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1. Introduction

This paper is focussed on the approximation of brittle fracture energies for linearly
elastic materials, by means of non-local functionals defined on Sobolev spaces. The
asymptotic behaviour of these functionals will simultaneously show the emergence
both of effective energies for the elastic deformation (which may be, e.g., the out-
put of homogenization), and of Griffith-type surface energies accounting for crack
formation. In turn, this result can be further generalized to the setting of stochastic
homogenization with fracture.

Precisely our results will extend the range of application of the recent papers
[17, 22] while also providing some relevant technical improvement. We briefly com-
ment on these previous contributions, in order to introduce our results. There, an
approach originally devised by Braides and Dal Maso [13] for the approximation of
the Mumford-Shah functional has been generalized to the linearly elastic setting.
Namely, it was shown that, for a given bounded increasing function f : R

+ → R
+
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Non-local approximation of free-discontinuity problems in linear elasticity 1061

the energies

1
εk

ˆ
U

f (εkW (e(u)) ∗ ρk(x)) dx , (1.1)

Γ-converge, in the L1(U)-topology, to the functional

α

ˆ
U

W (e(u)) dx+ β

ˆ
Ju

φρ(νu) dHn−1, (1.2)

with α = f ′(0) and β = limt→+∞ f(t). Above, ρk are rescaled convolution kernels
with unit mass and compact convex symmetrical support S, φρ is (twice) the sup-
port function of S [see (2.4) for its precise definition], W (e(u)) is a convex elastic
energy with superlinear p growth depending on the symmetrized gradient e(u) of
a vector-valued displacement u, whose jump set is denoted by Ju. Notice that the
effective domains of the approximations and of the limit are different. Actually (1.1)
is finite on the Sobolev space W 1,p(U ; Rn), while the energy space of (1.2) is the
one of generalized functions with bounded deformation GSBDp(U), introduced in
[11].

We stress that the above results allowed one for a general (convex) bulk energy.
The proof strategy cannot rely, at least when estimating the bulk part, on any
slicing procedure. The latter is instead successful in the particular case W (ξ) = |ξ|p,
considered for instance in [20]. We also remark that the results of [17, 22] were
obtained under an additional structural assumption on the kernels ρk, which have
to be radial with respect to the norm induced by S. In the particular case considered
in [20], this restriction was instead not needed.

A natural extension of the aforementioned models allows one to include an explicit
dependence on k and on the space variable of the energy density. This amounts to
consider functionals of the form

1
εk

ˆ
U

f (εkWk(·, e(u)) ∗ ρk(x)) dx , (1.3)

whose limit behaviour is the object of the present paper. Functionals of the form
(1.3) can be used to approximate (1.2) with some gain in the ease of minimization,
for a proper choice of Wk. Actually, this more general setting is also suitable for
further applications, if one thinks about the mechanical counterpart of the model.
Indeed energy densities of type Wk(y,M), where y is the position in the reference
configuration, are customary when dealing with heterogeneous material with some
microstructures. The prototypical example is the case of homogenisation, that is,
when Wk(y,M) = W

(
y
δk
,M
)

with δk ↘ 0. Taking this point of view amounts to

regard (1.3) as a nonlocal linearly elastic model, with a truncated potential 1
εk
f(εk·)

accounting for the cost of breaking the elastic bonds on regions of size εk. In such
a case, one is interested in deriving an effective asymptotic model for (1.3).

The main result of our paper is contained in theorem 2.1. There we show that
the functionals in (1.3) Γ-converge to a limit energy of the form

α

ˆ
U

W (x, e(u)) dx+ β

ˆ
Ju

φρ(νu) dHn−1 . (1.4)
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1062 R. Marziani and F. Solombrino

Above, the limit bulk density W can be characterised in terms of cell formula
[see (2.7)–(2.8)]. Remarkably, that coincides exactly with the asymptotic for-
mula that one would obtain by considering the limit behaviour of the local
energies

´
U
Wk(x, e(u)) dx in the Sobolev space W 1,p(U). Hence, a decoupling

effect between bulk and surface contribution occurs, since the volume energy
only depends on f through its derivative at the origin. A similar effect has
been observed in [9] where the analogue of (1.3) for energies depending on the
full deformation gradient was taken into account. On the one hand, the pos-
sibility of using smooth truncations (a tool which is not available in GSBD)
allowed the author there to replace f by a sequence fk and to derive more
general surface energies in the limit. On the other hand, the precise characterisa-
tion of the volume energy density was obtained at the expense of an additional
technical condition on the Wk’s (the so-called stable γ-convergence). It actu-
ally turns out, as an output of our proof strategy, that this extra assumption
can be dropped (see Appendix). Thus, our results also permit some improve-
ment in the previous literature about non-local approximation of free-discontinuity
problems.

We now come to the description of our proof technique. The most difficult
point is the lower bound for the bulk contribution. This is done in proposi-
tion 5.1, by means of a localisation and blow-up procedure which contains some
elements of novelty in the non-local setting. More precisely, we consider the blow-
up of sequences with equi-bounded energies at a Lebesgue point for the limit
energy. A crucial task is to gain a uniform control on the Lp norm of the sym-
metrized gradients of the blow-up functions up to sets with vanishing perimeter.
This allows us to apply [18, lemma 5.1] (which relies on the Korn-type inequal-
ity of [6]): we can substitute, with almost no change in the energy, the above
mentioned sequence with a more regular one bounded in W 1,p. Exploiting the
properties of f , we are then reconducted to analyse the limit behaviour on small
squares of a local energy in W 1,p, which can be estimated from below via a cell
formula.

An optimal estimate from below for the surface term can be obtained by means
of a slicing procedure (proposition 5.3). As for the Γ-limsup inequality it can be
achieved by a direct construction for a class of competitors with regular jump
set, which are dense in energy. Here, we use the classical approximation result of
[7, 10].

We underline that even in the case of (1.1) (i.e., with W not depending on k) we
have some technical improvement in comparison with the result of [17, 22]. First
of all, we do not need anymore to assume the kernels ρk to be radially symmetric.
Secondly, our Γ-convergence argument is carried out with respect to the convergence
in measure instead of the L1 convergence. This is (almost) the natural one for
sequences with equibounded energy (see theorem 2.1-(ii)). It can be indeed shown
that such sequences are compact in the measure convergence up to an exceptional
set U∞, where their modulus diverges. However, this set can be easily made empty
by adding a penalisation term in the energy (see the statement of theorem 3.5 and
remark 2.2).

Eventually, we complement our analysis with a stochastic homogenisation result
theorem 7.4. Namely, we consider functionals of type (1.3) with stationary random
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integrands

Wk(ω, y,M) = W

(
ω,

y

δk
,M

)
, (1.5)

where ω belongs to the sample space Ω of a probability space (Ω, T , P ) and δk ↘ 0.
Following the approach proposed by [12] (which relies on the Subadditive Ergodic
Theorem in [19]) we show that, almost surely, such functionals Γ-converge to a
free-discontinuity functional of the form (1.4) where the bulk energy density is
independent of the space variable. A similar result was obtained in [2] in the context
of elliptic approximation of free-discontinuity functionals.

Plan of the paper. The paper is structured as follows. After fixing the notation,
in § 2, we introduce the problem, discuss the assumptions and state our main results.
§ 3 is devoted to recalling preliminary results which are useful for the analysis. The
proof of theorem 2.1 is carried out through the § 4–6, dealing with compactness,
lower, and upper bound, respectively. In § 7, we prove a stochastic homogenisation
result theorem 7.4. Eventually in the Appendix, we briefly comment on the result
of [9, theorem 3.2], highlighting that the assumptions made there can actually be
weakened. A complete statement is given for the readers’ convenience in theorem
A.1.

2. Setting of the problem and main results

2.1. Notation

We start by collecting the notation adopted throughout the paper.

(a) n � 2 is a fixed integer and p > 1 is a fixed real number;

(b) M
n×n denotes the space of n× n real matrices; M

n×n
sym and M

n×n
skew denote the

spaces of symmetric and skew-symmetric matrices respectively;

(c) for a subset A ⊂ R
n ∂∗A denotes the essential boundary of A;

(d) Ln and and Hn−1 denote the Lebesgue measure and the (n− 1)-dimensional
Hausdorff measure on R

n, respectively;

(e) for every A ⊂ R
n let χA denote the characteristic function of the set A;

(f) U denotes an open bounded subset of R
n with Lipschitz boundary;

(g) we denote by A(U) and A the collection of all open and bounded subsets of
U and R

n respectively;

(h) If A,B ∈ A(U) (or A) by A ⊂⊂ B we mean that A is relatively compact
in B;

(i) Q and Q′ denote the open unit cube in R
n and R

n−1 respectively with
sides parallel to the coordinate axis, centred at the origin; for x ∈ R

n

(respectively x ∈ R
n−1) and r > 0, we set Qr(x) := rQ+ x (respectively

Q′
r(x) := rQ′ + x);
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(j) for every ξ ∈ S
n−1 let Rξ denote an orthogonal (n× n)-matrix such that

Rξen = ξ;

(k) for x ∈ R
n, r > 0, and ξ ∈ S

n−1, we define Qξ
r(x) := RξQr(x).

(l) for a given topological space X, B(X) denotes the Borel σ- algebra on X. If
X = R

d, with d ∈ N, d � 1 we simply write Bd in place of B(Rd). For d = 1
we write B;

(m) we denote by L0(U ; Rn) the space of measurable functions;

(n) for a, b ∈ R
n the symbol a⊗ b denotes the tensor product between a and b,

while a� b := 1
2 (a⊗ b+ b⊗ a).

Throughout the paper, C denotes a strictly positive constant which may vary
from line to line and within the same expression.

2.2. (G)SBV and (G)SBD functions

We will work with the functional spaces (G)SBV p(U ; Rn) and (G)SBDp(U) for
which we will recall the main properties and refer the reader to [1, 11] for a complete
exposition of the subject. We say that u ∈ L1(U ; Rn) belongs to the space of special
functions with bounded variation, i.e., u ∈ SBV (U ; Rn), if its distributional gradient
is a finite M

n×n-valued Radon measure without Cantor part, that is,

Du = ∇uLn + [u] ⊗ νuHn−1 Ju ,

where ∇u is the approximate gradient, Ju is the approximate jump set, [u] = u+ −
u− the jump opening and νu the unit normal to Ju. A function u ∈ L0(U ; Rn)
belongs to the space of generalised special functions with bounded variation, i.e.,
u ∈ GSBV (U ; Rn), if for any ϕ ∈ C1(Rn; Rn) with support of ∇ϕ compact it holds
ϕ ◦ u ∈ SBVloc(U ; Rn).

We say that u ∈ L1(U ; Rn) belongs to the space of special functions with bounded
deformation, and we write u ∈ SBD(U), if its symmetrized distributional gradient
is a finite M

n×n
sym -valued Radon measure without Cantor part, that is,

Eu =
Du+ (Du)T

2
= e(u)Ln + [u] � νuHn−1 Ju ,

where e(u) is the approximate symmetric gradient with respect to the Lebesgue
measure. On the contrary, the space of generalised special functions with bounded
deformation, GSBD(U), cannot be defined analogously to the space GSBV (U ; Rn)
as if u ∈ SBD(U) and ϕ is as above, then in general ϕ ◦ u /∈ SBD(U). To overcome
this issue, Dal Maso in [11] proposed a definition of this space by relying on a slicing
argument which we describe in the following.

For ξ ∈ R
n \ {0} we let Πξ := {y ∈ R

n : 〈ξ, y〉 = 0}; for any y ∈ Πξ and A ∈ B(U),
we set

Aξ,y := {t ∈ R : y + tξ ∈ A} .
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Given u : U → R
n we define uξ,y : Uξ,y → R by

uξ,y(t) := 〈u(y + tξ), ξ〉 .

If uξ,y ∈ SBV (Uξ,y; R), we set

J1
uξ,y := {t ∈ Juξ,y : |[uξ,y](t)| � 1} .

We then say that u ∈ L0(U ; Rn) belongs to the space of generalised special functions
with bounded deformation, and we write u ∈ GSBD(U), if there exists a bounded
Radon measure λ on U such that uξ,y ∈ SBVloc(Uξ,y) for all ν ∈ S

n−1 and all y ∈ Πξ

and
ˆ

Πξ

(
|Duξ,y|(Aξ,y \ J1

uξ,y ) + H0(Aξ,y ∩ J1
uξ,y )

)
dHn−1(t) � λ(A) ,

for all A ∈ B(U). Eventually, we set

GSBV p(U)

:= {u ∈ (G)SBV (U ; Rn) : ∇u ∈ Lp(U ; Mn×n) and Hn−1(Ju) < +∞} ;

and

GSBDp(U) := {u ∈ (G)SBD(U) : e(u) ∈ Lp(U ; Mn×n
sym ) and Hn−1(Ju) < +∞} ,

where ∇u and e(u) are well defined also in GSBV (U ; Rn) and GSBD(U)
respectively.

2.3. Setting of the problem

Let 1 < p < +∞; let c1, c2 be given positive constants such that 0 < c1 � c2 <
+∞. Let W := W(p, c1, c2) be the collection of all functions W : R

n × M
n×n → R

satisfying the following conditions:

(W 1) W is a Carathéodory function on R
n × M

n×n;

(W 2) (W2) W (x, 0) = 0 for every x ∈ R
n;

(W 3) for every x ∈ R
n, M ∈ M

n×n and S ∈ M
n×n
skew

W (x,M + S) = W (x,M) ;

(W 4) for every x ∈ R
n and every M ∈ M

n×n

c1|M +MT |p � W (x,M) � c2(|M +MT |p + 1) .
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Let f : [0,+∞) → [0,+∞) be a concave1 increasing function such that there exist
α, β > 0 with

lim
t→0+

f(t)
t

= α , lim
t→+∞ f(t) = β . (2.1)

Note that for such f it holds

f(t) � α̂t ∀α̂ > α ; (2.2)

moreover by [22, lemma 2.10] there exist (αi)i∈N, (βi)i∈N sequences of positive
numbers with supi αi = α, supi βi = β such that

f(t) � fi(t) := αit ∧ βi ∀i ∈ N , t ∈ R . (2.3)

Let ρ ∈ L∞(Rn; [0,+∞)) be a lower semi-continuous convolution kernel with´
Rn ρdx = 1 and S := {ρ > 0} bounded, convex, symmetrical and with 0 ∈ S. We

denote by | · |S the norm induced by S, namely,

|x|S := inf{λ > 0: x ∈ λS} .

Under the above assumptions, | · |S is a norm and S = {|x|S < 1}. Then for any
bounded set K ⊂ R

n and x ∈ R
n, we let

dS(x,K) := inf
y∈K

|x− y|S .

For any Borel set E and any r > 0, we denote by Er and E−r respectively the sets

Er := {x ∈ R
n : dS(x,E) < r} , E−r := {x ∈ R

n : dS(x,Ec) > r} .

Finally, we let φρ : R
n → [0,+∞) be given by

φρ(ν) := 2 sup
y∈S

|y · ν| . (2.4)

For δ > 0, we set ρδ(x) := 1
δn ρ

(
x
δ

)
, Sδ(x) := x+ δS.

For k ∈ N let (Wk) ⊂ W, let (εk) be a decreasing sequence of strictly positive
real numbers converging to zero, as k → +∞ and let ρk := ρεk

. We consider the
family of functionals Fk : L0(U ; Rn) → [0,+∞] defined as

Fk(u) :=

⎧⎨⎩
1
εk

ˆ
U

f (εkWk(·, e(u)) ∗ ρk(x)) dx if u ∈W 1,p(U ; Rn) ,

+∞ otherwise .
(2.5)

Here and henceforth, it remains understood that each u ∈W 1,p(U ; Rn) is extended
to a fixed neighbourhood of U to have a well-defined functional. The Γ-limit, as we
will see, is independent of the considered extension. Let x ∈ R

n, M ∈ M
n×n, A ∈ A

1the need for this assumption is in deriving (2.2) which is used for the proof of proposition 6.1.
If W is not depending on k, as in [22], it can be weakened to mere lower semi-continuity.
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and u ∈W 1,p(A; Rn) be fixed. Set uM (y) := My. We then define the minimisation
problem

mk(uM , A) := inf
{ˆ

A

Wk(x, e(v)) dx : v ∈W 1,p(A; Rn), v = uM near ∂A
}
,

(2.6)
and the cell formulas

W ′(x,M) := lim sup
r↘0+

lim inf
k→+∞

mk(uM , Qr(x))
rn

, (2.7)

W ′′(x,M) := lim sup
r↘0+

lim sup
k→+∞

mk(uM , Qr(x))
rn

. (2.8)

Notice that W ′ and W ′′ depend on the given sequence of k and are to be modified
accordingly if one takes subsequences. This will be highlighted in the statement of
our main result.

2.4. Main results

In this Section we state our main results. The first one is a Γ-convergence theorem
for the energies Fk.

Theorem 2.1 Γ-convergence of Fk. Let Fk be as in (2.5). Then the following
hold:

(i) There exists a subsequence, not relabelled, such that for every x ∈ U and every
M ∈ M

n×n, and for W ′, W ′′ as in (2.7) and (2.8) (calculated for the given
subsequence), one has

W ′(x,M) = W ′′(x,M) := W (x,M) . (2.9)

and it holds W (x,M) = W (x, sym(M)). Moreover, Fk Γ-converges with
respect to the convergence in measure to the functional F : L0(U ; Rn) →
[0,+∞] given by

F (u) :=

⎧⎨⎩ α

ˆ
U

W (x, e(u)) dx+ β

ˆ
Ju

φρ(νu) dHn−1 if u ∈ GSBDp(U) ,

+∞ otherwise ,
(2.10)

with φρ as in (2.4);

(ii) Let (uk) ⊂ L0(U ; Rn) be such that supk Fk(uk) < +∞. Set U∞ := {x ∈
U : |uk(x)| → +∞}. Then there exists u ∈ GSBDp(U) such that, up to
subsequence, it holds uk → u in measure on U \ U∞. If in addition

sup
k∈N

ˆ
U

ψ(|uk|) dx < +∞ ,

for some ψ : [0,+∞) → [0,+∞), continuous, increasing with lims→+∞ ψ(s) =
+∞, then U∞ = ∅, so that |u| is finite a.e., and uk → u in measure on U .
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Remark 2.2. The addition of a penalty term of the form
´

U
ψ(|u|) dx to the

energy enforces then compactness in measure, while causing no troubles in the
Γ-convergence analysis. Indeed, such a term is clearly lower semicontinuous, hence
the corresponding lower bound follows immediately. As for the upper bound, if one
takes ψ as in theorem 3.4, the argument of proposition 6.1 can be readily adapted
also in presence of such an additional term. As this is not the core of the argument,
we will neglect lower order terms in our statements and proofs, directly assuming
that convergence in measure holds everywhere. The technical details left to prove
the upper bound are summarized in remark 6.2 for the readers convenience.

The proof of theorem 2.1 is divided into three main steps contained respectively
in § 4, 5 and 6. As a consequence of theorem 2.1 and the Urysohn property of
Γ-convergence [14, proposition 8.3], we deduce the following corollary.

Corollary 2.3. Let (Wk) ⊂ W and let Fk be the functionals as in (2.5). Let W ′,
W ′′ be as in (2.7) and (2.8), respectively. Assume that

W ′(x,M) = W ′′(x,M) =: W (x,M) , for a.e. x ∈ R
n and for every M ∈ M

n×n ,

for some Borel function W : R
n × M

n×n → [0,+∞). Let F defined as in (2.10)
accordingly. Then the functionals Fk Γ-converge with respect to the convergence in
measure to F . Moreover

W (x,M) = W (x, sym(M)) = W ′(x,M) = W ′′(x,M) ,

for every x ∈ U and every M ∈ M
n×n.

We now state a homogenisation theorem without assuming any spatial periodicity
of the energy densities Wk. We start by introducing some notation. We fix W ∈ W
and set

m(uM , A) := inf
{ˆ

A

W (x, e(v)) dx : v ∈W 1,p(A; Rn), v = uM near ∂A
}
,

(2.11)
for all A ∈ A and all M ∈ M

n×n. Let also (Wk) ⊂ W be given by

Wk(x,M) := W

(
x

δk
,M

)
, (2.12)

with δk ↘ 0 when k → +∞.

Theorem 2.4 Deterministic homogenisation. Let W ∈ W and let m(uM , Qt(tx))
be as in (2.11) with A = Qt(tx). Assume that for every x ∈ R

n, M ∈ M
n×n the

following limit

lim
t→+∞

m(uM , Qt(tx))
tn

=: Whom(M) , (2.13)

exists and is independent of x. Then the functionals Fk defined in (2.5) with Wk as
in (2.12) Γ-converge with respect to the convergence in measure to the functional
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Fhom : L0(U ; Rn) → [0,+∞] given by

Fhom(u) :=

⎧⎨⎩ α

ˆ
U

Whom(e(u)) dx+ β

ˆ
Ju

φρ(νu) dHn−1 if u ∈ GSBDp(U) ,

+∞ otherwise ,
(2.14)

with φρ as in (2.4). Moreover Whom(M) = Whom(sym(M)) for all M ∈ M
n×n.

Proof. Let W ′, W ′′ be respectively as in (2.7) and (2.8). By corollary 2.3, it is
sufficient to show that

Whom(M) = W ′(x,M) = W ′′(x,M) , (2.15)

for all x ∈ R
n andM ∈ M

n×n. We fix x ∈ R
n,M ∈ M

n×n, r > 0 and k ∈ N. For any
u ∈W 1,p(Qr(x); Rn) with u = uM near ∂Qr(x), we let uk ∈W 1,p

(
Q r

δk

(
x
δk

)
; Rn

)
be given by uk(y) := 1

δk
u(δky). Then clearly uk = uM near ∂Q r

δk

(
x
δk

)
. Moreover

by performing the change of variable ŷ = y
δk

, we find

ˆ
Qr(x)

W

(
y

δk
, e(u)

)
dy = δn

k

ˆ
Q r

δk
( x

δk
)

W (y, e(uk)) dy .

Hence in particular

mk(uM , Qr(x)) = δn
k m

(
uM , Q r

δk

(
x
δk

))
=
rn

tnk
m
(
uM , Qtk

(
tk

x
r

))
,

with tk := r
δk

. Eventually passing to the limit as k → +∞ by (2.13), we deduce

lim
k→+∞

mk(uM , Qr(x))
rn

= lim
k→+∞

m
(
uM , Qtk

(
tk

x
r

))
tnk

= Whom(M) .

�

3. Some preliminary results

In this section, we collect some useful results that will be employed throughout the
paper. We start by recalling a Γ-convergence result for the bulk energies defined
in (3.1) (theorem 3.1) and a Γ-convergence result for one-dimensional non-local
energies (theorem 3.3). To follow we recall a density and a compactness result
(cf., theorems 3.4 and 3.5). We conclude this section with a series of technical
lemmas (cf. lemmas 3.6, 3.7, 3.8 and corollary 3.9).

We consider the family of functionals Ek : L0(Rn; Rn) ×A → [0,+∞] given by

Ek(u,A) :=

⎧⎨⎩
ˆ

A

Wk(x, e(u)) dx if u ∈W 1,p(A; Rn) ,

+∞ otherwise .
(3.1)
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Theorem 3.1 Γ-convergence of Ek. Let Ek be as in (3.1). Then there exists a
subsequence, not relabelled, such that for every A ∈ A the functionals Ek(·, A) Γ-
converge, with respect to the convergence in measure, to the functional E(·, A) with
E : L0(Rn; Rn) ×A → [0,+∞] given by

E(u,A) =

⎧⎨⎩
ˆ

A

W (x, e(u)) dx if u ∈W 1,p(A; Rn) ,

+∞ otherwise ,
(3.2)

where for every x ∈ R
n and every M ∈ M

n×n

W (x,M) = W (x, sym(M)) = W ′(x,M) = W ′′(x,M) , (3.3)

with W ′, W ′′ as in (2.7) and (2.8) for the given subsequence. The same Γ-
convergence holds with respect to the Lp

loc(R
n; Rn) convergence.

Observe that the above theorem yields in particular a subsequence for which
(2.9) holds. From now on, it remains understood that such a subsequence has been
fixed, without relabelling. The proof of theorem (3.1) is rather standard and follows
by the localisation method (see e.g., [14, Sections 18,19]) and by suitably adapting
the integral representation result in [3, theorem 2] to our setting with the help
of Korn-Poincaré inequality. For this reason we omit the proof here and we refer
the reader to [18, proposition 3.13] for more details. We only highlight that the
result holds also for non regular open bounded subsets of R

n. Since this may not
be immediately clear from the statement given in [18, proposition 3.13], we discuss
this point in the remark below.

Remark 3.2. Let A be any open bounded subset of R
n and u ∈W 1,p(A; Rn).

We show that there exists a sequence (uk) ⊂W 1,p(A; Rn) such that uk → u in
Lp(A; Rn) and Ek(uk, A) → E(u,A). With the use of Korn-Poincaré inequality,
it is clear that this can be done if A is an extension domain. In the general case,
consider smooth relatively compact subsets A′ ⊂⊂ A′′ ⊂⊂ A, and fix η > 0. We find
a sequence (vk) ⊂W 1,p(A′′; Rn) such that Ek(vk, A

′′) → E(u,A′′). By the liminf
inequality, this also gives Ek(vk, A

′′ \A′) → E(u,A′′ \A′). With (W4) we have

lim sup
k→+∞

ˆ
A′′\A′

|e(vk)|p dx � c2
c1

ˆ
A′′\A′

(1 + |e(u)|p) dx

Then, considering a cut-off ϕ between A′ and A′′, we set uk := ϕvk + (1 − ϕ)u.
Clearly uk → u in Lp(A; Rn). Furthermore, by (W4) one has

lim sup
k→+∞

Ek(uk, A) = lim sup
k→+∞

Ek(vk, A
′) + Ek(uk, A \A′)

� lim sup
k→+∞

Ek(vk, A
′′) + c2

[ˆ
A\A′

(1 + |e(u)|p) dx
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+
ˆ

A′′\A′
(1 + |∇φ� (vk − u)|p + |e(vk)|p) dx

]

� E(u,A′′) + c2

(
1 +

c2
c1

)ˆ
A\A′

(1 + |e(u)|p) dx � E(u,A) + η ,

provided Ln(A \A′) is sufficiently small. The limsup inequality, which is the only
relevant one, follows by a diagonal argument.

We recall now the following one-dimensional result for non-local energies given
in [4, theorem 3.30].

Theorem 3.3 Γ-convergence in 1d. Let I ⊂ R be a bounded interval. Let
f : [0,+∞) �→ [0,+∞) be a lower semi-continuous function satisfying (2.1) for some
α, β > 0. Consider the family of functionals Gk : L0(I) → [0,+∞] defined by

Gk(w) :=
1
εk

ˆ
I

f

(
1
2

ˆ x+εk

x−εk

|ẇ(y)|p dy
)

dx ,

if u ∈W 1,p(I) and +∞ otherwise. Then Gk Γ-converge with respect to the
convergence in measure, to the functional G : L0(I) → [0,+∞] given by

G(w) := α

ˆ
I

|ẇ|p dx+ 2β#(Jw) ,

if w ∈ SBV (I) and +∞ otherwise.

We next recall an approximation result [7, theorem 1.1] and a compactness result
in GSBDp in [8] (which generalises [11, theorem 11.3]). To this aim we denote by
W∞

pw(U ; Rn) ⊂ GSBDp(U) the space of ‘piecewise smooth’ SBV -functions, that is,

W∞
pw(U ; Rn) :=

{
u∈GSBDp(U) : u∈SBV (U ; Rn) ∩Wm,∞(U \ Ju; Rn), ∀m ∈ N,

Hn−1(Ju \ Ju) = 0, Ju = ∪k
i=1Ki ⊂ ⊂U

with Ki connected (n-1)-rectifiable set,∀ 1 � i � k} (3.4)

Theorem 3.4 Density in GSBDp. Let φ be a norm on R
n. Let u ∈ GSBDp(U).

Then there exists a sequence (uj) ⊂ W∞
pw(U ; Rn) such that

(i) uj → u in measure on U ;

(ii) e(uj) → e(u) in Lp(U ; Mn×n
sym ) ;

(iii) limj→∞
´

Juj
φ(νuj

) dHn−1 =
´

Ju
φ(νu) dHn−1 .
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Moreover, if ˆ
U

ψ(|u|) dx < +∞ ,

for some ψ : [0,+∞) → [0,+∞), continuous, increasing with

ψ(0) = 0 , ψ(s+ t) � C(ψ(s) + ψ(t)) , ψ(s) � C(1 + sp) , lim
s→+∞ψ(s) = +∞ ;

then

lim
j→+∞

ˆ
U

ψ(|uj − u|) dx = 0 .

We notice that the approximating class considered above fulfils the additional
requirement of having a jump set compactly contained in U . This is possible, as
shown in [15, theorem C].

Theorem 3.5 Compactness in GSBDp. Let (uj) ⊂ GSBDp(U) be a sequence
satisfying

sup
j∈N

(
‖e(uj)‖Lp(U) + Hn−1(Juj

)
)
< +∞ .

Then there exist a subsequence, still denoted by (uj), and u ∈ GSBDp(U) with the
following properties:

(i) the set U∞ := {x ∈ U : |uj | → +∞} has finite perimeter;

(ii) uj → u in measure on U \ U∞ and u = 0 on U∞ ;

(iii) e(uj) ⇀ e(u) in Lp(U \ U∞; Mn×n
sym ) ;

(iv) lim inf
j→+∞

Hn−1(Juj
)�Hn−1(Ju ∩ (U \ U∞)) + Hn−1(U ∩ ∂∗U∞)�Hn−1(Ju ∪

(U ∩ ∂∗U∞)) .

In the statement above, the last semicontinuity property is stated in a stronger
form than in the original paper, but is also proved there (see [8, Formula (3.25)]).
In the rest of this section we give some technical Lemmas.

Lemma 3.6. Let gj : R
n → [0,+∞) be a sequence of equi-integrable functions. Let

Ej ⊂ R
n be such that Ln(Ej) → 0 and let δj ↘ 0 as j → +∞. Then (gjχEj

) ∗ ρδj
→

0 strongly in L1(Rn).

Proof. By properties of convolution it holds that

‖gjχEj
∗ ρδj

‖L1(Rn) � ‖gjχEj
‖L1(Rn).

By equi-integrability we have that for every ε > 0 there is J ∈ N such that for every
j � J

‖gjχEj
‖L1(Rn) =

ˆ
Ej

gj dx � ε,

from which the thesis follows. �
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Lemma 3.7. Let A′ be an open bounded subset of R
n. Let gj : A′ → [0,+∞) be

a sequence of equi-integrable functions. Let δj ↘ 0 as j → +∞. Then for every
A ⊂⊂ A′ there holds

lim inf
j→+∞

ˆ
A

gj ∗ ρδj
dx � lim inf

j→+∞

ˆ
A

gj dx .

Proof. We consider the sequence of positive measures νj := gj ∗ ρδj
Ln A. Since

A′ is bounded gj turn out to be equi-bounded in L1(A′), hence we get

νj(A) =
ˆ

A

gj ∗ ρδj
dx �

ˆ
A′
gj dx � C .

Therefore there exist a positive measure ν ∈ Mb(A), a function g ∈ L1(A′), and a
not-relabelled subsequence such that νj

∗
⇀ ν weakly ∗ in Mb(A) and gj → g weakly

in L1(A′). It remains to show that ν = gLn A, indeed this would imply

lim inf
j→+∞

ˆ
A

gj ∗ ρδj
dx = lim inf

j→+∞
νj(A) � ν(A) =

ˆ
A

g dx = lim inf
j→+∞

ˆ
A

gj dx ,

and we could conclude. Let ϕ ∈ C∞
c (A) and let A ⊂⊂ A′′ ⊂⊂ A′ be fixed. By

Fubini’s theorem we haveˆ
A

ϕdν = lim
j→+∞

ˆ
A

ϕdνj = lim
j→+∞

ˆ
A

ϕ(gj ∗ ρδj
) dx

= lim
j→+∞

ˆ
A′′

(ϕ ∗ ρ̂δj
)gj dx =

ˆ
A′′

ϕg dx =
ˆ

A

ϕg dx,

where ρ̂δj
(x) := ρδj

(−x) and the last equality follows since gj ⇀ g weakly in L1(A′)
and ϕ ∗ ρ̂δj

(x) → ϕ strongly in L∞(A′). Thus, we deduce ν = gLn A and the proof
is concluded. �

Lemma 3.8. Let A ⊂ R
n−1. Let (uk) ⊂ L1(A) be a sequence converging to u in

L1(A). Let A′ ⊂⊂ A and let wk : A′ ×Q′ → R be given by wk(x, y) := uk(x+ εky).
Then wk converges to u in L1(A′ ×Q′).

Proof. By Frechet-Kolmogoroff’s Theorem, for every η > 0 there is h ∈ N such that
for all k � h and y ∈ Q′ there holdsˆ

A′
|uk(x+ εky) − u(x)|dx � η .

This together with Fubini’s theorem yieldˆ
A′×Q′

|wk(x, y) − u(x)|dxdy �
ˆ

Q′

ˆ
A′

|uk(x+ εky) − u(x)|dxdy � η ,

for all k � h. Eventually by letting η → 0, we conclude. �

Corollary 3.9. Let A ⊂ R
n−1. Let (uk) ⊂ L0(A) be a sequence converging to

u in measure. Let A′ ⊂⊂ A and let wk : A′ ×Q′ → R be given by wk(x, y) := uk

(x+ εky). Then wk converges to u in measure.
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Proof. Since arctan(uk) converges to arctan(u) in L1(A) by lemma 3.8 we have
that arctan(wk) converges to arctan(u) in L1(A′ ×Q′). Hence wk converges to u in
measure. �

4. Compactness

In this section, we prove point (ii) of theorem 2.1.

Proposition 4.1 Compactness. Let Fk be as in (2.5). Let (uk) ⊂ L0(U ; Rn)
be such that supk Fk(uk) < +∞. Then there exist ūk ∈ GSBV p(U ; Rn) and u ∈
GSBDp(U) such that ūk − uk → 0 in measure on U and, up to a subsequence, it
holds

ūk → u in measure on U \ U∞ ,

e(ūk) ⇀ e(u) in Lp
loc(U \ U∞; Mn×n

sym ) ,

lim inf
k→+∞

Hn−1(Jūk
) � Hn−1(Ju ∪ (∂∗U∞ ∩ U)) ,

where U∞ := {x ∈ U : |uk(x)| → +∞}. If in addition

sup
k∈N

ˆ
U

ψ(|uk|) dx < +∞ ,

for some ψ : [0,+∞) → [0,+∞), continuous, increasing with lims→+∞ ψ(s) = +∞,
then U∞ = ∅, and all implications hold on U .

Proof. The proof is inspired by that of [22, proposition 4.1]. Let (uk) be as in the
statement and let U ′ ⊂⊂ U be fixed. We will prove the following claim: there exist
(ūk) ⊂ GSBV p(U ; Rn) and c0 > 0 (independent of k) such that

ūk − uk → 0 in measure on U , (4.1)

lim inf
k→+∞

Fk(uk) � c0 lim sup
k→+∞

(ˆ
U ′

|e(ūk)|p dx+ Hn−1(Jūk
)
)
. (4.2)

Now, if (4.2) holds, we fix a sequence Ui ↗ U and apply theorem 3.5 to each Ui.
With a diagonal argument we deduce the existence of u ∈ GSBD(U) with u = 0
on U∞ such that, up to a subsequence,

ūk → u in measure on U \ U∞ ,

e(ūk) ⇀ e(u) in Lp
loc(U \ U∞; Mn×n

sym ) .

We remark that since the constant c0 is independent of k, we indeed have u ∈
GSBD(U) by the very same argument of [8, Formula (3.33)], with the minor dif-
ference that the Radon measure λ in the definition of GSBD is first defined as local
weak∗-limit, but turns eventually out to be uniformly bounded by (4.2). We also
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get e(u) ∈ Lp(U), since c0 is independent of k. Concerning the remaining inequality,
for fixed i we set U∞

i := U∞ ∩ Ui, then by theorem 3.5 (iv) we have

lim inf
k→+∞

Hn−1(Jūk
) � lim inf

k→+∞
Hn−1(Jūk

∩ Ui) � Hn−1(Ju ∩ (Ui \ U∞))

+ Hn−1(Ui ∩ ∂∗Ui
∞) . (4.3)

Observing that U∞
j ↗ U∞ by lower semicontinuity of the relative perimeter we

have

lim inf
j→+∞

Hn−1(Ui ∩ ∂∗Uj
∞) � Hn−1(Ui ∩ ∂∗U∞) ∀i .

Letting i→ +∞, by monotonicity we get

lim
i→+∞

Hn−1(Ju ∩ (Ui \ U∞)) = Hn−1(Ju ∩ (U \ U∞)) , (4.4)

and being Hn−1(Ui ∩ ∂∗U∞
i ) = Hn−1(Ui ∩ ∂∗U∞

j ) for all j � i it holds

lim inf
i→+∞

Hn−1(Ui ∩ ∂∗Ui
∞)� lim inf

i→+∞
lim inf
j→+∞

Hn−1(Ui ∩ ∂∗Uj
∞)�Hn−1(U ∩ ∂∗U∞) .

(4.5)
Eventually, combining (4.3) with (4.4) and (4.5)

lim inf
k→+∞

Hn−1(Jūk
) � Hn−1(Ju ∩ (U \ U∞)) + Hn−1(U ∩ ∂∗U∞))

� Hn−1(Ju ∪ (∂∗U∞ ∩ U)) .

This also gives u ∈ GSBDp(U). As the remaining part of the statement follows
directly from Chebycheff inequality and Fatou’s lemma, we are only left to prove
the claim.

For fixed i ∈ N let fi(t) = αit ∧ βi be as in (2.3). Choose η ∈ (0, 1) such that
Qη(0) ⊂⊂ S and let

mη := min
x∈Qη(0)

ρ(x) > 0 and fη
i (t) := fi(mηη

nt) = αimηη
nt ∧ βi . (4.6)

Then we have

Fk(uk) � 1
εk

ˆ
U

fi (εkWk(·, e(uk)) ∗ ρk(x)) dx

� 1
εk

ˆ
U

fη
i

(
εk

 
Qηεk

(x)

Wk(y, e(uk)) dy

)
dx . (4.7)

We set

A1
k :=

{
x ∈ U : εk

 
Qηεk(x)

Wk(y, e(uk)) dy � βi

αimηη2n

}
,

A2
k :=

{
x ∈ U : dist(x,A1

k) � (1 − η)εk

}
.
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Note that

A1
k ⊂ A2

k ⊂
{
x ∈ U : εk

 
Qεk

(x)

Wk(y, e(uk)) dy � βi

αimηηn

}
. (4.8)

Indeed if x ∈ A2
k there is z ∈ A1

k with Qηεk
(z) ⊂ Qεk

(x) and therefore

εk

 
Qεk

(x)

Wk(y, e(uk)) dy � ηnεk

 
Qηεk

(z)

Wk(y, e(uk)) dy � βi

αimηηn
.

By combining together (4.7) and (4.8) we find

Fk(uk) � βi

εk
Ln(A2

k) . (4.9)

By the coarea formula (see e.g., [16, theorem 3.14]) and the mean value theorem
there exists tk ∈ (0, (1 − η)εk) such that the set A3

k := {dist(·, A1
k) � tk} ⊂ A2

k

satisfies

Ln(A2
k) � (1 − η)εkHn−1(∂A3

k) . (4.10)

Let now

ūk(x) :=

{
0 if x ∈ A3

k ,

uk otherwise in U .

By construction ūk ∈ GSBV p(U ; Rn). By (4.9) and the fact that A3
k ⊂ A2

k we have
Ln(A3

k) → 0 as k → +∞ from which (4.1) follows. On the other hand as Jūk
⊆ ∂A3

k

(4.9) and (4.10) yield

Fk(uk) � (1 − η)βiHn−1(Jūk
) . (4.11)

We next show that there exists K(n) � 1 such that for every x ∈ U

c1εk

 
Qηεk

(x)

|e(ūk(y))|p dy � K
βi

αimηηn
. (4.12)

By (W4) we have

Wk(x, e(uk(x))) � c1|e(uk(x))|p � c1|e(ūk(x))|p for a.e. x ∈ U . (4.13)

Now if x ∈ U \A3
k, then x /∈ A1

k and

c1εk

 
Qηεk

(x)

|e(ūk(y))|p dy � εk

 
Qηεk

(x)

Wk(y, e(uk(y))) dy � βi

αimηηn
.

Assume instead that x ∈ A3
k. Observe that ūk = 0 in Qηεk

(x) ∩A3
k, so that

ˆ
Qηεk

(x)

|e(ūk(y))|p dy =
ˆ

Qηεk
(x)\A3

k

|e(ūk(y))|p dy .

Furthermore, we can cover Qηεk
(x) ∩ (Q \A3

k) with a finite number K(n) � 1 of
balls of radius ηεk and centres x1, . . . , xK ∈ U \A3

k (see e.g. [22, remark 2.8]).
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Hence, we find

c1εk

 
Qηεk

(x)

|e(ūk(y))|p dy � c1εk

K∑
i=1

 
Qηεk

(xi)

|e(ūk(y))|p dy

� εk

K∑
i=1

 
Qηεk

(xi)

Wk(y, e(uk(y))) dy � K
βi

αimηηn
,

and (4.12) follows. Finally by (4.7), the monotonicity of fη
i , (4.13) we infer

Fk(uk) � 1
εk

ˆ
U

fη
i

(
εk

 
Qηεk

(x)

c1|e(ūk(y))|p dy

)
dx

� c1
αimηη

n

K

ˆ
U

 
Qηεk

(x)

|e(ūk(y))|p dy dx , (4.14)

where the last inequality follows from (4.12) and the fact that fη
i (t) � αimηηn

K t

when t � K βi

mηηnαi
. Moreover by using in order the change of variable y = x− ηεkz,

Fubini’s theorem, and the change of variable x̂ = x− ηεkz (for k large enough), we
find ˆ

U

 
Qηεk

(x)

|e(ūk(y))|p dy dx =
ˆ

Q

ˆ
U

|e(ūk(x− ηεkz))|p dxdz

�
ˆ

U ′
|e(ūk(x))|p dx . (4.15)

Eventually gathering together (4.10), (4.14), and (4.15), we deduce (4.2) with

c0 :=
1
2

(
c1αimηη

n

K
∧ (1 − η)βi

)
.

�

5. Lower bound

In this section we prove the lower bound. To this purpose it is convenient to localise
the functionals Fk, namely we set

Fk(u,A) :=
1
εk

ˆ
A

f (εkWk(·, e(u)) ∗ ρk(x)) dx , for u ∈W 1,p(U) , A ⊂ U . (5.1)

Proposition 5.1 Lower bound: bulk contribution. Let (uk) ⊂ L0(U ; Rn) be a
sequence that converges in measure to u ∈ L0(U ; Rn). Assume moreover that
Fk(uk) � C and that (2.9) holds. Then, for W as (2.9)

lim inf
k→+∞

Fk(uk, A) � α

ˆ
A

W (x, e(u)) dx ∀A ∈ A(U) ,
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Proof. Let (uk) and u be as in the statement. By proposition 4.1 u ∈ GSBDp(U).
For every k ∈ N let μk be the Radon measure on (U,B(U)) given by

μk(A) := Fk(uk, A) , ∀A ∈ B(U) . (5.2)

As μk(A) � C, by [1, theorem 1.59] we deduce the existence of a subsequence, not
relabelled, and of a Radon measure μ on (A,B(A)) such that

μk
∗
⇀ μ and lim inf

k→+∞
μk(A) � μ(A) . (5.3)

By Radon-Nikodym’s Theorem (in the version of [1, theorem 1.28]) there exist two
measures μa, μs with μa � Ln and μs ⊥ Ln, and a function h ∈ L1(A) such that
μ = μa + μs and μa = hLn. This together with (5.3) imply that

lim inf
k→+∞

Fk(uk, A) �
ˆ

A

h(x) dx .

Hence to conclude we need to show that

h(x) � αW (x, e(u(x))) for a.e. x ∈ U . (5.4)

with W as in (3.3). For i ∈ N fixed let fi(t) = αit ∧ βi be as in (2.3). Then it is
enough to show that

h(x) � αiW (x, e(u(x))) for a.e. x ∈ U , (5.5)

We divide the proof of (5.5) into four steps. Step 1: In this step we show that for
a.e. x0 ∈ U there exists a sequence (kj , rj) → (+∞, 0) as j → +∞ such that setting
δj :=

εkj

rj
,

ur
k(v) :=

uk(x0 + rv) − uk(x0)
r

and W r
k (x,M) := W (x0 + rx,M) , (5.6)

there hold

h(x0) � lim
j→+∞

1
rj

1
δj

ˆ
Q

fi

(
rjδjW

rj

kj
(·, e(urj

kj
)) ∗ ρδj

(x)
)

dx , (5.7)

and

u
rj

kj
→ ∇u(x0)(·) in measure on Q , (5.8)

together with

lim
j→+∞

mkj
(u∇u(x0), Qrj

(x0))
rn
j

= W (x0, e(u(x0))) (5.9)

By Besicovitch differentiation theorem and [6, corollary 5.2] we have that for a.e.
x0 ∈ U the following hold:

h(x0) = lim
r↘0+

μ(Qr(x0))
|Qr(x0)|

, (5.10)

lim
r↘0+

1
rn

Ln

({
y ∈ Qr(x0) :

|u(y) − u(x0) −∇u(x0)(y − x0)|
|y − x0|

> δ

})
= 0 ∀δ > 0 .

(5.11)
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We fix x0 ∈ Ω for which (5.10) and (5.11) hold. By [1, proposition 1.62] we have

μ(Qr(x0)) � lim sup
k→+∞

μk(Qr(x0)) ,

for every r > 0, which together with (5.10) yield

h(x0) � lim sup
r↘0+

lim sup
k→+∞

μk(Qr(x0))
|Qr(x0)|

. (5.12)

Moreover from (5.2) and the change of variable x = x0 + rx′ we get

μk(Qr(x0)) =
1
εk

ˆ
Qr(x0)

f (εkWk(·, e(uk)) ∗ ρk(x)) dx

=
rn

εk

ˆ
Q

f (εkWk(·, e(uk)) ∗ ρk(x0 + rx)) dx . (5.13)

From (5.6) and the change of variable y = ry′ we may deduce that

Wk(·, e(uk)) ∗ ρk(x0 + rx) = W r
k (·, e(ur

k)) ∗ ρ εk
r

(x) . (5.14)

Gathering together (5.12), (5.13), (5.14) and using (2.3) we obtain

h(x0) � lim sup
r↘0+

lim sup
k→+∞

1
r

r

εk

ˆ
Q

fi

(
r
εk

r
W r

k (·, e(ur
k)) ∗ ρ εk

r
(x)
)

dx . (5.15)

Now, from (5.11) and the fact that uk converges to u in measure we can deduce
that

lim
r→0

lim
k→+∞

Ln ({v ∈ Q : |ur
k(v) −∇u(x0)(v)| > δ}) = 0 ∀δ > 0 .

If we fix a diagonal subsequence (kj , rj) → (+∞, 0) as j → +∞ for which (5.8)
and (5.9) hold, from (5.15) we also get (5.7) for δj :=

εkj

rj
(up to taking a further

subsequence to have a limit in place of a limsup). With this, the proof of step 1 is
concluded.

Step 2 : In this step we show that for any 0 < ζ < 1 and a.e. x0 ∈ U there exist
(ūj) ⊂ GSBV p(Q; Rn) and c0 > 0 independent of j such that

lim
j→+∞

Ln{ūj �= u
rj

kj
} = 0; (5.16)

ūj → ∇u(x0)(·) in measure on Q ; (5.17)

Hn−1(Jūj
∩Q) → 0 ; (5.18)ˆ

Q1−ζ(0)

|e(ūj)|p dx � c0 . (5.19)

By step 1 we have that urj

kj
converges in measure to ∇u(x0)(·) in Q as j → +∞

and for j large enough it satisfies

1
rj

1
δj

ˆ
Q

fi

(
rjδjW

rj

kj
(·, e(urj

kj
)) ∗ ρδj

(x)
)

dx � C . (5.20)

https://doi.org/10.1017/prm.2023.51 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.51


1080 R. Marziani and F. Solombrino

Next we fix η ∈ (0, 1) such that Qη(0) ⊂⊂ S and let mη and fη
i be as in (4.6). Then

we get

ˆ
Q

fi

(
rjδjW

rj

kj
(·, e(urj

kj
)) ∗ ρδj

(x)
)

dx �
ˆ

Q

fη
i

(
rjδj

 
Qηδj

(x)

W
rj

kj
(y, e(u

rj

kj
)) dy

)
dx .

(5.21)
We define the sets

A1
j :=

{
x ∈ Q : rjδj

 
Qηδj

(x)

W
rj

kj
(y, e(urj

kj
)) dy � βi

αimηη2n

}
,

A2
j :=

{
x ∈ Q : dist(x,A1

j ) � (1 − η)δj
}
.

Then arguing as in the proof of proposition 4.1 we find that

A1
j ⊂ A2

j ⊂
{
x ∈ Q : rjδj

 
Qδj

(x)

W
rj

kj
(y, e(urj

kj
)) dy � βi

αimηηn

}
. (5.22)

(5.22) together with (5.20) and (5.21) imply that (for j large enough)

C � βi

rjδj
Ln(A2

j ) =
βi

εj
Ln(A2

j ) . (5.23)

By the coarea formula and the mean value theorem we can find tj ∈ (0, (1 − η)δj)
such that setting A3

j := {dist(·, A1
j ) � tj} ⊂ A2

j

Ln(A2
j ) � (1 − η)δjHn−1(∂A3

j ) . (5.24)

We finally define

ūj(x) :=

{
0 if x ∈ A3

j ,

u
rj

kj
otherwise in Q.

Recall that, by definition, εj

δj
→ 0. With this, as a consequence of (5.23) and (5.24)

we have that both Ln(A3
j ) and Hn−1(∂A3

j ) = Hn−1(Jūj
) converge to 0 as j → +∞.

Hence ūj ⊂ GSBV p(Q; Rn) and ūj − u
rj

kj
→ 0 in measure on Q which combined

with (5.8) yield ūj → ∇u(x0)(·) in measure on Q. It remains to show (5.19). To
this aim notice that arguing exactly as in the proof of proposition 4.1 one can find
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K(n) � 1 such that for every x ∈ Q

c1rjδj

 
Qηδj

(x)

|e(ūj(y))|p dy � K
βi

αimηηn
. (5.25)

Next from (5.21) and the monotonicity of fη
i we infer

1
rjδj

ˆ
Q

fi

(
rjδjW

rj

kj
(·, e(urj

kj
)) ∗ ρδj

(x)
)

dx

� 1
rjδj

ˆ
Q

fη
i

(
c1rjδj

 
Qηδj

(x)

|e(ūj(y))|p dy

)
dx

� c1
αimηη

n

K

ˆ
Q

 
Qηδj

(x)

|e(ūj(y))|p dy dx (5.26)

where the last inequality follows from (5.25) and fact that fη
i (t) � αimηηn

K t when
t � K βi

mηηnαi
. Finally, for a fixed 0 < ζ < 1, arguing exactly as for (4.15) we get
ˆ

Q

 
Qηδj

(x)

|e(ūj(y))|p dy dx �
ˆ

Q1−ζ(0)

|e(ūj(x))|p dx (5.27)

when j is sufficiently large. Eventually gathering together (5.20), (5.26), and (5.27),
we deduce (5.19) with c0 := CK

c1αimηηn .
Step 3 : In this step show that for a.e. x0 ∈ U there exists a sequence (wj) ⊂

W 1,p(Q; Rn) such that:

(|∇wj |p) is equi-integrable; (5.28)

lim
j→+∞

Ln({wj �= ūj} = 0 ; (5.29)

lim
j→+∞

‖wj −∇u(x0)(·)‖Lp(Q) = 0 ; (5.30)

h(x0) � lim inf
j→+∞

1
rjδj

ˆ
Q1−ζ(0)

fi

(
rjδjW

rj

kj
(·, e(wj)) ∗ ρδj

(x)
)

dx ∀i ∈ N . (5.31)

From step 2 we can apply [18, lemma 5.1] to the sequence ūj and get the existence
of (wj) ⊂W 1,p(Q; Rn) that satisfies (5.28)–(5.30). Moreover recalling (W4) and the
equi-integrability of (|∇wj |p) we have that W rj

kj
(x, e(wj)) is equi-integrable as well,

while from the inclusion

Ej :=
{
e(wj) �= e(urj

kj
)
}
⊂ {wj �= u

rj

kj
} ⊂ {wj �= ūj} ∪ {ūj �= u

rj

kj
} ,

it follows that Ln(
{
e(wj) �= e(urj

kj
)
}

) → 0. Thus, we can apply lemma 3.6 with

gj = W
rj

kj
(x, e(wj)), and Ej =

{
e(wj) �= e(urj

kj
)
}

, and deduce that

ˆ
Q1−ζ(0)

(W rj

kj
(·, e(wj))χEj

) ∗ ρδj
(x) dx→ 0 . (5.32)
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We also remark that by the definition of Ej we have

W
rj

kj
(·, e(wj)) ∗ ρδj

= (W rj

kj
(·, e(wj))χc

Ej
) ∗ ρδj

+ (W rj

kj
(·, e(wj))χEj

) ∗ ρδj

� W
rj

kj
(·, e(urj

kj
)) ∗ ρδj

+ (W rj

kj
(·, e(wj))χEj

) ∗ ρδj

By monotonicity of fi and since fi(t) � αit we obtain the following estimate

1
rjδj

ˆ
Q1−ζ(0)

fi

(
rjδjW

rj

kj
(·, e(wj)) ∗ ρδj

(x)
)

dx

� 1
rjδj

ˆ
Q1−ζ(0)

fi

(
rjδjW

rj

kj
(·, e(urj

kj
)) ∗ ρδj

(x)
)

dx

+ αi

ˆ
Q1−ζ(0)

(W rj

kj
(·, e(wj))χEj

) ∗ ρδj
(x) dx .

Passing to the limit as j → +∞ in the above inequality and using (5.7) and (5.32)
we infer (5.31).

Step 4 : In this step we show that for a.e. x0 ∈ U

lim inf
j→+∞

1
rjδj

ˆ
Q1−ζ(0)

fi

(
rjδjW

rj

kj
(·, e(wj)) ∗ ρδj

(x)
)

dx

� αiW (x0, e(u(x0))) ∀i ∈ N . (5.33)

We define the following partition

B1
j :=

{
x ∈ Q1−ζ(0) : rjδjW

rj

kj
(·, e(wj)) ∗ ρδj

(x) � βi

αi

}
, B2

j := Q1−ζ(0) \B1
j .

Since fi(t) = αit when t � βi

αi
, and (W rj

kj
(·, e(wj))χB2

j
) ∗ ρδj

� βi

αi
by definition of

B2
j and standard properties of the convolution, we have

1
rjδj

ˆ
Q1−ζ(0)

fi

(
rjδjW

rj

kj
(·, e(wj)) ∗ ρδj

(x)
)

dx

� αi

ˆ
Q1−ζ(0)

(W rj

kj
(·, e(wj))χB2

j
) ∗ ρδj

(x) dx . (5.34)

As for j large enough there holds Ln(B1
j ) � Crjδj → 0, lemma 3.6 implies

ˆ
Q1−ζ(0)

(W rj

kj
(·, e(wj))χB1

j
) ∗ ρδj

(x) dx→ 0 . (5.35)

Now, taking the liminf as j → +∞ in (5.34), and adding the vanishing term in
(5.35) to the right-hand side, we get

lim inf
j→+∞

1
rjδj

ˆ
Q1−ζ(0)

fi

(
rjδjW

rj

kj
(·, e(wj)) ∗ ρδj

(x)
)

dx

� lim inf
j→+∞

αi

ˆ
Q1−ζ(0)

W
rj

kj
(·, e(wj)) ∗ ρδj

(x) dx . (5.36)
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From this, applying lemma 3.7 with gj = W
rj

kj
(x, e(wj)) we have

lim inf
j→+∞

αi

ˆ
Q1−ζ(0)

W
rj

kj
(·, e(wj)) ∗ ρδj

(x) dx

� αi lim inf
j→+∞

ˆ
Q1−ζ(0)

Wkj
(x0 + rjx, e(wj)) dx . (5.37)

Next we modify wj so that it coincides with ∇u(x0)(·) on ∂Q1−ζ(0) without
essentially increasing the energy. This can be achieved by relying on the fol-
lowing Fundamental Estimate than can be proved with standard arguments: for
given γ > 0, there exist C(γ) and a sequence (wj) ⊂W 1,p(Q1−ζ(0); Rd) with
wi = ∇u(x0)(·) in a neighbourhood of ∂Q1−ζ(0) such that

ˆ
Q1−ζ(0)

Wkj
(x0 + rjx, e(wj)) dx � (1 + γ)

ˆ
Q1−ζ(0)

Wkj
(x0 + rjx, e(wj)) dx

+ (1 + γ)
ˆ

Q1−ζ(0)\Q1−ζ−γ(0)

Wkj
(x0 + rjx, e(u(x0))) dx

+ C(γ)‖wj −∇u(x0)(·)‖p
Lp(Q1−ζ(0)) + γ. (5.38)

By (5.30) we know that wj converges to ∇u(x0)(·) in Lp(Q), moreover from (W4)
there holds
ˆ

Q1−ζ(0)

Wkj
(x0 + rjx, e(u(x0))) dx � c2(|e(u(x0))|p + 1)Ln(Q1−ζ(0) \Q1−ζ−γ(0))

� c2(|e(u(x0))|p + 1)nγ .

This fact and (5.38) imply that

lim inf
j→+∞

ˆ
Q1−ζ(0)

Wkj
(x0 + rjx, e(wj)) dx

� 1
1 + γ

lim inf
j→+∞

ˆ
Q1−ζ(0)

Wkj
(x0 + rjx, e(wj)) dx

− c2(|e(u(x0))|p + 1)nγ − γ

1 + γ
. (5.39)

We now set w̃j(x) := rjwj((x− x0)/rj), which is admissible for mkj
(u∇u(x0),

Q(1−ζ)rj
(0)) in (2.6). Hence, by a change of variable in (5.39) we obtain

lim inf
j→+∞

αi

ˆ
Q1−ζ(0)

Wkj
(x0 + rjx, e(wj)) dx � lim inf

j→+∞
αi

rn
j

ˆ
Q(1−ζ)rj

(x0)

Wkj
(x, e(w̃j)) dx

� lim inf
j→+∞

αi

mkj
(u∇u(x0), Q(1−ζ)rj

(x0))

rn
j

= (1 − ζ)αiW (x0, e(u(x0))) . (5.40)
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Gathering together (5.39) and (5.40), with (5.9) we deduce

lim inf
j→+∞

αi

ˆ
Q1−ζ(0)

Wkj
(x0 + rjx, e(wj)) dx

� (1 − ζ)n

1 + γ
αiW (x0, e(u(x0))) − C

(
γ +

γ

1 + γ

)
.

With this, (5.36), and (5.37), we eventually deduce (5.33) by arbitrariness of ζ
and γ.

Conclusion: from step 3 and step 4 we deduce the validity of (5.5) and the proof
is concluded. �

Remark 5.2. We observe en passant that proposition 5.1 indeed holds also for a
sequence of functionals

Fk(u,A) :=
1
εk

ˆ
A

fk (εkWk(·, e(u)) ∗ ρk(x)) dx , for u ∈W 1,p(U) , A ⊂ U ,

provided the functions fk satisfy an estimate of the form

fk(t) � αkt ∧ β

for all t ∈ [0,+∞), where β is a uniform constant and α = limk→+∞ αk.

Proposition 5.3 Lower bound: surface contribution. Let (uk) ⊂ L0(U ; Rn) be a
sequence that converges to in measure to u ∈ L0(U ; Rn). Assume moreover that
Fk(uk) � C. Then there holds

lim inf
k→+∞

Fk(uk, A) � β

ˆ
Ju∩A

φρ(νu) dHn−1 ∀A ∈ A(U) .

Proof. Let (uk) and u be as in the statement, so that by proposition 4.1 u ∈
GSBDp(U). Let A ∈ A(U) be fixed. We claim that it suffices to show that for
any ξ ∈ S

n−1 fixed there holds

lim inf
k→+∞

F ξ
k (uk, A) � β

ˆ
Jξ

u∩A

μξ|〈νu, ξ〉|dHn−1 , (5.41)

with

F ξ
k (uk, A) :=

1
εk

ˆ
A

f (c1εk|〈e(uk)ξ, ξ〉|p ∗ ρk(x)) dx ,

Jξ
u :={x∈Ju : 〈u+(x) − u−(x), ξ〉 �= 0} and μξ :=H1({x∈S : x= tξ for t∈R}) .

Indeed, assume for the moment (5.41) holds true. Then (W4) gives

Wk(x, e(uk)) � c1|e(uk)|p � c1|〈(e(uk))ξ, ξ〉|p .
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Since f is nondecreasing, the above implies

lim inf
k→+∞

Fk(uk, A) � lim inf
k→+∞

F ξ
k (uk, A)

� β

ˆ
Jξ

u∩A

μξ|〈νu, ξ〉|dHn−1 = β

ˆ
Ju∩A

ϕξ dHn−1 ,

with ϕξ : Ju → [0,+∞] given by

ϕξ(x) :=

{
μξ|〈νu(x), ξ〉| if x ∈ Jξ

u ,

0 otherwise .

Now let (ξh) ⊂ S
n−1 be a dense subset, in this way by [5, proposition 1.16] it holds

lim inf
k→+∞

Fk(uk, A) � β

ˆ
Ju∩A

sup
h
ϕξh

dHn−1 .

On the other hand by [20, lemma 4.5], we have

φρ(ν) = sup
ξ∈Sn−1

μξ|〈ν, ξ〉| , (5.42)

which in turn implies φρ(νu(x)) = suph ϕξh
(x) and the thesis follows. It remains to

show (5.41) for which we will argue by slicing. As the set S is convex for δ ∈ (0, 1)
fixed we can find r = r(δ, S) such that the cylinder

Cr,δ
ξ := Rξ(Q′

r(0) × (−μξδ/2, μξδ/2)) ⊂ ⊂S ,

where Rξ ∈ SO(n) is such that Rξen = ξ [see (j)]. Let now mξ := min
x∈C

r,δ
ξ
ρ(x)

and

Cr,δ
ξ,k(x) := εkC

r,δ
ξ + x .

Next for any x ∈ A we denote by x̂ξ the projection of x onto Πξ := {y ∈ R
n : 〈y, ξ〉

= 0} and

Iξ := {τ ∈ R : x̂ξ + τξ ∈ A} .
Then we have

F ξ
k (uk, A) � 1

εk

ˆ
A

f

(
c1mξ

εn−1
k

ˆ
Cr,δ

ξ,k(x)

|〈e(uk(z))ξ, ξ〉|p dz

)
dx

=
1
εk

ˆ
Πξ

ˆ
Iξ

f

(
c1mξ

εn−1
k

ˆ
Cr,δ

ξ,k(x̂ξ+τξ)

|〈e(uk(z))ξ, ξ〉|p dz

)
dτ dHn−1(x̂ξ),

(5.43)

where the last equality follows by Fubini’s Theorem. Noticing that f is concave and
using the change of variable z = x̂ξ + sξ + εkrz

′ with

z′ ∈ Q′
ξ := Rξ (Q′ × {0}) and s ∈

(
τ − μξδεk

2
, τ +

μξδεk

2

)
,
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together with Jensen’s inequality yield

f

(
c1mξ

εn−1
k

ˆ
Cr,δ

ξ,k(x̂ξ+τξ)

|〈e(uk(z))ξ, ξ〉|p dz

)

�
 

Q′
ξ

f̃

⎛⎝ˆ τ+
μξδεk

2

τ−μξδεk
2

|〈e(uk(x̂ξ + εkrz
′ + sξ))ξ, ξ〉|p ds

⎞⎠ dz′

=
 

Q′
ξ

f̃

⎛⎝ˆ τ+
μξδεk

2

τ−μξδεk
2

∣∣∣ ∂
∂s
wξ,k(x̂ξ, z

′, s)
∣∣∣p ds

⎞⎠ dz′ (5.44)

with f̃(t) := f
( c1mξ

rn−1 t
)

and wξ,k(x̂ξ, z
′, s) := 〈uk(x̂ξ + εkrz

′ + sξ), ξ〉. Observe now
that applying corollary 3.9 and Fubini’s Theorem to the functions wξ,k(x̂ξ, z

′, s) we
have that, for a.e. (x̂ξ, z

′) ∈ Πξ ×Q′
ξ the functions s �→ wξ,k(x̂ξ, z

′, s) converge to
the section ux̂ξ(s) := 〈u(x̂ξ + sξ), ξ〉 in measure on Iξ. Further, gathering together
(5.43) and (5.44), and exchanging the order of integration it holds

F ξ
k (uk, A) �

ˆ
Πξ

 
Q′

ξ

⎛⎝ 1
εk

ˆ
Iξ

f̃

⎛⎝ˆ τ+
μξδεk

2

τ−μξδεk
2

|ẇx̂ξ,z′

ξ,k (s)|p ds

⎞⎠ dτ

⎞⎠ dz′ dHn−1(x̂ξ) ,

(5.45)
where the shortcut w

x̂ξ,z′

ξ,k (s) denotes the function s �→ wξ,k(x̂ξ, z
′, s) for fixed

(x̂ξ, z
′). By theorem 3.3 we get

lim inf
k→+∞

1
εk

ˆ
Iξ

f̃

⎛⎝ˆ τ+
μξδεk

2

τ−μξδεk
2

|ẇx̂ξ,z′

ξ,k (s)|p ds

⎞⎠dτ � βδμξ#(J
ux̂ξ ∩ Iξ) . (5.46)

Combining (5.45) with (5.46), we finally obtain

lim inf
k→+∞

F ξ
k (uk, A)�δβ

ˆ
Πξ

μξ#(Jux̂ξ ∩ Iξ) dHn−1(x̂ξ)=δβ
ˆ

Jξ
u∩A

μξ|〈νu, ξ〉|dHn−1 .

Eventually by the arbitrariness of δ, we deduce (5.41). �

With the help of propositions 5.1 and 5.3 we can now prove the following lower
bound.

Proposition 5.4 Lower-bound. Let Fk and F be as in (2.5) and (2.10) respectively.
Let (uk) ⊂ L0(U ; Rn) and u be such that uk converges to u in measure. Then there
exists a subsequence, not relabelled, such that

lim inf
k→+∞

Fk(uk) � F (u) .

Proof. The result can be obtained exactly as in [22, proposition 5.4]. �
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6. Upper bound

In this section we prove the upper bound.

Proposition 6.1. Let Fk and F be as in (2.5) and (2.10) respectively. Then for
each u ∈ L0(U ; Rn) there is (uk) ⊂ L0(U ; Rn) that converges in measure to u and
such that

lim sup
k→∞

Fk(uk) � F (u) .

Proof. Without loss of generality we assume F (u) < C so that u ∈ GSBDp(U).
Moreover, since W has p-growth from above, by theorem 3.4 we can assume that
u ∈ W∞

pw(U ; Rn) and that Ju is an essentially closed connected (n− 1)-rectifiable
set compactly contained in U , since the above subspace is dense in energy. We fix
U ′ ∈ A with U ⊂⊂ U ′ and consider an extension of u on U ′, not relabelled, such
that u ∈ W∞

pw(U ′; Rn). Then by theorem 3.1 and remark 3.2 we can find (vk) ⊂
W 1,p(U ′ \ Ju; Rn) such that vk converges strongly to u in Lp(U ′ \ Ju; Rn) and

lim
k→∞

Ek(vk, U
′ \ Ju) = E(u,U ′ \ Ju) =

ˆ
U ′
W (x, e(u)) dx . (6.1)

where the last equality clearly holds as Ju is a null set. For every h > 0 we set

(Ju)h := {x ∈ U : dS(x, Ju) < h} ,

so that for h small enough (Ju)h ⊂⊂ U . Fix now 0 < δk << εk and take ϕk ∈
C∞

c (U ′) a cutoff between (Ju)δk
and (Ju)2δk

. Next define (uk) ⊂W 1,p(U ′; Rn) as

uk := vk(1 − ϕk) → u strongly in Lp(U ′ \ Ju; Rn) ,

and in particular uk → u in measure on U ′. Then using that uk = vk in U ′ \ (Ju)2δk

we have

Fk(uk) � Fk(vk, U \ Ju) + β
Ln((Ju)2δk+εk

)
εk

. (6.2)

Now invoking [23, theorem 3.7] we have

lim
k→∞

Ln((Ju)2δk+εk
)

εk
=
ˆ

Ju

φρ(νu) dHn−1 . (6.3)

Fix α̂ > α. With (2.2), the change of variable y = x− εkz, Fubini’s theorem, and
the change of variable x̂ = x− εkz we have

Fk(vk, U \ Ju) � α̂

ˆ
U\Ju

ˆ
Rn

Wk(y, e(vk))ρk(x− y) dy dx

= α̂

ˆ
U

ˆ
Rn

Wk (x− εkz, e(vk(x− εk·))) ρ(z) dz dx

= α̂

ˆ
Rn

ρ(z)
ˆ

U

Wk (x− εkz, e(vk(x− εk·))) dxdz

� α̂

ˆ
U ′
Wk(x, e(vk)) dx = Ek(vk, U

′ \ Ju).
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Hence passing to the limit in k in the above inequality and using (6.1) we get

lim sup
k→∞

Fk(vk, U \ Ju) � α̂E(u,U ′ \ Ju) = α̂

ˆ
U ′
W (x, e(u)) dx , (6.4)

for all α̂ > α. Finally gathering together (6.2)–(6.4), we obtain

lim sup
k→∞

Fk(uk) � α̂

ˆ
U ′
W (x, e(u)) dx+ β

ˆ
Ju

φρ(νu) dHn−1 .

Eventually by the arbitrariness of U ′ and α̂, we conclude. �

Remark 6.2. If a lower order term
´

U
ψ(|u|) dx, is added to the energy, the density

argument above can still be applied if ψ complies with the assumptions of theorem
3.4. Also observe that within the same assumptions,

´
U
ψ(|uk|) dx is equiintegrable

whenever (uk) is converging in Lp. For uk and u as in the proof above, this entails
the convergence

´
U
ψ(|uk|) dx→

´
U
ψ(|u|) dx.

We are now in a position to prove theorem 2.1.

Proof of theorem 2.1. Theorem 3.1 provides a subsequence for which (2.9) holds.
Point (i) follows by combining propositions 5.4 and 6.1, while (ii) is a consequence
of proposition 4.1. �

7. Stochastic homogenisation

In this section we are concerned with the Γ-convergence analysis of the functionals
Fk when Wk are random integrands of type

Wk(ω, y,M) = W

(
ω,

y

δk
,M

)
,

with ω belonging to the sample space Ω of a complete probability space (Ω, T , P )
and δk ↘ 0. In order to do that we first give some definitions.

Definition 7.1 Group of P -preserving transformations. A group of P -preserving
transformations on (Ω, T , P ) is a family (τz)z∈Zn of mappings τz : Ω → Ω satisfying
the following:

(a) (measurability) τz is T -measurable for every z ∈ Z
n;

(b) (invariance) P (τz(E)) = P (E), for every E ∈ T and every z ∈ Z
n;

(c) (group property) τ0 = idΩ and τz+z′ = τz ◦ τz′ for every z, z′ ∈ Z
n.

If in addition, every (τz)z∈Zn-invariant set (that is, every E ∈ T with τz(E) = E
for every z ∈ Z

n) has probability 0 or 1, then (τz)z∈Zn is called ergodic.
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Let a := (a1, . . . , an), b := (b1, . . . , bn) ∈ Z
n with ai < bi for all i ∈ {1, . . . , n}; we

define the n-dimensional interval

[a, b) := {x ∈ Z
n : ai � xi < bi for i = 1, . . . , n}

and we set

In := {[a, b) : a, b ∈ Z
n , ai < bi for i = 1, . . . , n} .

Definition 7.2 Subadditive process. A discrete subadditive process with respect
to a group (τz)z∈Zn of P -preserving transformations on (Ω, T , P ) is a function
μ : Ω × In → R satisfying the following:

(a) (measurability) for every A ∈ In the function ω �→ μ(ω,A) is T -measurable;

(b) (covariance) for every ω ∈ Ω, A ∈ In, and z ∈ Z
n we have μ(ω,A+ z) =

μ(τz(ω), A);

(c) (subadditivity) for every A ∈ In and for every finite family (Ai)i∈I ⊂ In of
pairwise disjoint sets such that A = ∪i∈IAi, we have

μ(ω,A) �
∑
i∈I

μ(ω,Ai) for every ω ∈ Ω ;

(d) (boundedness) there exists c > 0 such that 0 � μ(ω,A) � cLn(A) for every
ω ∈ Ω and A ∈ In.

Definition 7.3 Stationarity. Let (τz)z∈Zn be a group of P -preserving transforma-
tions on (Ω, T , P ). We say that W : Ω × R

n × M
n×n → [0,+∞) is stationary with

respect to (τz)z∈Zn if

W (ω, x+ z,M) = W (τz(ω), x,M)

for every ω ∈ Ω, x ∈ R
n, z ∈ Z

n and M ∈ M
n×n. Moreover we say that a stationary

random integrand W is ergodic if (τz)z∈Zn is ergodic.

For our purposes we consider random integrands W : Ω × R
n × M

n×n → [0,+∞)
satisfying the following assumptions:

(W 1) W is (T ⊗ Bn ⊗ Bn×n)-measurable;

(W 2) W (ω, ·, ·) ∈ W for every ω ∈ Ω;

(W 3) the mapM �→W (ω, x,M) is lower semicontinuous for every ω ∈ Ω and every
x ∈ R

n.
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Let W be a random integrand satisfying (w1)–(w3) and δk ↘ 0. We consider the
family of functionals Fk(ω) : L0(U ; Rn) → [0,+∞] defined as

Fk(ω)(u) :=
1
εk

ˆ
U

f

(
εkW

(
ω,

·
δk
, e(u)

)
∗ ρk(x)

)
dx , (7.1)

if u ∈W 1,p(U ; Rn), and extended to +∞ otherwise. Let also for ω ∈ Ω and A ∈ A

mω(uM , A) := inf
{ˆ

A

W (ω, x, e(v)) dx : v ∈W 1,p(A; Rn), v = uM near ∂A
}
.

(7.2)
We now state the main theorem of this section.

Theorem 7.4 Stochastic homogenisation. Let W be a random integrand satisfying
(w1)–(w3). Assume moreover W is stationary with respect to a group (τz)z∈Zn of
P -preserving transformations on (Ω, T , P ). For every ω ∈ Ω let Fk(ω) be as in (7.1)
and mω be as in (7.2). Then there exists Ω′ ∈ T , with P (Ω′) = 1 such that for every
ω ∈ Ω′, x ∈ R

n, M ∈ M
n×n the limit

lim
t→+∞

mω(uM , Qt(tx))
tn

= lim
t→+∞

mω(uM , Qt(0))
tn

=: Whom(ω,M) (7.3)

exists and is independent of x. The function Whom : Ω × M
n×n → [0,+∞) is

(T ⊗ Bn×n)-measurable. Moreover, for every ω ∈ Ω′ the functionals Fk(ω) Γ-
converge in measure to the functional Fhom(ω) : L0(U ; Rn) → [0,+∞] given by

Fhom(ω)(u) :=

{
α
´

U
Whom(ω, e(u)) dx+ β

´
Ju
φρ(νu) dHn−1 if u ∈ GSBDp(U) ,

+∞ otherwise .

If, in addition, W is ergodic, then Whom is independent of ω and

Whom(M) = lim
t→+∞

1
tn

ˆ
Ω

mω(uM , Qt(0)) dP (ω) , (7.4)

and thus Fhom is deterministic.

The proof of theorem 7.4 is quite standard and can be achieved as in [12] (see also
[21]). For this reason here we only detail the main adaptations.

Proposition 7.5. Let W be a stationary random integrand satisfying (w1)–(w3)
and let mω be as in (7.2). Then for every M ∈ M

n×n the function μM : Ω × In →
R given by μM (ω,A) := mω(uM , A) defines a subadditive process on (Ω, T , P ).
Moreover

0 � μM (ω,A) � c2(|M +MT |p + 1)Ln(A) , (7.5)

for P -a.e. ω ∈ Ω and for every A ∈ In.
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Proof. Let M ∈ M
n×n be fixed. Then we need to show that μM satisfies properties

(a)–(d). The proof of properties (b)–(d) and of (7.5) are standard and therefore we
omit it here. It then remains to prove (a). Let A ∈ In be fixed. For N ∈ N let

WN (ω, x,M) := inf
ξ∈Mn×n

{W (ω, x, ξ) +N |ξ −M |}

be the Moreau-Yosida regularisation of M �→W (ω, x,M) which is N -Lipschitz. Let
also

FN (ω) : W 1,p(A) → [0,+∞) ,

be defined as

FN (ω)(u) :=
ˆ

A

WN (ω, x, e(u)) dx .

Arguing as in the proof of [21, lemma C.1.] it can be shown that (ω, u) �→
FN (ω)(u) is T ⊗ B(W 1,p(A))-measurable. By (w3) WN ↗W pointwise, and in
particular FN (ω)(u) converges to

´
A
W (ω, x, e(u)) dx pointwise. As a consequence

(ω, u) �→
´

A
W (ω, x, e(u)) dx is also T ⊗ B(W 1,p(A))-measurable. Now we note

that F (ω)(uM ) < +∞. This together with (w3) and [21, lemma C.2.] imply that
ω �→ μM (uM , A) is T -measurable. �

The proof of theorem 7.4 follows by proposition 7.5 and the Subadditive Ergodic
Theorem [19, theorem 2.4] arguing as in [12].
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Appendix A. A remark on the non-local approximation of
free-discontinuity problems in GSBV

This Appendix is devoted to the statement of a Γ-convergence Theorem for non-
local functionals depending on the full deformation gradient ∇u. The result we are
going to state has actually been proved in [9, theorem 3.2], under an additional
technical assumption, the so-called stable γ-convergence of the functionals

Ẽk(u,A) :=

{´
A
Wk(x,∇u) dx if u ∈W 1,p(A; Rn) ,

+∞ otherwise.
(A.1)

This assumption, stated in [9, definition 7.2] is stronger than simple Γ-convergence,
and introduces a limitation to the class of functionals to which the theorem applies,
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although relevant examples fulfilling this condition can be readily provided (see
[9, Examples 7.3–7.5]). Actually, the inspection of the proof of proposition 5.1,
which can be clearly adapted to the GSBV setting, shows that it is not needed.
For the reader’s convenience we give a precise statement of the result, after recalling
the structural assumptions on the non-local approximation energies under which it
is formulated.

The functions Wk are assumed to satisfy (W1)–(W2), together with

(W 4′) for every x ∈ R
n and every M ∈ M

n×n

c1|M |p � Wk(x,M) � c2(|M |p + 1) .

We will denote with Ẽ the Γ-limit with respect to the convergence in measure of
the functionals Ẽk in (A.1), given by (see [14, theorem 20.4])

Ẽ(u,A) :=

{´
A
W (x,∇u) dx if u ∈W 1,p(A; Rn) ,

+∞ otherwise .

where, for every x ∈ u and every M ∈ M
n×n

W (x,M) = W ′(x,M) = W ′′(x,M) . (A.2)

Above, W ′ and W ′′ are defined in (2.7), and (2.8), respectively, provided that Ek

is replaced by Ẽk. We then consider the non-local functionals

F̃k(u) :=

⎧⎨⎩
1
εk

ˆ
U

fk (εkWk(·,∇u) ∗ ρk(x)) dx if u ∈W 1,p(U ; Rn) ,

+∞ otherwise .
(A.3)

where ρk are as in § 2.3, while fk : [0,+∞) → [0,+∞) are concave and satisfy

a1t ∧ b1 � fk(t) � b2 (A.4)

for suitable uniform constants a1, b1, b2 > 0. We then have the following theorem.

Theorem A.1. Assume (W1), (W2), and (W4′). Consider a sequence of concave
functions fk as in (A.5) and convolution kernels ρk as in § 2.3. Let the functionals
F̃k be given by (A.3). Finally, assume that

αkt ∧ b1 � fk(t) � b2 with lim
k→+∞

αk − f ′k(0) = 0 . (A.5)

Then F̃k Γ-converge, with respect to the convergence in measure, to a functional of
the form

α

ˆ
U

W (x,∇u) dx+
ˆ

Ju

ϕ(x, [u], νu) dHn−1

where W is given by (A.2), α = lim inf f ′k(0), and ϕ is a suitable Carathéodory
integrand.

https://doi.org/10.1017/prm.2023.51 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.51


Non-local approximation of free-discontinuity problems in linear elasticity 1093

Proof. By [9, theorem 3.1], we have that the Γ-limit of F̃k is an integral functional
of the form ˆ

U

W∞(x,∇u) dx+
ˆ

Ju

ϕ(x, [u], νu) dHn−1 .

For W ′ and W ′′ as in (2.7), and (2.8), respectively, one has only to show that
W∞ � αW ′′ and W∞ � αW ′. The first inequality is actually already proved in
[9, proposition 7.1]. As for the second, notice under assumption (A.5) and taking
into account remark 5.2, it can be recovered by exactly following the argument
of proposition 5.1, provided one is willing to replace each occurrence of e(u) with
∇u. �
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