 mAP50 ≈ 86.1%

Human inspectors Visual walk around NA Miss-rate ≈ 32%

Visual inspection is considered one of the simplest non-contact NDT methods. More than 80% of the
inspections in large transport aircraft have been reported to be visual inspections [133]. The usability
and popularity of the visual part makes it the perfect candidate for employing advanced machine vision
techniques for automated defect detection. Thermography, as an imaging approach, has attracted much
interest in applying deep neural networks to identify defects, mainly in composite materials. Another
NDT technique used in aircraft inspection is phased array ultrasonic testing (PAUT), which identifies
small defects in composite materials and ensures structural integrity. However, this is a contact NDT
technique, and it is more challenging to use ground-robotic platforms unless there is a manipulator/cobot
or a crawler (Table 3).

The most frequent defects in aircraft skin include impact damage, dents, buckles, fatigue cracks,
scratches, paint detachment, missing parts, lightning strikes and voids. Avdelidis et al. [134], in coop-
eration with TUI Airlines, developed an approach based on CNN to identify seven types of defects
(missing paint, dents, lightning strikes, etc.). The data set (576 images) was limited, but it achieved
approximately 80% accuracy. Plastropoulos et al. [135] in a similar experiment focused on dents using
a dataset of 1,518 images. Using Efficientdet-d1, they managed to get 71% average precision for dents.
Ding et al. [136] progressed further and tried to perform image segmentation on detected defects. They
used Mask Scoring R-CNN, which introduces an attention mechanism, a feature fusion module and a
custom classifier head. They focused on clearly visible defects, such as paint detachments and scratches,
instead of the challenging ones, such as dents. Their dataset was also very limited (276 images), but
they achieved an average precision of up to 87%. Boyuk et al. [137] reviewed visual inspection meth-
ods using DL approaches. They compared YOLO and Faster R-CNN-based approaches to detect dents,
cracks and scratches on the skin of the aircraft. They mentioned that YOLO is more suitable due to its
speed and compatibility with restricted computational resources in mobile computing, and they assessed
the accuracy of CNN-based methods. Recent progress extends those advantages to fully on-board real-
time operation. Wang et al. [138] developed an attention-enhanced YOLO variant (TunnelScan) on a
quad rotor while achieving a mAP0.5 of 86.1% in multiple defects in the tunnel lining (cracks, spalling,
leaks, bolt connection) and a detection speed of 19.6fps. Their lightweight GLUConv and ms-FPN back-
bone addresses the same small target/large surface challenge seen in aircraft skin inspection, suggesting
that importing such architectures could increase detection throughput without increasing the cognitive
load on inspectors, thus supporting the human-centric aims of Industry 5.0. Overall, the following main
points appear to hold:

• Mask-RCNN achieves significant accuracy in stationary conditions, yet YOLO-based single-
stage detectors match this performance and operate in real time, which is essential for integration
with drones or collaborative robots.

• Most DL approaches consistently exceed the accuracy of approximately 68% typically achieved
by manual visual examination, highlighting the advantages of automating initial defect screening.
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• Reported datasets remain small (1,500 images max). There is a need for a larger data set and
shared benchmarks.

Using active thermography approaches, internal defects such as voids, delamination, or even liquid
inside the internal composite (i.e. honeycomb) can be revealed. D’Orazio et al. [139] demonstrated that
the use of neural networks in a sequence of images can identify defects in different types of compos-
ite materials (honeycomb, Nomex and Syncore). In terms of thermal sources, they used Xenon quartz
lamps to produce quasi-uniform heating. The accuracy was very high, most of the time 100%, but the
architecture is rather outdated considering the use of a 3-layer fully connected neural network. Saeed
et al. [140] presented an approach to estimate the depth of a defect using a combination of CNN and a
deep feed-forward neural network (DFF-NN), the first to draw the boundary box and the second to esti-
mate the depth. In the experiments, a 3D printed CFRP coupon was used with many different sizes and
depth artefacts. Their setup included halogen lamps as a heating source. Although they do not mention
the overall performance metrics of the testing phase, the description of the results is encouraging that
methods can be further developed to achieve better results. Visual inspection is part of almost all quality
control procedures and the aviation industry is one of these. Humans perform that inspection and sign
off the reports. See et al. [141], in their analysis, mentioned that based on Ref. (142) the error rates in
complex inspections could range from 20% to 30%. Drudy et al. [143] suggested in their research that
the level of error in visual inspection of aircraft is 32%, which could be justified because inspection
occurs in the field and not in a structured environment (such as a factory or laboratory) and, in addition,
the checks are not always trivial.

As was mentioned in the incentives for moving towards Industry 5.0, humans are at the centre, and
automation needs to be integrated seamlessly as an intelligent tool. Consequently, in this revised capac-
ity, humans might not be involved in the beginning stages of the process but are tasked with making the
ultimate decision, fundamentally changing their responsibilities [144]. Elevated responsibility implies
that maintaining alertness becomes increasingly crucial. The individual is now in charge of monitoring
the system to guarantee its ongoing operation and may perform periodic accuracy checks, necessitating
more active involvement in the process. In this case, human-machine interfaces (HMI) and graphical user
interfaces (GUI) have become increasingly important in translating information into a detailed, plausi-
ble and accurate representation. Imagine a human inspector screening defects on aircraft skin without
high-resolution monitors or getting poorly focused images. There are also efforts to maintain awareness
and motivation at high levels by introducing gamification concepts in repetitive boring tasks [145]. So,
it might initially seem that humans have more manageable tasks to perform, but this just removes the
laborious part of physical activity; the responsibility of deciding and managing the procedure remains
the same, leaving space for errors and inaccuracies.

8.0 Conclusions
The integration of advanced robotics and technologies into aircraft maintenance and inspections rep-
resents a transformative shift in the maintenance, repair and overhaul industry. Unlike current reviews
in the literature, this comprehensive review, apart from presenting the potential robotic approaches in
the MRO landscape, has moved one step forward by examining interoperability within current aviation
systems and suggests directions in designing new robot-friendly hangars.

The transition from manual to automated inspection processes requires not only technological
advancements, but also a reconfiguration of existing workflows to accommodate human-machine col-
laboration. The principles of Industry 5.0, with their focus on human centricity and sustainability,
underscore the importance of designing intelligent tools that augment human expertise rather than
replace it. This approach ensures that automation supports technicians in performing repetitive or
hazardous tasks while maintaining their critical decision-making role in the maintenance process.
For instance, the aileron inspection process was transformed by initially mapping out the old legacy
workflow, followed by showcasing the automated version.
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Despite these advancements, several challenges remain. The integration of robotic systems with
legacy IT infrastructures, the high cost of initial implementation and resistance to change within the
workforce are significant barriers that must be addressed. Furthermore, the development of new hangars
that are friendly to robotic deployments but are safe to work along with humans and safe to exchange
data and monitor is essential for widespread adoption. In addition, the shift from manual inspections to
entirely robotic and data-centric operations can only be achieved successfully if cybersecurity protocols
are developed alongside safety and productivity goals, maintaining the trustworthiness of the enlarged
data perimeter.

The journey to achieving fully automated aircraft inspections is undoubtedly intricate and involves
multiple aspects. The potential benefits, ranging from improved operational efficiency to improved safety
and sustainability, make this transition a necessity. Future research should focus on addressing existing
gaps in technology integration, fostering industry collaboration for standardisation and ensuring that
human factors remain central to this digital transformation.
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