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Asymptotic homogenization is employed to formulate upscaled effective boundary
conditions at a smooth virtual surface for a natural-convection flow over a periodically
roughened vertical wall, to bypass the expensive numerical resolution of flow and
temperature fields near and within wall corrugations. Microscale problems are found
by expanding near-wall variables in terms of a small parameter ε, the ratio between
the microscopic and the macroscopic length scales. The expressions of the upscaled
velocity and temperature boundary conditions are provided up to second-order accuracy
in ε. The case of transverse square ribs is considered as a representative example. The
classical Navier-slip condition for the streamwise and the spanwise velocity components
is modified at second order by the gradient of the normal stress and the time derivative
of the shear stress. The streamwise slip velocity is additionally corrected by a buoyancy
term at first order and a temperature-gradient term at second order. The normal velocity at
the virtual surface appears only as a second-order transpiration condition. A Robin-like
condition for the temperature is found, where the wall temperature is corrected with
a temperature-gradient term representing thermal slip. The accuracy levels and the
applicability range of the effective conditions to mimic the macroscopic flow behaviour
are investigated under laminar flow conditions, in comparison with results of full
feature-resolving simulations. A formal validity limit for the approximation is sought in
terms of a single accuracy criterion (C), which combines the effects of the Grashof number
and the ribs’ density. The introduced model is further tested on different rib geometries.
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1. Introduction and literature review

Natural convection over ribbed/finned surfaces is widely encountered in engineering
applications, such as cooling of electronics and telecommunication devices, air solar
collectors and gas-cooled nuclear reactors. Compared with forced convection, a system
that depends on the natural-convection heat transfer regime has lower initial and running
costs, less noise and vibrations, higher reliability, almost maintenance-free operations and
better ability for use in hostile environments under dust, moist air, etc. On the other
hand, the main problem facing designers is the low heat transfer coefficient of these
systems. Due to the ever-growing trend of miniaturization of electronic components and
the increase in power supply, higher heat generation rates per unit volume are encountered
(Joshi, Willson & Hazard 1989). This trend has stimulated many investigations to enhance
natural-convection cooling systems so that they can be effective at handling operation
requirements. One intuitively appealing solution to enhance the heat transfer performance
of these systems is to apply some sort of alteration or disturbance on the heated surface(s)
in analogy to the well-established concept of heat transfer promotion by adding ribs/fins
to surfaces exposed to forced convection (Bunker & Donnellan 2003; Chyu, Oluyede &
Moon 2007; Han, Dutta & Ekkad 2012). However, studies on the effectiveness of adding
surface alterations (ribs, interrupted fins, dimples, etc.) to vertical plates exposed to natural
convection have not led yet to convincing guidelines, with some researchers reporting an
improvement of up to 200% compared with the performance of plane vertical plates, and
others who have found them useless or even of negative influence on the local and averaged
heat transfer parameters (Bhavnani & Bergles 1990).

The need to better understand the interaction between the surface microstructure and
the buoyancy-driven flow has motivated many experimental and numerical investigations
to assess the usefulness and the feasibility of adding different types of protrusions to the
heated surfaces in terms of their effects on the flow regime, the heat transfer characteristics
and the mass of the cooling modules. Examples of some surface alterations/extensions,
considered in previous investigations, are displayed in figure 1, including periodic (wavy,
rounded, zigzag) corrugations (Kishinami et al. 1990; Bhavnani & Bergles 1991; Yao
2006; Hærvig & Sørensen 2020), steps (Bhavnani & Bergles 1990), two-dimensional ribs
(Tanda 1997; Cavazzuti & Corticelli 2008) and different arrangements of fins (Guglielmini
et al. 1987; Ahmadi et al. 2014; El Ghandouri et al. 2020). Various experimental
techniques have been adopted for mapping the thermal field to assess the detailed
heat transfer performance. Two-dimensional and three-dimensional feature-resolving
numerical simulations have also demonstrated to be powerful tools for the acquisition
of large amounts of data on thermal fields and flow regimes, particularly for complex
configurations (Yao 2006; Cavazzuti & Corticelli 2008; Ahmadi et al. 2014; Hærvig &
Sørensen 2020).

Numerical work on flows over surfaces with complicated small-scale details including
irregularities, roughness, porosity, etc. has been a challenge due to the high computational
resources required to numerically discretize flow and temperature fields in the vicinity
of the surface microstructures. In the present work, the multiscale homogenization
approach is proposed to simplify the modelling of buoyancy-driven flows over periodically
roughened vertical surfaces, while maintaining an acceptable level of accuracy.
Asymptotic homogenization is an approach which targets the study of the macroscale
behaviour of a medium which contains microscopic details, by replacing the rapidly
varying properties related to the heterogeneity of the medium by equivalent homogeneous
macroscopic properties (Babuška 1976). This technique can play a pivotal role when
handling differential equations that govern physical problems with microscale fluctuations
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Bhavnani & Bergles (1991) Yao (2006) Kishinami et al. (1990)

Ahmadi et al. (2014)Guglielmini et al. (1987)El Ghandouri et al. (2020)Cavazzuti & Corticelli (2008)Tanda (1997)

Hærvig & Sørensen (2020) Bhavnani & Bergles (1990)

Figure 1. Schematic drawings of some surface alterations examined in the literature. The indicated geometries
are (from top left to bottom right): sinusoidal waves (Bhavnani & Bergles 1991), complex waves (Yao 2006),
convex–concave semi-circles (Kishinami, Saito & Tokura 1990), zigzag shaping (Hærvig & Sørensen 2020),
steps (Bhavnani & Bergles 1990); transverse square ribs (Tanda 1997), transverse trapezoidal ribs (Cavazzuti
& Corticelli 2008), rippled vertical fins (El Ghandouri et al. 2020), staggered arrangement of interrupted fins
(Guglielmini, Nannei & Tanda 1987), in-line arrangement of interrupted fins (Ahmadi, Mostafavi & Bahrami
2014).

(Engquist & Souganidis 2008) which are characterized by some sort of periodicity or
pseudo-periodicity. These problems can be computationally simplified by first solving ad
hoc auxiliary systems of equations in a microscopic domain to evaluate the necessary
upscaled conditions by means of averaging. The approach relies on the asymptotic
expansion of the dependent variables in terms of a wisely chosen small parameter
whose existence is related to the presence of well-separated scales, for instance a
microscopic length scale (�) and a macroscopic length scale (L � �), so that the parameter
ε = �/L � 1 can be defined, and the solution of the problem can be sought up to different
orders of accuracy in terms of ε.

Flow over micro-textured surfaces represents a typical homogenization problem.
Jiménez Bolaños & Vernescu (2017) have derived the Navier-slip effective condition
for the Stokes flow over a rough surface via homogenization theory as a first-order
corrector term to the no-slip condition of a smooth surface. Zampogna, Magnaudet &
Bottaro (2019a) have pursued a generalization of the classical first-order Navier-slip
condition (Navier 1823) over a rough surface by means of a third-order Navier-slip
tensor. The homogenized model was pushed to second order by Lācis et al. (2020)
with the introduction of a transpiration velocity, the normal velocity component at the
fictitious interface, thus enhancing model predictions for a turbulent boundary layer over
a rough surface. A further improvement has been added by Bottaro & Naqvi (2020),
who sought a solution up to third-order accuracy. The range of applications subtended
by homogenization theory is being continuously widened and enhancements to the basic
formulation are ongoing. Zampogna et al. (2019b) have extended the theory to the study
of the turbulent flow over compliant riblets, seeking reduction of the skin friction drag.
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Adjoint homogenization has been introduced by Bottaro (2019) as a method to take into
account nonlinear effects within the microscopic region.

The work presented in this paper is a novel implementation of the multiscale
homogenization technique to study natural-convection heat transfer over rough surfaces.
The only previous contribution in this aspect was the work by Introïni, Quintard & Duval
(2011), who applied the volume-averaging upscaling method to the study of the steady
laminar buoyancy-driven flow over rough surfaces. However, their model suffered from
some deficiencies that limit its applicability range. A critical assumption adopted by
Introïni and collaborators was the neglect of buoyancy effects within the microscopic
region, so that the momentum and energy conservation equations are decoupled. This
assumption, despite being mathematically advantageous, limits the model applicability
to cases in which the Rayleigh number characterizing the microscopic problem (based
on the microscopic length scale and the temperature difference across the microscopic
region) is sufficiently small. To satisfy this condition, the bulk Rayleigh number must be
lower than some threshold value, and the roughness elements must be confined within
the thermal boundary layer. In practical situations, high values of the Rayleigh number are
often encountered. Moreover, the model developed by Introïni et al. (2011) is only accurate
to first order in ε.

In this paper, asymptotic homogenization is used to formulate expressions for
the macroscopic velocity and temperature effective conditions at a virtual interface
separating the microscopic and the macroscopic sub-domains. Unlike Introïni et al.
(2011), the Boussinesq approximation is employed for the buoyancy term in the
microscopic momentum equation to be linearly coupled with the energy equation. The
dependent parameters are expanded asymptotically in powers of the small parameter
ε = pattern periodicity (�)/plate length (L). The effective conditions for velocity and
temperature are all sought up to second-order accuracy. In the next section, the
governing equations and the boundary conditions of the problem are outlined, and
domain decomposition is explained. In § 3, the microscopic region is considered where
the asymptotic expansion of the dependent variables is defined, and the problem is
reconstructed at different orders of ε. For each order, generic forms of the solutions are
assumed and auxiliary differential systems are formulated. Then, the case of transverse
square ribs is discussed in § 4. The parameters of interest are determined via numerical
solution of the auxiliary systems, and the effect of the matching surface location is
considered. In § 5, a parametric study seeking the effect of varying the rib size to the pitch
distance ratio on the different coefficients is presented. In § 6, the macroscale problem is
considered by imposing the upscaled boundary conditions at a virtual vertical interface
passing through the outer rims of the ribs; full feature-resolving simulations are also
conducted to validate the predictions of the model. In § 7, the accuracy deterioration of
the homogenized model is monitored with the increase of ε and/or the Grashof number,
and the limit of validity of the approach is ascertained. Furthermore, the accuracy of the
method is confirmed for different shapes of the roughness elements. In the concluding
section, the main findings of the study are highlighted.

2. Governing equations and domain decomposition

2.1. The dimensional equations
As a major assumption, the changes in the density of the fluid are considered to only
affect the buoyancy term in the momentum conservation equation. Under the Boussinesq
approximation, the conservation equations in terms of the dimensional variables, space
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coordinates x̂i, time t̂, pressure P̂, velocity ûi and temperature T̂ , are expressed as follows:

∂ ûi

∂ x̂i
= 0, (2.1a)

ρ̂∞
(

∂ ûi

∂ t̂
+ ûj

∂ ûi

∂ x̂j

)
= −∂(P̂ − P̂∞)

∂ x̂i
+ μ

∂2ûi

∂ x̂j
2 − ρ̂∞β(T̂ − T̂∞)gi, (2.1b)

∂T̂
∂ t̂

+ ûj
∂T̂
∂ x̂j

= α
∂2T̂

∂ x̂j
2 , (2.1c)

with ρ̂∞, P̂∞ and T̂∞ the density, pressure and temperature in the stagnant flow
region, sufficiently far away from the vertical wall. The parameters assumed constant
in the equations above are the volumetric thermal expansion coefficient, β, the dynamic
viscosity, μ = ρ̂∞ν, with ν the kinematic viscosity, and the thermal diffusivity, α. With
the axes as in figure 2, the volume force per unit mass has components gi = −gδi1 with g
the gravitational acceleration and δij the Kronecker index. The parameter controlling the
thermal convection flow is the Rayleigh number Ra, defined as

Ra = gβ(T̂w − T̂∞)L3

αν
, (2.2)

where the temperature of the wall, T̂w, is maintained constant, and the plate height, L, is
the macroscopic length scale of the problem. We also define the Grashof number, Gr =
Ra/Pr, with Pr = ν/α the Prandtl number, a property of the fluid. Given the presence of
two characteristic length scales, a macroscopic and a microscopic one, the latter related
to the periodicity l of the microstructures present on the vertical surface, two problems
will be set up. These two problems will be coupled at some distance from the wall, a
distance that is asymptotically large when seen from the microscopic point of view and
asymptotically small when seen from the macroscopic viewpoint.

2.2. The macroscale problem
To set the proper scales of the macroscopic problem we consider the fact that the motion
of the fluid is generated by the buoyancy force; if U is the characteristic velocity of the
fluid, we can write

ρ̂∞U2

L
∼ ρ̂∞β(T̂w − T̂∞)g. (2.3)

We thus define the velocity scale U =
√

β(T̂w − T̂∞)gL = Gr1/2 ν
L and normalize the

velocity vector as

Ui = ûi

U . (2.4)

The other dimensionless variables are defined as follows:

Xi = x̂i

L
, t = t̂U

L
, P = P̂ − P̂∞

ρ̂∞U2 , Θ = T̂ − T̂∞
T̂w − T̂∞

, (2.5a–d)
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û2

û1

Figure 2. Sketch of a general vertical rough surface, periodically micro-patterned, with notations and
indication of microscopic and macroscopic domains.

for the balance equations to become

∂Ui

∂Xi
= 0, (2.6a)

∂Ui

∂t
+ Uj

∂Ui

∂Xj
= − ∂P

∂Xi
+ 1√

Gr

∂2Ui

∂X2
j

+ Θδi1, (2.6b)

Pr
√

Gr
(

∂Θ

∂t
+ Uj

∂Θ

∂Xj

)
= ∂2Θ

∂X2
j

. (2.6c)

These equations depend on only the macroscopic independent variables, t and Xi, and
must be solved subject to matching conditions at X2 → 0, together with Θ = U1 = 0 and
∂U2/∂X2 = 0 for X2 → ∞.

2.3. The microscale problem
The near-wall problem differs from the previous one in that the microscopic velocity scale
is taken to be ε U , with ε = �/L � 1. Also, the pressure scale for the near-wall flow is the
viscous pressure, i.e. μ(ε U)/l. Dimensionless variables in the microscopic domain are
introduced as follows:

ui = ûi

ε U , xi = x̂i

l
, t = t̂U

L
, p = (P̂ − P̂∞) L

μU , θ = T̂ − T̂∞
T̂w − T̂∞

. (2.7a–e)
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The microscopic dimensionless equations are

∂ui

∂xi
= 0, (2.8a)

εRG

(
∂ui

∂t
+ uj

∂ui

∂xj

)
= − ∂p

∂xi
+ ∂2ui

∂x2
j

+ RGθδi1, (2.8b)

εRG Pr
(

∂θ

∂t
+ uj

∂θ

∂xj

)
= ∂2θ

∂x2
j
, (2.8c)

with the reduced Grashof number RG, defined by RG = ε
√

Gr, assumed of order one.
The microscale problem is bounded by the microstructured wall on one side; therefore,
the following condition is imposed at this location:

ui = 0, θ = 1 for x2 = yw, (2.8d)

with yw = yw(x1, x3) the micro-patterned wall. A representative volume element must be
chosen, of unit length along x1 and x3 (cf. figure 2), and periodic conditions are enforced
for all dependent variables along these directions. On account of the scalings adopted for
inner (i.e. near-wall) and outer problems, the conditions for x2 → ∞ are

−pδi2 +
(

∂ui

∂x2
+ ∂u2

∂xi

)
= Si2, (2.8e)

∂θ

∂x2
= ε η; (2.8f )

these amount to matching the components of the traction vector and of the heat flux
between the two regions. For ease of notation, in the equations above we have introduced
the following definitions for the macroscopic dimensionless stresses in the streamwise,
normal and spanwise directions (respectively S12, S22, S32) as well as the macroscopic
dimensionless normal temperature gradient (η):

Si2 = −Gr1/2Pδi2 +
(

∂Ui

∂X2
+ ∂U2

∂Xi

)
, (2.9)

η = ∂Θ

∂X2
. (2.10)

Notice that both Si2 and η depend on only macroscopic variables; they represent the forcing
of the outer flow on the near-wall state.

We still need to specify the asymptotic matching conditions which will eventually result
in effective boundary conditions for the macroscopic problem, to be applied some distance
from the microstructured wall. They are:

lim
X2→0

Ui = lim
x2→∞ εui, (2.11a)

lim
X2→0

Θ = lim
x2→∞ θ. (2.11b)
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3. Asymptotic analysis of the microscale problem

3.1. Expansion of the inner variables
Asymptotic expansions in terms of the small parameter ε are introduced, and like-order
terms are collected, leading to a hierarchy of problems. We impose

ui = u(0)
i + ε u(1)

i + ε2 u(2)
i + · · · , (3.1)

and likewise for p and θ . Furthermore, using the chain rule, we replace in the microscopic
equations the term ∂/∂xi by ∂/∂xi + ε (∂/∂Xi). The asymptotic expressions are plugged
into (2.8a) to (2.8f ) governing the microscale problem.

3.2. Reconstruction of the problem at different orders
The problems at the asymptotic orders of interest are given below.

3.2.1. The O(ε0) problem
We have

∂u(0)
i

∂xi
= 0, (3.2a)

−∂p(0)

∂xi
+ ∂2u(0)

i

∂x2
j

+ RGθ(0)δi1 = 0, (3.2b)

∂2θ(0)

∂x2
j

= 0, (3.2c)

with boundary conditions

u(0)
i = 0, θ(0) = 1 at x2 = yw, (3.2d)

−p(0)δi2 +
(

∂u(0)
i

∂x2
+ ∂u(0)

2
∂xi

)
= Si2,

∂θ(0)

∂x2
= 0 for x2 → ∞. (3.2e)

A solution of this problem can be sought by separation of variables, on account of the
linearity of the system, for the solution to take the form

u(0)
i = ŭikSk2 + u†

i RG, p(0) = p̆kSk2 + p†RG + P0, (3.3a,b)

with ŭik, u†
i , p̆k and p† tensors which depend on microscopic variables only, and P0 an

integration constant function only of Xj. After plugging the ansatz for the order-zero
solution into the balance equations, it becomes clear that uniqueness conditions are needed
for p̆k and p†, which appear in the system only through their gradients. We enforce the
vanishing of the integrals of p̆k and p† over a cubic cell of unit side length positioned
sufficiently far from the wall (nominally for x2 → ∞); this leads to the vanishing of
P0. It is also clear that we cannot stop the solution at this order, since the leading-order
temperature solution is simply θ(0) = 1, i.e. the effect of the microstructure appears in the
temperature at the next ε order.

The dynamic problem at O(ε0) yields the same equations for ŭik and p̆k already given
for the isothermal case by Bottaro & Naqvi (2020), so that we can anticipate that the
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first correction to the no-slip condition for the velocity will be a Navier-slip term. Such a
leading-order problem reads

∂ ŭik

∂xi
= 0, (3.4a)

−∂ p̆k

∂xi
+ ∂2ŭik

∂x2
j

= 0, (3.4b)

with

ŭik = 0 at x2 = yw, (3.4c)

−p̆k δi2 +
(

∂ ŭik

∂x2
+ ∂ ŭ2k

∂xi

)
= δik at x2 → ∞. (3.4d)

The † variables, which describe the effect of buoyancy on velocity and pressure fields,
satisfy the steady system

∂u†
i

∂xi
= 0, (3.5a)

−∂p†

∂xi
+ ∂2u†

i

∂x2
j

= −δi1, (3.5b)

with

u†
i = 0 at x2 = yw, (3.5c)

−p†δi2 +
(

∂u†
i

∂x2
+ ∂u†

2
∂xi

)
= 0 at x2 → ∞. (3.5d)

As it will be shown later on, the problems can be further simplified when x3-elongated
wall ribs are examined, as in the case of riblets (Bechert & Bartenwerfer 1989; Luchini,
Manzo & Pozzi 1991).

3.2.2. The O(ε1) problem
The equations at order ε are forced by the order-one state, i.e.

∂u(1)
i

∂xi
= −∂u(0)

i
∂Xi

, (3.6a)

−∂p(1)

∂xi
+ ∂2u(1)

i

∂x2
j

+ RGθ(1)δi1 = ∂p(0)

∂Xi
− 2

∂2u(0)
i

∂xj∂Xj
+ RG

(
∂u(0)

i
∂t

+ u(0)
j

∂u(0)
i

∂xj

)
,

(3.6b)

∂2θ(1)

∂x2
j

= −2
∂2θ(0)

∂xj∂Xj
+ RG Pr

(
∂θ(0)

∂t
+ u(0)

j
∂θ(0)

∂xj

)
, (3.6c)
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with boundary conditions

u(1)
i = θ(1) = 0 at x2 = yw, (3.6d)

−p(1)δi2 +
(

∂u(1)
i

∂x2
+ ∂u(1)

2
∂xi

)
= −

(
∂u(0)

i
∂X2

+ ∂u(0)
2

∂Xi

)
at x2 → ∞, (3.6e)

∂θ(1)

∂x2
= η − ∂θ(0)

∂X2
at x2 → ∞. (3.6f )

We must now substitute the results for u(0)
i , p(0) and θ(0) into (3.6a) to (3.6f ). As a first

step, a solution for θ(1) is to be sought from the energy equation and the corresponding
boundary conditions. Specifically, these equations read

∂2θ(1)

∂x2
i

= 0, (3.7a)

θ(1) = 0 at x2 = yw, (3.7b)

∂θ(1)

∂x2
= η at x2 → ∞. (3.7c)

Owing to linearity, the solution can be written as

θ(1) = θ̃ (xi)η(Xi). (3.8)

The new microscopic field θ̃ solves the system

∂2θ̃

∂x2
i

= 0, (3.9a)

θ̃ = 0 at x2 = yw, (3.9b)

∂θ̃

∂x2
= 1 at x2 → ∞. (3.9c)

The equations governing the behaviour of u(1)
i and p(1) can be recast as follows:

∂u(1)
i

∂xi
= −ŭjk

∂Sk2

∂Xj
(3.10a)

−∂p(1)

∂xi
+ ∂2u(1)

i

∂x2
j

= R3
Gu†

j
∂u†

i
∂xj

+ R2
G

[
ŭjk

∂u†
i

∂xj
+ u†

j
∂ ŭik

∂xj

]
Sk2

+RG

[
ŭjk

∂ui�

∂xj

]
Sk2S�2 + RGŭik

∂Sk2

∂t

−RGηθ̃δi1 + p̆k
∂Sk2

∂Xi
− 2

∂ ŭik

∂xj

∂Sk2

∂Xj
, (3.10b)
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with boundary conditions

u(1)
i = 0 at x2 = yw, (3.10c)

∂u(1)
1

∂x2
+ ∂u(1)

2
∂x1

= −ŭ1k
∂Sk2

∂X2
− ŭ2k

∂Sk2

∂X1
,

−p(1) + 2
∂u(1)

2
∂x2

= −2ŭ2k
∂Sk2

∂X2
,

∂u(1)
3

∂x2
+ ∂u(1)

2
∂x3

= −ŭ3k
∂Sk2

∂X2
− ŭ2k

∂Sk2

∂X3
at x2 → ∞.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.10d)

Again, a generic form of the solution can be sought, i.e.

u(1)
i = u̇ijk

[
∂Sk2

∂Xj

]
+ üik[RG(Sk2)

2] + üi12[RGS12S22] + üi13[RGS12S32]

+üi23[RGS22S32] + u′
i[RGη] + ūik[R2

GSk2] + u‡
i [R3

G] + ut
ik

[
RG

∂Sk2

∂t

]
,

(3.11a)

p(1) = ṗjk

[
∂Sk2

∂Xj

]
+ p̈k[RG(Sk2)

2] + p̈12[RGS12S22] + p̈13[RGS12S32]

+p̈23[RGS22S32] + p′[RGη] + pk[R2
GSk2] + p‡[R3

G] + pt
k

[
RG

∂Sk2

∂t

]
.

(3.11b)

Twenty-three decoupled systems of equations arise from substituting the preceding forms
into (3.10a) to (3.10d). They are given in Appendix A.

3.2.3. Taking the temperature condition to higher order
Given that the macroscopic velocity at the matching surface is now available up to order
ε2 (cf. (2.11a)), it is advisable to do the same with the temperature. Employing the values
of the dependent variables at the earlier orders, the microscopic energy equation at O(ε2)
now reads

∂2θ(2)

∂x2
i

= PrRG

[
θ̃
∂η

∂t
+ ŭjk

∂θ̃

∂xj
ηSk2 + u†

j
∂θ̃

∂xj
ηRG

]
− 2

∂θ̃

∂xj

∂η

∂Xj
. (3.12a)

The boundary conditions are:

θ(2) = 0 at x2 = yw,
∂θ(2)

∂x2
= −θ̃

∂η

∂X2
at x2 → ∞. (3.12b)

The following general form for the solution of θ(2) may be assumed:

θ(2) = θ !
k

[
∂η

∂Xk

]
+ θ∗

k [Pr RGηSk2] + θ∗∗[PrR2
Gη] + θ t

[
PrRG

∂η

∂t

]
. (3.13)

Eight decoupled systems of equations stem from substituting the latter form into (3.12a)
and (3.12b); they are provided in Appendix B.
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Figure 3. Sketch of a unit cell in the microscopic domain, indicating coordinates and geometric parameters.

4. The case of transverse square ribs

As an example of the implementation of the theory, the case of transverse square ribs
is considered so that the auxiliary systems can be significantly simplified. In particular,
because of invariance along x3, all auxiliary problems simplify considerably (with
derivatives ∂/∂x3 set to zero), and only two-dimensional Stokes-like (or Laplace-like
or Poisson-like) problems remain to be solved in the (x1, x2) plane, subject to periodic
conditions along x1. A sketch of the microscopic representative volume element is
provided in figure 3. Some of the microscopic problems admit trivial solutions. For
instance, it is easy to find that in the elementary cell it is ŭ12 = ŭ22 = ŭ13 = ŭ23 =
ŭ31 = ŭ32 = u†

3 = 0, plus p̆2 = −1 and p̆3 = 0. The systems which do not have a simple
solution have been solved numerically by using the STAR-CCM+ multi-physics software
(version 15.06.007-R8), by successfully refining the grid until fully grid-converged states
are found, for varying dimensions of the cell along x2. Detailed numerical results of the
reduced auxiliary systems relative to the O(ε0), O(ε1) and O(ε2) problems are presented
as supplementary material available at https://doi.org/10.1017/jfm.2022.320, for a rib size
to periodicity ratio, e/l, equal to 0.25, and matching interface location positioned at
x2 = y∞ = 5.

4.1. A synthesis of the microscopic results
The behaviours of the parameters of interest, those which contribute to the effective
boundary conditions, are presented in figure 4, separating them into two groups according
to their gradients in the x2-direction (either positive or negative). At the matching interface
(x2 = y∞ = 5), the variables contributing to the effective boundary conditions become
independent of x1 and take the following uniform values:

ŭ11 = 5.0396, ŭ33 = θ̃ = 5.0861, (4.1a,b)

u†
1 = u̇112 = −u̇211 = 12.7002, u̇332 = −u̇233 = 12.9402, (4.2a,b)

u′
1 = 43.0376, ut

11 = −42.4485, ut
33 = θ t = −43.8582. (4.3a–c)

4.2. Effects of varying the matching interface location
The effect of changing the matching surface distance, y∞, on the values of the seven
independent groups of effective parameters has been analysed with the aid of successive
numerical simulations, varying y∞ from 2 to 6, as listed in table 1. An in-depth look
into the table reveals that we have three categories of relations between the values of
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0
ŭ11
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1

ŭ33 = θ̃

u†
1 = u∙112u∙332

ut
11

ut
33 = θt

u∙211

u∙233

(a) (b)

Figure 4. Behaviour of the parameters of interest along a line in the x2-direction which goes through the
middle of the rib (x1 = 0 with reference to figure 3). The displayed numerical results are for the case e/� = 0.25
and y∞ = 5.

y∞ ŭ11 ŭ33 = θ̃ u†
1 = u̇112 = −u̇211 u̇332 = −u̇233 u′

1 ut
11 ut

33 = θ t

2 2.0398 2.0861 2.0820 2.1818 2.8935 –2.8114 –3.0271
3 3.0397 3.0861 4.6213 4.7680 9.5340 –9.2334 –9.7986
4 4.0396 4.0861 8.1607 8.3541 21.8505 –21.5067 –22.7422
5 5.0396 5.0861 12.7002 12.9402 43.0376 –42.4485 –43.8582
6 6.0398 6.0861 18.2411 18.5264 74.2034 –72.2463 –75.1465

Category (L) Category (Q) Category (C)
Linear relations Quadratic relations Cubic relations

Table 1. Microscopic results found at different values of y∞ for square ribs with e/� = 0.25.

the microscopic parameters at the matching interface vs the location of the interface
itself; specifically, linear, quadratic and cubic relations. Fitting the results, we propose
the following expressions for the closure variables evaluated at y∞:

ŭ11 = y∞ + λx, ŭ33 = θ̃ = y∞ + λz, (4.4a,b)

u†
1 = u̇112 = −u̇211 = y2∞

2
+ λxy∞ + m12,

u̇332 = −u̇233 = y2∞
2

+ λzy∞ + m32,

⎫⎪⎪⎬
⎪⎪⎭ (4.5)

u′
1 ≈ 2

[
y3∞
6

+ m32y2∞ + λxy∞
]

+ B,

ut
11 ≈ −2

[
y3∞
6

+ m12y2∞ + λxy∞
]

+ B1t,

ut
33 ≈ θ t = −2

[
y3∞
6 + λz

y2∞
2 + m32y∞

]
+ B3t.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.6)

The dimensionless Navier-slip coefficients (λx, λz), surface permeability coefficients
(m12, m32), velocity-flux sensitivity (B) and time-fluctuation coefficients (B1t,B3t) are
only dependent of the geometric parameters of the ribbed surface, e/� in the case of
square ribs. These coefficients can be calculated for any geometry of transverse ribs, once
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the microscopic numerical simulations are conducted with suitable values of y∞, and the
results of the microscopic parameters at the matching interface are substituted in accurate
fitting equations, or are extrapolated to y∞ = 0.

Simpler, accurate methods for the estimation of the coefficients of interest are proposed
within the present framework. The Navier-slip coefficients can be calculated by running
the simulations of the leading-order systems, forced by S12 and S32, with a suitable value
of y∞ to get, respectively, the fields of ŭ11 and ŭ33; thereafter, the values of λx and λz can
be found by averaging the corresponding field on the plane x2 = 0. It is interesting that
these same fields can then be employed to estimate the values of m12 and m32, making use
of the numerical result pointed out by Bottaro & Naqvi (2020), i.e.

u†
1 = u̇112 = −u̇211 =

∫
Scell

ŭ11 dx1 dx2, (4.7a)

u̇332 = −u̇233 =
∫

Scell

ŭ33 dx1 dx2, (4.7b)

with Scell the surface of the representative near-wall cell. The following values of the
coefficients eventually arise when e/� = 0.25:

λx = 0.03975, λz = 0.08609, (4.8a–b)

m12 = 0.002332, m32 = 0.009551, (4.9a–b)

B = 0.0002399, B1t = −0.0000839, B3t = −0.0007794. (4.10a–c)

4.3. The formal expressions of the effective boundary conditions
The expressions of the microscopic dimensionless velocity components are now available
up to O(ε1), while the microscopic dimensionless temperature (θ ) is known up to O(ε2).
The values of the preceding quantities can be linked to the corresponding dimensionless
macroscopic parameters at the matching interface, based on the concept of continuity
of velocity (2.11a) and temperature (2.11b). In particular, it is convenient to enforce
the conditions on the outer rim of the ribs, which amounts to specifying x2 = εX2 = 0
in the matching relations ((2.11a), (2.11b)), along with setting y∞ = 0 in the fits of
the microscopic parameters (given in § 4.2) entering the effective boundary conditions.
Eventually, we obtain

U1|X2=0 = ε[λxS12 + m12RG]X2=0

+ ε2
[

m12
∂S22

∂X1
+ BRG

∂Θ

∂X2
+ B1tRG

∂S12

∂t

]
X2=0

+ O(ε3), (4.11a)

U2|X2=0 = −ε2
[

m12
∂S12

∂X1
+ m32

∂S32

∂X3

]
X2=0

+ O(ε3), (4.11b)

U3|X2=0 = ε λzS32|X2=0 + ε2
[

m32
∂S22

∂X3
+ B3tRG

∂S32

∂t

]
X2=0

+ O(ε3), (4.11c)

Θ|X2=0 = 1 + ε λz
∂Θ

∂X2

∣∣∣∣
X2=0

+ ε2B3tRG Pr
∂2Θ

∂X2∂t

∣∣∣∣
X2=0

+ O(ε3). (4.11d)

The no-slip conditions of the smooth surface are identically retrieved at O(ε0). The
effective conditions for velocity are similar to those given by Lācis et al. (2020) and
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Bottaro & Naqvi (2020) for flow over rough surfaces without heat transfer. Nevertheless,
the presence of the buoyancy terms, proportional to RG and RG(∂Θ/∂X2) in the
equation of the velocity component U1, and of the time-fluctuation terms in the
equations of (U1, U3, Θ) should be highlighted. We emphasize that the presence of
the buoyancy-related term is a first-order contribution to the effective condition for the
streamwise velocity, Û1, and is directly attributed to the assumption that the Grashof
number is sufficiently large, i.e. εRG = ε2

√
Gr is of O(ε1), and not O(ε2).

In dimensional terms, the conditions on the plane x̂2 = 0 read

û1|x̂2=0 ≈ λ̂x

[
∂ û1

∂ x̂2
+ ∂ û2

∂ x̂1

]
x̂2=0

+ m̂12
βg(T̂w − T̂∞)

ν︸ ︷︷ ︸
First order

+ m̂12

[
∂

∂ x̂1

(
−(p̂ − p̂∞)

μ
+ 2

∂ û2

∂ x̂2

)]
x̂2=0

+ B̂gβ

ν

∂T̂
∂ x̂2

∣∣∣∣∣
x̂2=0︸ ︷︷ ︸

Second order

+ B̂1t
1
ν

∂

∂ t̂

[
∂ û1

∂ x̂2
+ ∂ û2

∂ x̂1

]
x̂2=0︸ ︷︷ ︸

Second order

, (4.12a)

û2|x̂2=0 ≈ −m̂12
∂

∂ x̂1

[
∂ û1

∂ x̂2
+ ∂ û2

∂ x̂1

]
x̂2=0

− m̂32
∂

∂ x̂3

[
∂ û3

∂ x̂2
+ ∂ û2

∂ x̂3

]
x̂2=0︸ ︷︷ ︸

Second order

, (4.12b)

û3|x̂2=0 ≈ λ̂z

[
∂ û3

∂ x̂2
+ ∂ û2

∂ x̂3

]
x̂2=0︸ ︷︷ ︸

First order

+ m̂32
∂

∂ x̂3

[
−(p̂ − p̂∞)

μ
+ 2

∂ û2

∂ x̂2

]
x̂2=0︸ ︷︷ ︸

Second order

+ B̂3t
1
ν

∂

∂ t̂

[
∂ û3

∂ x̂2
+ ∂ û2

∂ x̂3

]
x̂2=0︸ ︷︷ ︸

Second order

, (4.12c)

T̂|x̂2=0 ≈ T̂w︸︷︷︸
Zero order

+ λ̂z
∂T̂
∂ x̂2

∣∣∣∣∣
x̂2=0︸ ︷︷ ︸

First order

+ B̂3t
1
α

∂2T̂
∂ x̂2∂ t̂

∣∣∣∣∣
x̂2=0︸ ︷︷ ︸

Second order

. (4.12d)

The dimensional groups of coefficients (λ̂x, λ̂z), (m̂12, m̂32) and (B̂, B̂1t, B̂3t) are
homogeneous to, respectively, a length, a surface area and a volume, and correspond to the
product of their dimensionless counterparts times, respectively, l, l2 and l3. The conditions
above represent the most important contribution of the present paper.

5. The role of rib height to pitch distance ratio: parametric study

From a practical point of view, it is advantageous to generate a database of the values
of the seven dimensionless, geometry-dependent coefficients of interest, to cover a wide
range of rib height to pitch distance ratios, e/l, in order to enable the direct use of the
effective boundary conditions for the macroscopic problems. In this study, the ratio was
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Figure 5. The behaviour of the upscaled coefficients of interest with the change of rib height to pitch distance
ratio. The curves are fitted on the basis of kriging interpolation.

e/� λx λz m12 m32 B B1t B3t

0.025 0.02158 0.02296 0.000265 0.000286 0.0000041 −0.0000041 −0.0000046
0.050 0.03667 0.04215 0.000874 0.001037 0.0000270 −0.0000250 −0.0000320
0.075 0.04593 0.05757 0.001601 0.002120 0.0000710 −0.0000580 −0.0000920
0.100 0.05061 0.06949 0.002250 0.003384 0.0001280 −0.0000940 −0.0001850
0.125 0.05188 0.07822 0.002725 0.004716 0.0001855 −0.0001195 −0.0003000
0.150 0.05094 0.08400 0.002979 0.005999 0.0002290 −0.0001297 −0.0004237
0.175 0.04853 0.08738 0.003029 0.007184 0.0002550 −0.0001264 −0.0005449
0.200 0.04567 0.08859 0.002898 0.008188 0.0002651 −0.0001144 −0.0006477
0.225 0.04265 0.08803 0.002663 0.008976 0.0002578 −0.0000992 −0.0007269
0.250 0.03975 0.08609 0.002332 0.009551 0.0002399 −0.0000839 −0.0007794
0.275 0.03699 0.08302 0.002022 0.009892 0.0002171 −0.0000697 −0.0007982
0.300 0.03459 0.07921 0.001718 0.009987 0.0001912 −0.0000593 −0.0007870
0.350 0.03011 0.07011 0.001188 0.009600 0.0001430 −0.0000442 −0.0007011
0.400 0.02589 0.06023 0.000836 0.008612 0.0001024 −0.0000323 −0.0005671
0.500 0.01776 0.04155 0.000434 0.005803 0.0000417 −0.0000136 −0.0002944
0.600 0.01146 0.02624 0.000230 0.003128 0.0000132 −0.0000055 −0.0001188
0.700 0.00662 0.01453 0.000101 0.001326 0.0000041 −0.0000017 −0.0000364
0.800 0.00315 0.00642 0.000031 0.000391 0.0000009 −0.0000004 −0.0000072

Table 2. The upscaled coefficients of interest for different rib height to pitch distance ratios.

varied within the range 0.025 ≤ e/l ≤ 0.8. For each value of e/l, the procedure described
in § 4.2 for the accurate estimation of the coefficients was followed. The resulting database
is presented in tabular form (table 2) and graphically in figure 5. It is clear that all
model coefficients peak, in magnitude, within the range e/� = 0.1 to 0.3, which implies
significant velocity and thermal slip. All coefficients tend to zero as e tends to zero or
approaches �, for the effective boundary conditions at x2 = 0 to become no slip and
isothermal wall.

6. Macroscale behaviour of the flow

In this section, attention is given to validation of the effective conditions obtained in
§ 4, with the upscaled coefficients calculated for the case of square ribs. The macroscale
problem is considered, with the governing equations given in § 2. Since the ribs are
elongated in the transverse direction, and since only the case of laminar flow is considered,
there is no need to resolve the spanwise direction; the problem can be simplified to
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its two-dimensional form in the (X1, X2) plane. In addition, steady-state solutions are
targeted for validation purposes. Three types of simulations have been carried out:
(i) natural convection over a vertical smooth surface; (ii) full feature-resolving natural
convection over a vertical ribbed surface; (iii) homogenized problem with effective
boundary conditions at a virtual wall. For each simulation, the computational domain,
the boundary conditions and the grid structure are explained in detail later in this section.
As for the case of the microscopic problems, we have found it convenient to carry out the
simulations with STAR-CCM+. The second-order upwind formulation has been adopted
for the spatial discretization of all fields, with the calculation of the gradients based on
a hybrid Gauss–least squares method. The SIMPLE scheme has been employed for the
pressure–velocity coupling.

6.1. Isothermal vertical smooth surface case
A numerical calculation is first performed for a smooth isothermal surface at a plate
Grashof number Gr = 5.563 × 108 and a Prandtl number Pr = 0.712; this corresponds,
for instance, to a buoyancy-driven air flow with T̂∞ = 18 ◦C, T̂w = 58 ◦C, L = 0.5 m and
the fluid properties calculated at standard pressure and based on the film temperature
T̂f = (T̂w + T̂∞)/2. Different purposes are targeted from this step: (i) estimation of the
adequacy of the computational domain; (ii) validation of the CFD numerical scheme and
of the inlet/outlet boundary conditions by comparing the results with available databases
through the literature; (iii) the no-slip smooth surface case is equivalent to a homogenized
simulation of the rough surface with zero-order effective conditions, so the results will help
to monitor the accuracy enhancement when progressively higher-order approximations are
used.

The computational domain and the boundary conditions are illustrated in figure 6.
No-slip and constant temperature conditions are defined on the vertical wall; uniform
pressure boundary conditions are imposed at the upper and the lower boundaries such that
an equilibrium with the hydrostatic pressure head is satisfied. The width of the domain
should be selected in such a way that the streamwise velocity smoothly vanishes at the
far boundary at X2 = S, with the normal gradients of horizontal velocity and temperature
smoothly decreasing to zero. This was checked by running the simulation with different
values of the domain width, S, and monitoring a result of interest (the surface-averaged
Nusselt number) until convergence was attained. The local Nusselt number (Nu) and its
surface-averaged counterpart (Nu) are defined for the smooth surface by

Nu = −L

T̂w − T̂∞

∂T̂
∂ x̂2

∣∣∣∣∣
X2=0

= − ∂Θ

∂X2

∣∣∣∣
X2=0

, (6.1a)

Nu =
∫ 1

0
− ∂Θ

∂X2

∣∣∣∣
X2=0

dX1. (6.1b)

As can be realized from figure 6(b), a domain width S = 0.8 appears to be sufficient;
however, a value of S = 2 was used throughout the work to ensure the absence of spurious
reflections from the outer boundary when testing microstructured walls and/or larger
values of Gr. The two-dimensional grid is described in detail in Appendix C; eventually,
the extrapolated value of the average Nusselt number is estimated to be 75.055 based on
the conducted mesh-dependency study, also illustrated in the Appendix.

The dimensionless temperature and streamwise velocity profiles are plotted across
chosen normal sections distributed along the plate, as displayed in figure 7. The velocity
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Figure 6. Computational domain with boundary conditions used for the numerical simulation of the natural
convection over the isothermal vertical smooth plate (X2 = 0). Panel (b) shows a graphical representation of
the sensitivity of the solution to variations in the domain width. Here, Gr = 5.563 × 108, Pr = 0.712.

and the temperature contours in the vicinity of the smooth wall are also shown, to highlight
the development of the boundary layers. The peak of the velocity profile shifts away
from the wall as X1 increases, in qualitative agreement with the estimate of the classical
Squire–Eckert theory (Lienhard & Lienhard 2019) according to which the velocity peaks
at almost 1

3 of the boundary layer thickness. At the same time, the temperature gradient
at the wall is reduced with X1. The latter effect is responsible for the decrease of the
local Nusselt number (Nu) along the plate, plotted in figure 8. The distribution of the
local Nusselt number is in perfect agreement with the corresponding reference results by
Ostrach (1953). An analysis of Ostrach’s results reveals that the Nusselt number (Nu) is
related to the vertical position (X1) via the expression

X1Nu(
Gr
4

X3
1

)0.25 = fn(Pr). (6.2)

At a Prandtl number of 0.712, the function fn(Pr) was estimated to be almost 0.504.
Therefore, (6.2) can be recast as an explicit relation between Nu and X1 at any fixed value
of the Grashof number.

6.2. The case of isothermal ribbed surface
A typical validation case is now considered. The developed asymptotic wall model is
assumed to be reasonably accurate provided that ε is sufficiently small. In addition,
limitations are imposed on the magnitude of the coefficient of the convective term in the
normalized microscopic governing equations, C = ε2

√
Gr = ε RG, for convective effects

to be absent in the leading-order problem but present at next order. For the basic validation
case, we consider natural convection over an isothermal vertical plate with 168 transverse
square ribs (ε = 1

168 ) with a pitch distance to rib height ratio l/e = 3.75. The problem
is characterized by a plate Grashof number Gr = 5.563 × 108 and a Prandtl number
Pr = 0.712. With these parameters, the value of the coefficient C is 0.836. Results of
the feature-resolving simulation and the homogenization-based calculations of the basic
ribbed surface case are presented and compared.
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Figure 7. Smooth surface case: dimensionless velocity and temperature profiles across different normal
sections distributed along the vertical plate. Contours representing the velocity and the thermal fields are also
provided. Here, Gr = 5.563 × 108, Pr = 0.712.
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Figure 8. Smooth surface case: numerical prediction of the local Nusselt number distribution along the
vertical plate, compared with the expected behaviour based on the similarity solution by Ostrach (1953).

6.2.1. Feature-resolving simulation of the ribbed surface case
The two-dimensional feature-resolving numerical simulation, where the details of the
ribbed surface are captured by the grid, represents a necessary step for the validation of
the homogenized model.

The computational domain is illustrated in figure 9, including the geometric details of
the ribbed surface. The applied boundary conditions are the same as in the smooth surface
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case, taking into account that the no-slip velocity and temperature conditions are now
imposed on a patterned surface, not on a plain one. The two-dimensional grid near the
ribs is also shown, and the different grid refinement levels are stated. A near-wall region
of thickness 5e is defined where a high mesh density is employed to capture the flow
dynamics in the vicinity of the perturbed surface; however, the gradual growth of the mesh
guarantees that the whole field is fairly well resolved. The number of two-dimensional
cells given in the figure illustrates clearly the high computational cost of the fully featured
simulation of the ribbed surface compared with requirements of the smooth surface case,
described in Appendix C. The Nusselt number at any point on the ribbed surface is given
by

Nu = −L

T̂w − T̂∞
× ∂T̂

∂ n̂

∣∣∣∣∣
wall

= − ∂Θ

∂n

∣∣∣∣
wall

, (6.3a)

where n̂ denotes the dimensional distance in the surface-normal direction and n = n̂/L. A
dimensional surface distance ŝ is defined in such a way that it goes along the ribbed surface
capturing its details, i.e. ŝ goes from 0 to L + (2e × Nribs) with Nribs = 1/ε = L/� the
number of ribs. Accordingly, the surface-averaged Nusselt number based on the projected
area of the two-dimensional ribbed plate is defined as

Nu = 1
L

∫ L+2e/ε

0
− ∂Θ

∂n

∣∣∣∣
wall

dŝ =
∫ 1+2e/�

0
− ∂Θ

∂n

∣∣∣∣
wall

ds, (6.3b)

where s = ŝ/L, and the value of e/� represents the rib height to the pitch distance ratio. The
given expression for Nu takes into account the surface area increase, with respect to the
baseplate area, due to the presence of ribs. For the considered values of parameters (Gr =
5.563 × 108, Pr = 0.712, ε = 1

168 , l/e = 3.75), the reported value of Nu was estimated
based on Richardson’s extrapolation of results for successively refined grids, and finally
found to be 73.200 (compared with a value of 75.055 for a corresponding smooth surface
case). This finding suggests that adding ribs to the vertical surface deteriorates the total
heat transfer rate, for the geometric parameters and flow conditions under study.

The fully featured simulation is described first to provide insight into the physics,
before turning to the homogenized model. The patterns of the streamwise velocity, the
normal velocity and the temperature are plotted over two distant regions along the plane
surface tangent to the outer rims of the square ribs in order to show the behaviour
of velocity and thermal fields near the leading edge and near the top of the plate, as
displayed in figure 10. The fictitious surface at X2 = 0 was specifically chosen for the
plots as it represents the plane on which the effective conditions are imposed in the
model simulations; therefore, monitoring the flow parameters along this surface is of
interest. The contours of the velocity and the temperature near the wall are also shown
so that details of the boundary layer can be captured. Velocity and temperature patterns
are perturbed by the presence of the ribs and experience quasi-periodic behaviours along
the vertical distance. By analysing one unit of the distributions shown in the plots, it
is evident that the no-slip velocity and temperature conditions are typically satisfied at
the physical surface of the rib whereas deviations occur in the inter-rib fluid region.
Proceeding along the vertical direction, the average levels of both the streamwise velocity
and the temperature increase, which is qualitatively similar to the smooth surface case. The
deflections of the streamlines, due to the flow interaction with the surface protrusions, are
directly reflected in perturbation of the normal velocity where the successive negative and
positive fluctuations represent, respectively, the inward and outward normal flow through

941 A53-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

32
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.320


A homogenization approach for buoyancy-induced flows

Nunit

e
e

l

L 
=

 1
6
8
 l 

(1
6
8
 r

ib
s 

in
cl

u
d
ed

)

l

3975

Nint. 667 800

Ntotal 1 936 940

Coarse

7102

1 193 136

2 925 703

Medium

5e
5e

12 085

2 030 280

4 382 398

Nu 72.722 73.307 73.271

Fine

l/e = 3.75

S = 2

X1

X2

Figure 9. Description of the computational domain and two-dimensional grid structure used for the
feature-resolving numerical simulation. The grid is shown for one unit in the near-wall region (of thickness
5e), defined for the highest mesh density. Indicated mesh parameters for different refinement levels are: Nunit:
number of cells for a single unit in the near-wall region; Nint.: number of cells in the whole near-wall region of
thickness 5e; Ntotal: total number of cells in the computational domain.

the inter-rib region. The characteristics of the flow structure and the way in which the
heat transfer from the surface is accordingly affected are shown in figure 11. The flow
behaviour close to the ribbed surface is visualized with the aid of streamlines in two
distant regions along the vertical direction, so that the development of the flow can be
monitored. Two distinct flow regimes are observed, a separation–reattachment–separation
(SRS) regime and a full separation (FS) regime. For both patterns, the inter-rib region is
characterized by the existence of two co-rotating vortices. At relatively low values of the
local Grashof number Grx = Gr X3, i.e. near the leading edge of the plate, the SRS flow
regime is present where the low inertia of the mainstream allows the fluid to easily deflect
in the normal direction and reattach to the surface of the baseplate, keeping the two eddies
well isolated. In contrast, sufficiently away from the leading edge, the FS regime ensues
as the increasing inertia of the accelerated stream hinders the normal deflection towards
the baseplate, preventing the reattachment of the mainstream. As illustrated in the figure,
the two vortices remain connected to each other via an outer belt-like stream that rotates
in the same direction of both eddies, representing a separated entity that isolates the main
flow from the baseplate in the inter-rib region.

The associated heat transfer behaviour is plotted in figure 11 in terms of detailed patterns
of the local Nusselt number Nu. A quasi-periodic behaviour of the Nusselt number is
observed while proceeding along the vertical plate, similarly to literature observations
(Bhavnani & Bergles 1990; Tanda 1997, 2008, 2017; Nishikawa et al. 2020). On a
single-unit scale of analysis, it is evident that the heat transfer rate drastically drops just
upstream and downstream of the square protrusion, a fact ascribed to the presence of the
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Figure 10. Feature-resolving simulation of the ribbed surface: detailed behaviours of (a) streamwise velocity;
(b) normal velocity; (c) temperature. Results are plotted along the vertical plane passing through the outer
rims of the ribs, through two specific ranges of X1. The contours of the fields are also provided. Here,
GrL = 5.563 × 108, Pr = 0.712.

separation eddies that form a hot inactive zone in the vicinity of the rib where the thermal
boundary layer thickening mitigates the heat transfer process. Conversely, the local Nusselt
number peaks at some location within the inter-rib region as the mainstream reattaches to
the surface of the baseplate. Even in the FS regime, the inter-rib peak is experienced since
the mainstream still approaches the surface (without reattaching). The major peak of the
local Nusselt number is present on the outer rim of the rib due to the considerable local
thinning of the thermal boundary layer. From a macroscopic point of view, the average
value of Nu decreases away from the leading edge along with the development of the
thermal boundary layer.

6.3. The macroscopic homogenization-based simulations
The effect of the surface microstructure on the behaviour of the buoyancy-driven stream
is replaced here by the implementation of the homogenized effective boundary conditions
on the plane at X2 = 0 (refer to figure 12). As the present work targets the validation of
the model on the steady-state solution of a two-dimensional laminar flow, the effective
conditions can be simplified by neglecting the time-derivative terms and the gradients
in the spanwise direction. The dimensionless conditions up to the second order in all
variables thus read

U1|X2=0 = ε [λxS12 + m12RG]X2=0 + ε2
[

m12
∂S22

∂X1
+ BRG

∂Θ

∂X2

]
X2=0

+ O(ε3), (6.4a)

941 A53-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

32
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.320


A homogenization approach for buoyancy-induced flows

Mainstream

reattachment

Two isolated eddies

Two co-rotating eddies

Rotating

belt-like stream

SRS case: X1 = 0.0863 to 0.1101

FS case: X1 = 0.8839 to 0.9077

X1

X1

0.11010.0863

g
Flow

g
Flow

Separation-Reattachment-Separation (SRS) pattern

Full Separation (FS) pattern

Nu

0.8839 0.9077
0

50

150

200

100

250(b)

(a)

(c)

Figure 11. Feature-resolving simulation of the ribbed surface: comparative description of the flow pattern and
the behaviour of the Nusselt number through two distant regions: (a) near the leading edge; (c) near the end
of the plate. The contours of U1 are also shown; the colour map given in figure 10 is modified here so that
the white portions within the grooves represent the regions with negative streamwise velocity, i.e. the backflow
regions. Here, ε = 1

168 , l/e = 3.75, Gr = 5.563 × 108, Pr = 0.712.

U2|X2=0 = −ε2
[

m12
∂S12

∂X1

]
X2=0

+ O(ε3), (6.4b)

Θ|X2=0 = 1 + ε λz
∂Θ

∂X2

∣∣∣∣
X2=0

+ O(ε3), (6.4c)

Based on the parametric study presented in § 5, at l/e = 3.75, the following values of the
model coefficients are found:

λx = 0.03791, λz = 0.08404, m12 = 0.002125, B = 0.0002247. (6.5a–d)

Since the ribbed surface is impermeable, the transpiration velocity is zero on average and
its inclusion is not significant under laminar flow conditions; this was tested and confirmed
in the present work.

The set-up of the homogenization-based macroscopic simulations is similar to the set-up
of the smooth surface case with regard to the computational domain, the grid structure, the
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Figure 12. Effective boundary conditions for streamwise velocity and temperature in comparison with the
running-average results of the feature-resolving simulation. Here, ε = 1

168 , l/e = 3.75, Gr = 5.563 × 108,
Pr = 0.712.

refinement levels and the boundary conditions, except for replacing the no-slip velocity
and temperature conditions by the effective conditions ((6.4a) to (6.4c)) on a virtual wall
in X2 = 0. It is comforting that the macroscopic simulations reach mesh independence
for grids which are more than 30 times coarser as compared with the fully featured case,
while providing accurate predictions of the surface-averaged Nusselt number (the metric
being evaluated in the grid-dependence study). For the considered flow and geometric
conditions (Gr = 5.563 × 108, Pr = 0.712, ε = 1

168 , l/e = 3.75), the converged values of
Nu with first-order and second-order conditions are, respectively, 73.1667 and 73.1618.
In comparison with the fully featured result, the errors of the homogenized models are,
respectively, −0.045% and −0.052%. It is worth restating that Nu of the smooth surface
case is 2.54% larger than in the fully featured ribbed case.

The results which can be achieved from the homogenized simulations illustrate the
macroscopic behaviour of velocity and temperature fields; clearly, these results should
be interpreted as spatially averaged values, whereas the detailed patterns near the wall are
unavailable from the model simulations. For this purpose, the validation of the present
approach is done by comparing the results of the macroscopic simulations with the
running-average values of the fully featured fields over streamwise distances equal to the
periodicity of the pattern of the surface structure. For instance, the running-average value
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of the dimensionless velocity U1 at an arbitrary point (X1 = a, X2 = b) is computed as

〈U1〉|X1=a,X2=b = 1
ε

∫ a+ε/2

a−ε/2
U1(X1, b) dX1. (6.6)

The numerical predictions of U1 and Θ resulting from the macroscopic simulations with
the first-order accurate and the second-order accurate boundary conditions are extracted
at the fictitious boundary in X2 = 0 to explicitly assess the accuracy of the expressions
given in (6.4a) to (6.4c). The homogenized results are plotted in figure 12 in comparison
with the corresponding running-average values of the feature-resolving simulation. It
is clear that the present model can qualitatively predict the difference of the results
from the no-slip values. The results show perfect agreement of the effective temperature
estimates, apparently insensitive to the mild deviations observed for the predictions of the
slip velocity. This fact may be attributed to the absence of strong nonlinearities, i.e. the
coupling between the velocity and the thermal fields is weak.

In order to show how the effect of the homogenized conditions propagates from the
virtual wall to the flow domain, the profiles of streamwise velocity and temperature are
plotted across two normal sections and compared with the corresponding running-average
profiles (figures 13 and 14). It is noticeable that, in the present case, the effect of the surface
inhomogeneities on the flow field is moderate. Another point is that the predictions based
on first- and second-order conditions are almost indistinguishable from one another to
graphical accuracy, due to the very small value of ε. The normal gradients of Θ along
the fictitious boundary, represented by the slopes at X2 = 0 of the Θ profiles, were used
to obtain the macroscopic behaviour of the Nusselt number along the plate (cf. (6.1a)).
The results are presented in comparison with the corresponding running-average values
from the fully featured simulation in figure 15. It can be realized that, under the present
conditions, the ribs on the surface have a very mildly unfavourable effect on the heat
transfer rate. It is very important to highlight that the present approach is only able to
model the temperature-gradient-based heat transfer from the matching interface, while the
convective contribution, resulting from the product of normal velocity and temperature,
is not accounted for, since the fluctuations of the normal velocity cannot be resolved by
the homogenized model under laminar flow conditions. The applicability of the model is,
therefore, limited here to cases in which convective effects through the fictitious plane are
negligible. This is assumed to be valid in the absence of strong nonlinearities that may
occur for large values of ε or in the presence of turbulence.

7. Applicability range and limit of validity of the model

In this section, the results of several numerical simulations are presented to assess
the deterioration of the accuracy of the proposed technique with the increase
of the small parameter ε = �/L = 1/Nribs and the coefficient of the microscopic
momentum-convective term C = ε2

√
Gr = ε RG.

7.1. Effects of the increase in ε at a given Grashof number
The simulations of the macroscopic problem are now conducted for increasing values
of the parameter ε in the effective boundary conditions ((6.4a) to (6.4c)), starting from
ε = 1

84 up to ε = 1
10 , at a constant value of the Grashof number (Gr = 5.563 × 108) and

for the values of the model coefficients at �/e = 3.75 (cf. (6.5a–d)), in order to monitor
the deterioration of the model with the increase of the controlling parameters ε and C.
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Figure 13. Homogenized-model predictions of the streamwise velocity profiles across two normal sections
in comparison with the running-average results of the fully featured simulation. Here, ε = 1

168 , l/e = 3.75,
Gr = 5.563 × 108, Pr = 0.712.

First, a validation database has been built by running the fully featured simulations with
the corresponding numbers of ribs (from 84 to 10). The running-average fields obtained
from these simulations are presented in a comparative manner in Appendix E. The results
of the macroscopic simulations with first-order and second-order accurate homogenized
effective conditions are validated by comparing the streamwise velocity profiles and the
temperature profiles across a normal section taken at X1 = 0.5 with the corresponding
running-average patterns from the fully resolved numerical simulations, cf. figures 16 and
17. The purpose is to ascertain the validity range of the asymptotic model away from
the conditions (ε = 1

168 , C = 0.836) discussed in § 6. In general, the predictions of the
present approach concerning velocity and temperature fields are reliable below ε = 1

21
at the given Grashof number. It will be argued later that the reliability range becomes
wider at lower values of the Grashof number. The accuracy of the temperature predictions
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Figure 14. Validation of the homogenized-model results of the temperature profiles across two normal sections
in comparison with the running-average results extracted from the fully featured simulation. Here, ε = 1

168 ,
l/e = 3.75, Gr = 5.563 × 108, Pr = 0.712.

is better than the velocity predictions, especially above the mentioned limit where the
boundary conditions at second order are able to produce better results in comparison with
the first-order conditions.

From the practical point of view, the most important factor is the surface-averaged
Nusselt number. The behaviour of Nu with the increase of Nribs = 1/ε is shown in
figure 18. Both fully featured and homogenized-model results show a reduced heat transfer
for the ribbed surface despite the increase in surface area (compared with a smooth flat
plate), for the values of parameters considered here. It is obvious that the level of accuracy
of the model predictions is even better than that relative to velocity and temperature
profiles. It is also noteworthy that improved predictions of Nu by shifting up to the
second-order conditions are not systematically guaranteed.
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Figure 15. Homogenized-model predictions of the Nusselt number in comparison with the running-average
results of the feature-resolving simulation, based on the normal temperature gradient along the plane X2 = 0.
Here, ε = 1

168 , l/e = 3.75, Gr = 5.563 × 108, Pr = 0.712.
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Figure 16. Predictions of the homogenized model in comparison with the running averages of the fully
featured results of the dimensionless streamwise velocity profiles at X1 = 0.5 for different values of ε. Here,
l/e = 3.75, Gr = 5.563 × 108, Pr = 0.712.

The accuracy of the homogenization-based models is reported in a more quantitative
manner in table 3. For the velocity and temperature profiles shown in figures 16 and 17,
root-mean-square (r.m.s.) deviations between the results of the macroscopic simulations
and the results of the reference fully featured simulations are defined. The r.m.s. deviations
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Figure 17. Predictions of the homogenized model in comparison with the running averages of the fully featured
results of the dimensionless temperature profiles at X1 = 0.5 for different values of ε. Here, l/e = 3.75,
Gr = 5.563 × 108, Pr = 0.712.
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Figure 18. Effect of the number of the ribs (Nribs = 1/ε) on the surface-averaged Nusselt number (corrected
to account for the increase in surface area in the case of feature-resolving simulations of ribbed surfaces, cf.
(6.3b)). The parameters are l/e = 3.75, Gr = 5.563 × 108, Pr = 0.712.

of the profiles are calculated over a normal distance between X2 = 0 and X2 = 0.02. For
instance, the r.m.s. deviation of a modelled velocity profile (Umod vs X2) relative to the
corresponding fully featured one (UFF vs X2) is defined as

r.m.s. deviation =
√

1
0.02

∫ 0.02

0

(
Umod − UFF

UFF

)2

dX2. (7.1)

The errors on the predictions of the surface-averaged Nusselt number relative to the fully
featured estimations are also shown in the table.
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ε C Smooth First-order model Second-order model

r.m.s. deviations of U1 vs X2 profiles at X1 = 0.5
1

168 0.835 15.877 % 1.491 % 1.465 %
1
84 3.340 17.312 % 5.643 % 5.420 %
1
42 13.371 19.397 % 13.473 % 12.304 %
1
21 53.485 22.566 % 25.475 % 20.076 %
1
10 235.860 31.660 % 56.025 % 30.069 %

r.m.s. deviations of Θ vs X2 profiles at X1 = 0.5
1

168 0.835 3.044 % 1.602 % 1.617 %
1
84 3.340 6.639 % 1.909 % 1.893 %
1
42 13.371 11.689 % 5.336 % 5.220 %
1
21 53.485 21.486 % 12.781 % 11.911 %
1
10 235.860 49.687 % 27.629 % 19.887 %

Relative error on Nu
1

168 0.835 2.535 % –0.045 % –0.052 %
1
84 3.340 6.363 % 1.434 % 1.397 %
1
42 13.371 9.768 % 0.459 % 0.190 %
1
21 53.485 14.015 % –3.080 % –4.569 %
1
10 235.860 18.580 % –12.936 % –18.252 %

Table 3. Error estimations of the homogenized-model predictions for the velocity and temperature profiles at
X1 = 0.5 and surface-averaged Nusselt number. The fully featured case is used as a reference. The deviations
of the results of the smooth-wall case compared with the rough case are also provided. In all cases: l/e = 3.75,
Gr = 5.563 × 108, Pr = 0.712.

7.2. Effect of the Grashof number at a given ε

The observed deterioration of the predictions at relatively large values of ε is not explicitly
related to the increase in ε; rather, it is due to the associated increase of the convective
coefficient C = ε2

√
Gr beyond a critical limit. In many circumstances (Bottaro 2019;

Bottaro & Naqvi 2020; Lācis et al. 2020), the theory has been validated for ε up to
0.2. Here, we set ε = 0.1 and show that by reducing the Grashof number (and thus,
C), the accuracy of the model improves. The macroscopic simulations are now set at a
Grashof number of 7.509 × 106 (instead of 5.563 × 108), which results in a decrease of
the convective coefficient C from 235.860 to 27.402. Figure 19 demonstrates that even at
first order, the effective conditions now provide a very good match with fully featured
simulation results. The same occurs for the temperature distribution along the virtual
interface (X2 = 0) and the behaviour of the local Nusselt number (figure 20).

7.3. Limit of validity of the approximation
It has been argued in § 7.2 that the accuracy of the proposed homogenization-based model
may be linked to a single controlling parameter (C) that combines the effects of ε and Gr.
Therefore, it is advantageous to define a limiting value of C below which the predictions
of the presented model are assumed to be reliable. Based on analysis of the accuracy
levels shown in table 3, the critical value of C is expected to be around 40; below this
value, r.m.s. deviations of the predicted velocity and temperature profiles are, respectively,
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Figure 19. Predictions of the homogenized model in comparison with the fully featured running-average
results of the dimensionless streamwise velocity and temperature across a normal section at X1 = 0.5, for two
values of Gr: (a,b) Gr = 5.563 × 108; (c,d) Gr = 7.509 × 106. For both cases, ε = 1

10 , l/e = 3.75, Pr = 0.712.

below 20 % and 10 %, and the absolute error on the predicted Nu is less than 4 %. To
validate this estimate, the simulation of the macroscopic problem has been carried out for
the case of a vertical surface roughened with only five square ribs, i.e. ε = 0.2 (relatively
large), at Gr = 9.386 × 105 so that the accuracy of the model at a value of C = 38.752
can be checked. The geometry of the ribs is characterized by a value of �/e = 3.75; the
model coefficients given in (6.5a–d) are used. The accuracy of the model is assessed
through comparative analysis of velocity and temperature predictions across a normal
section at X1 = 0.5 (figure 21). Although the velocity predictions in the near-wall region
are not perfect, especially with the first-order conditions, the temperature results are almost
identical to the fully featured running-average behaviour. From a practical point of view,
the reliability of the thermal field predictions is sufficient to consider the model acceptable
under the given condition, i.e. C � 40.

7.4. Model validation on different rib geometries
The robustness of the introduced model is further checked by employing the effective
boundary conditions to study natural-convection heat transfer for different configurations
of the roughness pattern, particularly those shown in figure 22. Feature-resolving
simulations and model calculations are conducted for the natural-convection flow over
an isothermal vertical surface roughened with 40 ribs, at Gr = 108 and Pr = 0.712. Some
complex flow structures within the inter-rib regions, captured by the full simulations, are
displayed in the figure: these structures highlight the need of very well resolved (and
expensive) simulations, highlighting the advantage of implementing equivalent, upscaled

941 A53-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

32
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.320


E.N. Ahmed, A. Bottaro and G. Tanda

1.0(a)

(b)

0.8

0.6

0.4

Θ

0.2

0

120

100

80

60Nu

40

20

0

0.1 0.2 0.3 0.4 0.5 0.6

Upper curves: ε = 0.1, Gr = 7.509 × 106

Lower curves: ε = 0.1, Gr = 5.563 × 108

First-order effective conditions

Second-order effective conditions

Fully-featured, running averages

Fully-featured, detailed local values

Upper curves: ε = 0.1, Gr = 5.563 × 108

Lower curves: ε = 0.1, Gr = 7.509 × 106

Smooth surface, no-slip conditions

First-order effective conditions

Second-order effective conditions

Fully-featured, running averages

0.7 0.8 0.9 1.0

0.1 0.2 0.3 0.4 0.5

X1

0.6 0.7 0.8 0.9 1.0

Figure 20. Predictions for: (a) the temperature distribution along the vertical fictitious surface (X2 = 0); (b)
the performance of the local Nusselt number. Patterns are given at two values of Gr. In both cases: ε = 1

10 ,
l/e = 3.75, Pr = 0.712.

boundary conditions. In all cases examined the virtual wall is positioned on a plane passing
through the tips/crests/outer rims of the ribs. It is noticeable that the FS regime captured
for blunt shapes (geometries B, C, D) differs qualitatively from that displayed in figure 11,
with a single separation eddy between neighbouring ribs, isolating the mainstream from
the baseplate.

The model predictions of the surface-averaged Nusselt number (Nu) are presented in
table 4; they are in good agreement with the corresponding results obtained from the full
feature-resolving simulations, with a maximum deviation of less than 2.5 % (detected for
configuration A). For the flow conditions under investigation, all rib geometries considered
reduce the heat transfer performance of the natural-convection system, with respect to
smooth-wall case.

8. Conclusions

A homogenization-based model is proposed for the study of the heat transfer by free
convection over regularly microstructured vertical surfaces. The approach provides a
computationally cheap alternative to the standard feature-resolving simulations in the
cases where the macroscopic behaviour of the flow is of interest, and it has been adopted in
the past for the case of rough, micro-textured surfaces, in the absence of thermal effects.
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Figure 21. Predictions of the homogenized model in comparison with the fully featured running-average
results of the dimensionless temperature profiles at X1 = 0.5. Here, ε = 0.2, l/e = 3.75, Gr = 9.386 × 105,
Pr = 0.712.

Geometry λx λz m12 B Nu, first-order Nu, second-order Nu, feature-resolving

A 0.0792 0.0890 0.0081 0.00029 48.587 48.530 47.480
B 0.0449 0.1040 0.0027 0.00035 45.769 45.711 45.470
C 0.0814 0.1938 0.0055 0.00168 42.565 42.353 42.313
D 0.0867 0.2117 0.0045 0.00132 41.718 41.560 41.852
Smooth 0 0 0 0 Nu = 49.544

Table 4. Macroscopic coefficients and predictions of Nu for the studied rib geometries. the Nusselt number is
calculated considering ε = 1

40 , Gr = 108 and Pr = 0.712.

The procedure, eventually, yields parameters needed to enforce equivalent velocity and
temperature boundary conditions at a plane virtual surface, up to second order in terms
of a small parameter ε, the ratio of the pattern periodicity, �, to the total plate length, L.
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Figure 22. The different roughness patterns considered for model validation: (a) half-circles with a diameter
of 0.4�; (b) rectangular ribs with a width of 0.2� and a height of 0.3�; (c) inward-curved ribs with a width of
0.5� and a height of 0.45� – circular curvature is tangential to baseplate; (d) right-angle triangles with a width
of 0.1� and a height of 0.7�. The microscopic length scale, �, indicates the pattern periodicity. Streamlines are
displayed near and within the wall corrugations, for a specified range of X1.

Importantly, the effective boundary conditions derived here do not contain any empirical
parameters.

As a typical implementation of the theory, the model is applied to the case
of two-dimensional square ribs. The auxiliary systems are then reduced to either
two-dimensional Stokes-like problems or Laplace-like or Poisson-like problems, which
either admit trivial solutions or require a numerical solution in a periodic representative
cell of the microscopic domain. The parameters contributing to the effective conditions
belong to seven independent groups, i.e. the numerical solution of only seven auxiliary
problems is sufficient to completely retrieve the effective conditions. The results are then
extrapolated from distant matching surfaces to the plane passing through the outer edges
of the ribs, beyond which the macroscopic simulation is intended to be performed. The
most significant finding of the procedure is the proposed form of the effective boundary
conditions. For the streamwise slip velocity, a buoyancy term acts as a corrector to the
classical Navier-slip condition at first order, while pressure-gradient, temperature-gradient
and time-derivative terms appear at second order. A Robin boundary condition appears
for the temperature effective condition, where a normal temperature-gradient term, with
a coefficient identical to Navier’s spanwise slip coefficient, corrects the uniform wall
temperature. The spanwise slip velocity and the transpiration velocity are also considered,
to allow for example the usage of the model in turbulent flow cases where the spanwise
and the normal velocity fluctuations are to be resolved in direct or large-eddy numerical
simulations (Bottaro 2019; Lācis et al. 2020). A parametric study is conducted to
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investigate the effect of varying the rib size to pitch distance ratio on the values of the
coefficients.

The efficiency of the proposed first- and second-order accurate conditions in modelling
the effect of the surface microstructure on the macroscopic behaviour of the flow has
been tested by comparing the obtained thermal and velocity fields with the corresponding
results of full feature-resolving simulations at different values of ε and the Grashof
number; the case of tiny square ribs is first considered for validation purposes, while other
geometries are studied at a later stage for accuracy confirmation. All simulations have
been conducted for laminar flow conditions at a constant Prandtl number equal to 0.712
(air). It is shown that the expensive mesh requirements for resolving complex inter-rib flow
structures, associated with the SRS regime at low values of Grx and the FS regime at high
values of Grx, can be significantly alleviated when the model is employed. A significant
result is that the accuracy of the model can be linked to the single parameter C = ε2

√
Gr

which measures the significance of the energy flux within the microscopic domain. A
value of C ≈ 40 is the critical limit below which the model is believed to yield acceptable
predictions.

The dependence of the accuracy of the proposed model on a single parameter combining
the effects of ε and Gr renders the approach applicable to large values of the Grashof
number, provided that ε is sufficiently small, i.e. the number of ribs is adequately
large. The upscaling model described in this work represents a more versatile version
of the effective conditions for natural convection over ribbed surfaces in comparison
with the earlier model by Introïni et al. (2011) which neglected the buoyancy effect
in the microscopic region and reported a single validity-limiting value of Gr = 107. In
addition, the asymptotic homogenization method employed here represents a rigorous tool
to formally advance in the order of accuracy. Second-order accurate boundary conditions
are attained, which provides an enhancement to the validity range of Introïni’s first-order
approach.

This work opens up several perspectives, related for example to the accuracy and
applicability limit of the model in the case of turbulent natural convection over ribbed
surfaces. It would also be interesting to develop an optimization strategy to find optimal
wall micro-patterns, able to maximize heat transfer from the surface. The procedure
described can be easily extended to the case of weakly conducting or adiabatic corrugation
elements. This will constitute the object of future investigations.

Supplementary material. Supplementary material are available at https://doi.org/10.1017/jfm.2022.320.
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Appendix A. Auxiliary systems for the problem at order ε

The microscopic auxiliary systems at this order are arranged, according to the macroscopic
forcing term, in the following groups: Group (I): forcing by the gradient of the outer stress
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(9 systems) ∂Sk2/∂Xj

∂ u̇ijk

∂xi
= −ŭjk,

∂2u̇ijk

∂x2
�

− ∂ ṗjk

∂xi
= p̆kδij − 2

∂ ŭik

∂xj
, (A1a,b)

subject to

u̇ijk = 0 at x2 = yw, (A1c)

−ṗjkδi2 +
(

∂ u̇ijk

∂x2
+ ∂ u̇2jk

∂xi

)
= −(ŭikδj2 + ŭ2kδij) at x2 → ∞. (A1d)

Group (II): forcing by the square of outer stresses (3 systems) RG(Sk2)
2

∂ üik

∂xi
= 0,

∂2üik

∂x2
�

− ∂ p̈k

∂xi
= ŭ�k

∂ ŭik

∂x�

, (A2a,b)

subject to

üik = 0 at x2 = yw, (A2c)

−p̈k δi2 +
(

∂ üik

∂x2
+ ∂ ü2k

∂xi

)
= 0 at x2 → ∞. (A2d)

Group (III): 3 systems: RGS12S22, RGS12S32, RGS22S32

(a) RGS12S22

∂ üi12

∂xi
= 0,

∂2üi12

∂x2
�

− ∂ p̈12

∂xi
= ŭ�1

∂ ŭi2

∂x�

+ ŭ�2
∂ ŭi1

∂x�

, (A3a,b)

subject to

üi12 = 0 at x2 = yw, (A3c)

−p̈12δi2 +
(

∂ üi12

∂x2
+ ∂ ü212

∂xi

)
= 0 at x2 → ∞. (A3d)

(b) RGS12S32

∂ üi13

∂xi
= 0,

∂2üi13

∂x2
�

− ∂ p̈13

∂xi
= ŭ�1

∂ ŭi3

∂x�

+ ŭ�3
∂ ŭi1

∂x�

, (A4a,b)

subject to

üi13 = 0 at x2 = yw, (A4c)

−p̈13δi2 +
(

∂ üi13

∂x2
+ ∂ ü213

∂xi

)
= 0 at x2 → ∞. (A4d)

(c) RGS22S32

∂ üi23

∂xi
= 0,

∂2üi23

∂x2
�

− ∂ p̈23

∂xi
= ŭ�2

∂ ŭi3

∂x�

+ ŭ�3
∂ ŭi2

∂x�

, (A5a,b)

subject to

üi23 = 0 at x2 = yw, (A5c)

−p̈23δi2 +
(

∂ üi23

∂x2
+ ∂ ü223

∂xi

)
= 0 at x2 → ∞. (A5d)
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Group (IV): coupling through the heat flux (1 system): RGη

∂ui
′

∂xi
= 0,

∂2ui
′

∂x2
�

− ∂p′

∂xi
= −θ̃ δi1, (A6a,b)

subject to

ui
′ = 0 at x2 = yw, (A6c)

−p′δi2 +
(

∂ui
′

∂x2
+ ∂u2

′

∂xi

)
= 0 at x2 → ∞. (A6d)

Group (V): forcing by the outer stress (3 systems): R2
GSk2

∂ ūik

∂xi
= 0,

∂2ūik

∂x2
�

− ∂pk

∂xi
= ŭ�k

∂u†
i

∂x�

+ u†
�

∂ ŭik

∂x�

, (A7a,b)

subject to

ūik = 0 at x2 = yw, (A7c)

−pkδi2 +
(

∂ ūik

∂x2
+ ∂ ū2k

∂xi

)
= 0 at x2 → ∞. (A7d)

Group (VI): forcing by a constant, buoyancy-related term (1 system): R3
G

∂u‡
i

∂xi
= 0,

∂2u‡
i

∂x2
�

− ∂p‡

∂xi
= u†

�

∂u†
i

∂x�

, (A8a,b)

subject to

u‡
i = 0 at x2 = yw, (A8c)

−p‡δi2 +
(

∂u‡
i

∂x2
+ ∂u‡

2
∂xi

)
= 0 at x2 → ∞. (A8d)

Group (VII): forcing by outer stress time fluctuation (3 systems): RG(∂Sk2/∂t)

∂ut
ik

∂xi
= 0,

∂2ut
ik

∂x2
�

− ∂pt
k

∂xi
= ŭik, (A9a,b)

subject to

ut
ik = 0 at x2 = yw, (A9c)

−pt
kδi2 +

(
∂ut

ik
∂x2

+ ∂ut
2k

∂xi

)
= 0 at x2 → ∞. (A9d)

Appendix B. Auxiliary systems for the temperature at order ε2

The eight microscopic auxiliary systems, defining the problem of the order ε2 temperature,
are arranged as follows:
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Forcing by 2nd derivative of the outer temperature (3 systems): ∂η/∂Xk

∂2θ !
k

∂x2
i

= −2
∂θ̃

∂xk
, (B1a)

subject to

θ !
k = 0 at x2 = yw,

∂θ !
k

∂x2
= −θ̃ δk2 at x2 → ∞. (B1b,c)

Coupling through the outer stress (3 systems): PrRGηSk2

∂2θ∗
k

∂x2
i

= ŭik
∂θ̃

∂xi
, (B2a)

subject to

θ∗
k = 0 at x2 = yw,

∂θ∗
k

∂x2
= 0 at x2 → ∞. (B2b,c)

Forcing by the outer temperature gradient (1 system): PrR2
Gη

∂2θ∗∗

∂x2
i

= u†
i
∂θ̃

∂xi
, (B3a)

subject to

θ∗∗ = 0 at x2 = yw,
∂θ∗∗

∂x2
= 0 at x2 → ∞. (B3b,c)

Forcing by time fluctuations of the outer heat flux (1 system): PrRG(∂η/∂t)

∂2θ t

∂x2
i

= θ̃ , (B4a)

subject to

θ t = 0 at x2 = yw,
∂θ t

∂x2
= 0 at x2 → ∞. (B4b,c)

Appendix C. Smooth surface case: specifications of the two-dimensional grid

The two-dimensional grid structure is shown in figure 23. Special care is devoted to the
domain discretization near the wall. A near-wall layer is thus defined to include the viscous
and the thermal boundary layers where the X2-gradients of velocity and temperature are
significant. A rough estimate of the thickness of the boundary layer may be obtained
based on the classical Squire–Eckert theoretical prediction (Lienhard & Lienhard 2019).
Accordingly, the thickness of the boundary layers δ̂ (assuming δ̂thermal ≈ δ̂viscous) can be
calculated based on the vertical location along the plate (x̂1) and the local Grashof number
(Grx) as follows:

δ̂ = 3.936x̂1

[
0.952 + Pr

Grx Pr2

]0.25

. (C1)
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0
68

69

70

71

72

73

74

75

76

Near-wall layer
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80 000 100 000 120 000

Nu

(a)

(b)

Figure 23. Description of the two-dimensional grid of the smooth plate case. A graphical representation of the
solution dependence on the number of cells in the vicinity of the wall, Nint., is provided in the bottom frame.
Grid convergence is achieved for a number of cells in the near-wall layer above 105. Here, Gr = 5.563 × 108,
Pr = 0.712.

The maximum boundary layer thickness is reached at the end of the plate, with x̂1 = L
and Grx = Gr = 5.563 × 108. From (C 1), the maximum boundary layer thickness is
approximately 0.034L. As shown in figure 23(a), the thickness of the near-wall layer for
the most refined mesh is taken equal to 0.06L.

A grid-dependency study is carried out by successively refining the mesh near the
surface, until the results of the surface-averaged Nusselt number converge, as shown in
figure 23(b). For all grids tested, the mesh growth rate in the wall-normal direction is
1.02, and the maximum cell aspect ratio is kept below 10 by refining the streamwise and
the normal directions simultaneously. The reported value of the average Nusselt number is
estimated to be 75.055 based on Richardson’s extrapolation of the results on the two finest
meshes.
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Figure 24. Smooth surface case: validation of the results of velocity and thermal fields with the reference
similarity solution by Ostrach (1953) at Pr = 0.712.

Appendix D. Smooth surface case: further validation of the numerical results

The similarity solution by Ostrach (1953) provides a valuable database for the
validation of the velocity and the temperature fields. According to Ostrach’s model,
the dimensionless streamwise velocity, UOst

1 = û1/((ν/x̂1)
√

Grx), and the dimensionless
temperature, Θ = (T̂ − T̂∞)/(T̂w − T̂∞), are functions of a similarity parameter,
η = (Grx/4)1/4(X2/X1), for a given Prandtl number. A comparison between the present
numerical results at different sections along the plate and the similarity solution is
presented in figure 24. It is noticeable that the present results for both the velocity and
the thermal fields are in good agreement with Ostrach’s, especially at relatively low values
of η, i.e. close to the wall. A similar conclusion was drawn when Ostrach compared the
results of his model with experimental data from the literature, finding that the agreement
was not perfect near the outer edge of the boundary layer. The slight deviation between
the present results and Ostrach’s solution away from the wall may be attributed to the fact
that, unlike the present numerical set-up, Ostrach’s model considered a domain of infinite
width, for the fields far from the plate to be unperturbed.

Appendix E. Feature-resolving simulations of the ribbed surface at different values
of ε: comparative description of running-average fields

The running-average fields, obtained from different fully featured simulations, along the
vertical plane X2 = 0 and across a normal section at the middle of the plate are presented
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Figure 25. Fully featured simulations with different values of ε: (a,b) running-averaged behaviours of the
dimensionless streamwise velocity (a) and temperature (b) along the plane X2 = 0; (c,d) running-averaged
profiles of the dimensionless streamwise velocity (c) and temperature (d) across a normal section at X1 = 0.5.
Curves are: smooth surface (dashed black line), ε = 1

168 (blue line), ε = 1
84 (green line), ε = 1

42 (yellow line),
ε = 1

21 (red dotted line), ε = 1
10 (solid black line). For all cases, l/e = 3.75, Gr = 5.563 × 108, Pr = 0.712.

in figure 25 in a comparative manner to get an idea about the effects of increasing ε on the
flow characteristics. Note that the results of the corresponding smooth surface simulation
and the previously shown results of the case ε = 1

168 are included in the figure. The
analysis of the velocity and the temperature distributions along the fictitious boundary
(figure 25a,b) reveals that the slip velocity (deviation from U1 = 0) and the thermal slip
(absolute deviation from Θ = 1) increase with ε, which qualitatively agrees with the
dependence given in (6.4a) and (6.4c). The magnitude of the normal temperature gradient
at the wall decreases with ε, i.e. the heat transfer from the wall is reduced. It is also
observed that the temperature level away from the surface is lower as ε increases, which
in turn yields a reduction of the buoyancy term in the momentum equation, thus flattening
the velocity peak.
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