
5 Calibration and Validation

Now that we have discussed the theoretical foundations of PPI, we

move to empirical matters regarding its usability with real-world

data. For an agent-computing approach to help in providing policy

advice, it is critical to analyse interventions in terms of an empirically

grounded model. Due to the flexibility of a computational framework

such as agent computing, where one can specify practically any

mechanism, researchers often fall prey to the desire of ‘wanting to

account for everything possible’ despite limited data availability. This

trap creates identification-related problems because of having too

many free parameters and few targetmetrics to calibrate them.1 While

the ABM community has developed many strategies to deal with

problems related to model specification, selection, and overfitting,

these strategies usually render agent-computing frameworks very

complicated and difficult to scale or assimilate by non-experts.

One of our goals when developing PPI is to avoid falling into

this trap; thus, a methodological prerequisite is to specify as many

free parameters as the target metrics that we could identify. For

scaling purposes, we aim for a model where calibration is possible

in a high-dimensional parameter space that could be efficient, direct

(without using surrogate-model strategies2), and simultaneous (so all

parameters are assessed in each evaluation). PPI achieves all these

1 Often, the target metric to calibrate a model is an aggregate quantity or stylised fact.
2 A model is called a surrogate when it has been implemented to understand the
behaviour of another model. For example, many ABMs often have a large parameter
space and are extremely difficult to calibrate directly. In these cases, trying all
possible parameter combinations to calibrate the model is computationally
unfeasible. Hence, researchers often use the strategy of randomly sampling the
parameter space to generate a large output dataset. Then, they deploy a statistical or
machine-learning model to predict, using the parameters and output data, what
would be the optimal parameter combination; effectively calibrating the ABM (see
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130 5 calibration and validation

objectives since the micro-level parameters, such as adaptation steps

and learning rates (usually the most difficult to calibrate), are endoge-

nous. Leaving only free parameters at the macro level: α, α′, and β.

In this section, we explain how to calculate them and show – once

calibrated – how to validate the model through various procedures.

The calibration framework provided in this chapter is the same for all

the models described throughout the book. This calibration strategy

allows for PPI to be easily scaled and contributes to its appeal among

stakeholders, given its practicality.

5.1 calibration strategy

First, let us discuss how to specify the model’s free parameters. We

need to determine a total of 3N parameters (3 per indicator) from the

data. These are α = α1, . . . ,αN , α′ = α′
1, . . . ,α

′
N , and β = β1, . . . ,βN .

The objective function to be minimised when calibrating α and α′ is
the difference between the final value of the empirical indicators and

the corresponding average final value of the simulated indicators. For

β, we seek to minimise the difference between the empirical success

rate of the indicators (the number of times observing positive growth

as a rate of the total number of periods-changes) and the average

estimated probability of success γi,t. While both objective functions

seem straightforward, there is more than meets the eye.

One of the challenges of calibrating the model relates to the

agents’ interdependencies and the presence of the spillover network

(see Figure 4.3). In this setting, the indicator’s dynamic is sensitive

to the evolution of the other indicators. For instance, suppose we

increase αi and βi while keeping all other parameters constant. If an

indicator i conditions an indicator j through the spillover network

(Ai,j �= 0), then j’s dynamic will also change. For example, j would

accelerate if i sends positive spillovers, meaning that we would need

to readjust αj and βj in the opposite direction; likewise, this would

Carrella (2021) for a comprehensive review). Here, the statistical or machine-learning
model is considered the surrogate.
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produce disarray in other indicators linked to j (or even in i). In earlier

versions of PPI (Castañeda et al., 2018; Guerrero and Castañeda,

2020), we developed calibration algorithms assuming ceteris paribus

conditions, where we only examined one parameter in each model

evaluation. However, this procedure became computationally unfea-

sible when exploring more comprehensive models – parameter-wise –

even if we were not experiencing issues of overfitting. Hence, as the

PPI research evolved, we developed better algorithms (e.g., Guerrero

and Castañeda, 2022) until we arrived at the one proposed in Guerrero

et al. (2023), which we employ in this book.3

For computing the relevant statistics, our strategy consists of

performing Monte Carlo simulations for the same set of parameter

values. For example, suppose that we are trying to calibrate α. A single

simulationmay yield a final value for indicator i close to the empirical

indicator, but another run may generate a very different estimate.

This possibility is due to the stochastic components of the model

and the potential presence of path dependence created by learning

and social norms, something quite common in complex systems.4

Once the simulations are run, we construct indicator-level statistics

and errors that allow sensitivity to changes in indicator-specific

parameters (overcoming the problem of having too many parameters

and a single aggregate error).

Therefore, our optimisation algorithm uses a multi-objective

function, which prevents the loss of indicator-specific error informa-

tion, maintaining sensitivity to each parameter. Second, it readjusts

3 A warning note for the reader is in order. If the spillover network is too dense and has
very large weights, it is possible that PPI’s calibration may become unfeasible due to
the highly sensitive interdependency between the indicators. However, the density
and weights required to break the calibration procedure would be far beyond what is
typically observed in real-world data; hence, one could consider those networks
degenerate. From our experience testing several methods to estimate networks from
empirical time series of indicators, we have not found one that prevents us from
calibrating PPI. Thus, when the calibration procedure fails, it is a warning signal to
the users of PPI that they are considering a misspecified adjacency matrix A.

4 In a path-dependent process, the current outcome depends on prior decisions of
agents and contingencies. See, for instance, Arthur (1994); Crouch and Farrell (2004).
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the parameters simultaneously, so it is significantly efficient. Third,

it uses a normalised gradient-descend rule to perform direct optimi-

sation (as opposed to indirect inference through surrogate models).

Fourth, it considers hyper-parameters to improve its efficiency. We

also want to highlight the scalability of our algorithm since its per-

formance does not deteriorate exponentially with the dimensionality

of the parameter space (i.e., with the number of indicators or policy

issues involved). Furthermore, the method achieves high precision

levels with enough Monte Carlo simulations in each evaluation.

Next, we provide all the relevant details.

5.2 optimisation algorithm

Let M denote a given number of independent Monte Carlo simula-

tions; Ii,−1 is the empirical final value of indicator i; and Īi,−1,m its

simulated final value in the mth model run. Then, the expected final

value of a simulated indicator i is

Īi,−1 = 1
M

M∑
m=1

Īi,−1,m. (5.1)

Then, the α-error of indicator i is

eαi = Ii,−1 − Īi,−1. (5.2)

Next, for an empirical indicator i, its change from period t − 1

to t is

�Ii,t = Ii,t − Ii,t−1. (5.3)

Then, i’s success rate is the number of times that it exhibits

a positive change between two consecutive periods, divided by the

number of periods, as described by

ri = 1
T − 1

T∑
t=2

1(�Ii,t), (5.4)

where 1 = 1 if �Ii,t > 0 and 1 = 0 otherwise.5

5 The reader may be concerned about how representative can ri be if a time series is
too short. Indeed, this could be problematic for very short time series. In this book,
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Next, the β-error of indicator i is

eβi = ri − γ̄i, (5.5)

where γ̄i is the average success probability generated with the model,

computed as

γ̄i = 1
TM

T∑
t=1

M∑
m=1

γi,t,m. (5.6)

Now, let us define the normalised α-error as

êαi = eαi

|Ii,−1 − Ii,0|
, (5.7)

where Ii,0 is the observed initial value of the indicator, so Ii,−1 − Ii,0

represents the gap that was closed during the sample period. The

intuition behind normalising the α-error is that, in the empirical data,

simulating indicators that closed bigger gaps (in the same amount

of time) introduced more volatility. Thus, the normalisation helps

obtain more stable statistics. This scenario does not happen for the

β-error because the associated feature (the probability of success)

is always bound to (0,1), so it is not necessary to normalise the

corresponding error terms.

Note that both êαi and eβi can be positive or negative. This

setting is intentional as we exploit this feature to direct the gradient

descent. The descent procedure seeks to readjust the relevant parame-

ters in incrementally smaller magnitudes. For the normalised α-error,

the readjustment rule of the associated parameter is

αi =
⎧⎨
⎩αi × min(1 + |êαi |,1.5), êαi > 0

αi × max(0.99 − |êαi |,0.25), êαi < 0
. (5.8)

most of our time series have more than 20 observations so, while not ideal, they
provide a reasonable sample of successful events. If one would not have such data, a
solution would be to group indicators by category, e.g., by the SDG to which they
belong. Arguably, the governance and nature of government programmes are not too
dissimilar within the same development class, so one could collate all the observed
events of success (across indicators in the same category) to construct a more reliable
ri. This estimate would be the same for all the indicators in the same group. While
this sacrifices heterogeneity within groups in terms of success rates, it is a reasonable
price to pay since we still have the parameter vectors α and α′ to account for
structural differences between indicators in the same category.
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134 5 calibration and validation

There are two readjustment cases because the direction of adaptation

depends on the sign of the error forecast. Similarly, we define the

readjustment of α′
i as

α′
i =

⎧⎨
⎩α′

i × max(0.99− |êαi |,0.25), êαi > 0

α′
i × min(1 + |êαi |,1.5), êαi < 0

, (5.9)

and for the β-error is

βi =
⎧⎨
⎩βi × min(1 + |eβi |,1.5), eβi > 0

βi × max(0.99− |eβi |,0.25), eβi < 0
. (5.10)

The principle behind these readjustment rules is twofold: (1)

penalising deviations and (2) adapting the penalty size as the error

shrinks. For instance, in the case of a positive trend, êαi > 0 means

that the simulated indicator was slower than its empirical value since

it ended at a lower value. Therefore, the adjustment is to increase αi by

a fraction not larger than 0.5. As this process continues, the fraction

becomes lower than 0.5 because the error decreases, so the size of

the readjustment is |êαi |. In contrast, for the case of a negative trend,

êαi < 0 implies that the indicator’s expected simulated value did not

decrease as much as the observed indicator did during the sample

period. Under these circumstances, the calibration procedure reduces

αi and increases α′
i in the next iteration, and in this manner, the

reduction of the simulated values becomes more likely. Bounding the

adjustments to factors of 0.25 and 1.5 is simply a heuristic rule that

allows accelerating the optimisation with respect to an unbounded

version of the algorithm. The more technical user could design a

hyperparameter optimisation procedure to define the best bounds in a

particular application. Putting together these elements, we construct

an optimisation algorithm that iterates until reaching a tolerance

threshold. We provide its pseudocode in Algorithm 2.

The threshold criterion is a choice variable. From our work,

we have found that a criterion that achieves high goodness of fit is

to stop the calibration once the worse-performing parameter attains

the minimum goodness of fit according to the metrics defined in
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5.2 optimisation algorithm 135

Algorithm 2 Calibration pseudocode

1 initialise vectors α, α′, and β with random values;

2 while a tolerance threshold is not met do

3 run M Monte Carlo simulations;

4 compute the errors êα1, . . . ,êαN and eβ1, . . . ,eβN ;

5 foreach indicator i do

6 adapt parameters according to Equation 5.8,

Equation 5.9, and Equation 5.10;

Section 5.3. The computational cost is determined partly by the

number of Monte Carlo simulation runs in an evaluation: M. How

many simulations should one run to calibrate the model? It depends

on how conservative one wants to be concerning the average error

threshold. The stricter the threshold, the more precision is required,

and more precision demands a larger M for obtaining more stable

moments. In otherwords,moreMonteCarlo simulations ensuremore

stability in the resulting distributions and their respective moments.

Figure 5.1a confirms an increase in precision by showing how,

with more simulations per evaluation, it is possible to achieve lower

average errors. At the indicator level, we show the dynamics of

minimising the α- and β-errors in Figures 5.1b and 5.1c, respectively.

Notice how, in both cases, the error of a specific indicator may jump

back to a higher level after a few iterations. Nevertheless, we can

see that, as the algorithm iterates further, all the indicator-specific

errors decrease. Furthermore, with higher precision, the error decay

becomes smoother.

Increasing the number of Monte Carlo simulations helps

achieve lower errors, yet this is at the expense of higher com-

putational costs. To mitigate this cost, we introduce three

hyperparameters and a routine that allows setting M automatically

as the optimisation proceeds. The procedure follows the idea that

errors tend to be high during the first evaluations (as the parameters
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figure 5.1 Error minimisation behaviour. (a) Average error, (b) α-errors,
and (c) β-errors.
Notes: Figures 5.1b and 5.1c display the errors associated with each indicator,

calculated at the indicator level.

Sources: Authors’ calculations using Mexican data from the 2021 Sustainable

Development Report.

are initially set at random). Thus, a small M is enough to generate

coherent responses when initially readjusting the parameters. The

hyperparameter routine consists of making a few Monte Carlo simu-

lations and then increasing M after a certain number of evaluations.

From our experience, an initial M = 10 for 100 evaluations is enough

to drop the average error substantially. The number of evaluations

using a low M is the first hyperparameter. Then, the routine increases

M periodically. We have found that increments of 1,000 Monte Carlo

simulations with every evaluation are a good balance between error

reduction and computational cost for the applications presented in

this book. The size of the increments and how frequent they are

define the second and third hyperparameters, respectively. Here, we

have determined the values of the three hyperparameters by building

experience through trial and error. This approach has been enough
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5.3 goodness of fit 137

to calibrate the model for a country in a few seconds. However, one

could also design more sophisticated routines to optimise the hyper-

parameters. Something that we leave for the technical enthusiast.

5.3 goodness of fit

We have seen that our calibration procedure is effective inminimising

the different errors in the model besides being computationally effi-

cient. However, how good is this optimisation for fitting the empirical

features of interest? Any quantitative method requires goodness of

fit or accuracy metrics to address this question. The construction of

suchmetrics usually obeys particular characteristics of the problem at

hand. For example, linear regressions use the R2 to get a sense of how

much the independent variables included in the model contribute to

explaining the variance observed in the dependent variable. Similarly,

the ratio of correct predictions to input samples is commonly used

to assess the accuracy of different non-regression machine-learning

algorithms. In the case of our model, it is necessary to construct a

goodness-of-fit metric that is coherent with our definitions of error.

Here, we introduce such a metric and present results from calibrating

the model for all the countries in the SDR dataset.

Let �αi denote the goodness of fit of parameter αi (or α′
i).

Following the error notation, we define the goodness of fit of this

parameter as

�αi = 1 − eαi

|Ii,−1 − Ii,0|
, (5.11)

which corresponds to the complement of the normalised error defined

in Equation 5.7.

The intuition behind �αi is that, in a good fit, the error eαi

should represent a small fraction of the historical gap that needs to be

closed in a simulation (|Ii,−1 − Ii,0|). Therefore, this metric penalises

extreme errors by setting low fitness values.6

6 When testing alternative calibration methods, we find that they yield several
indicators displaying negative values for �αi . This scenario does not happen in our
algorithm.
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138 5 calibration and validation

The metric for the goodness of fit of parameter βi follows the

same logic, and it is

�βi = 1− eβi

ri
, (5.12)

where ri is the empirical success rate as defined in Equation 5.4.

To show the high goodness of fit obtained from our calibration

procedure, we calculate the �αi and �βi of each indicator and every

country in the SDR dataset. For illustration purposes, we bin them

into different levels and plot their frequencies in Figures 5.2a and 5.2b,
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figure 5.2 Distribution of goodness-of-fit metric by SDG and country
group. (a) �αi by SDG, (b) �βi by SDG, (c) �αi by country group, and (d)
�βi by country group.
Notes: The goodness of fit is in percentage.

Sources: Authors’ calculations with data from the 2021 Sustainable Development

Report.
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colouring them by SDG. Likewise, Figures 5.2c and 5.2d show the

same information but coloured by country group. In these plots, we

have set the threshold criterion at 80%. In other words, the calibration

stops when the worst goodness of fit is 80%. Importantly, we observe

that the overwhelmingmajority of parameters (i.e., indicators) exhibit

goodness of fit above the 95% threshold.

5.4 on statistical confidence and testing

Now that we have discussed the model’s calibration procedure, it

is important to clarify the distinction that exists in the literature

between this concept and that of estimation. In the old days of

simulation practices, the objective of calibrating a model was merely

to produce a plausible representation of reality. Hence, in the past, no

attempts were made to produce statistical inferences concerning the

model’s parameters or the simulation outcomes (Gatti et al., 2018).

In contrast, in econometric practices, the estimation objective has

traditionally been to infer the correct specification of the stochastic

process generating real data. In other words, the idea is that the

model’s parameters resemble their true values, at least when using

large samples of data (i.e., that the estimated parameters are consis-

tent). Nowadays, this distinction has become somehow blurred with

the new and more sophisticated analytical devices for calibrating the

parameters of computational models through simulations.

On the one hand,model-specific goodness-of-fitmetrics are now

more commonly used to specify the quality of the adjustment to the

data. Then, this and other distance metrics are employed to study

the statistical relevance of the models’ results and their capability

to replicate stylised facts and statistical regularities observed in the

data (e.g., distribution moments). On the other hand, by invoking

specific sources of uncertainty, such as measurement problems in the

data, one can produce confidence intervals for many metrics through

Monte Carlo simulations. These metrics reflect different outcomes of

the model that might be of interest for explaining causal mechanisms

and inferring the impact of policy interventions. In fact, in Chapter 9,
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we demonstrate how to construct confidence intervals that capture

the uncertainty of government expenditure.

In this section, we unpack and discuss several basic concepts

conflated with the teachings of statistics in the social sciences,

such as confidence intervals and hypothesis testing. However, these

concepts have to be reassessed in simulation methodologies to be

meaningful since they rely on building null models for producing

statistical inferences that are also theoretically insightful (not just

relying on the statistical analysis of random variables). In other

words, instead of contrasting inferred parameters with zero-value null

hypotheses, one has to compare a metric using simulation outcomes

under a null model (e.g., a benchmark setting) with the corresponding

metric in a counterfactual simulation.

5.4.1 Confidence Intervals

Constructing confidence intervals for a metric or statistic of interest

refers to quantifying the uncertainty of the estimation of suchmetric.

With this aim in mind, the modellers have to assume the source of

such uncertainty. Then, they need to formulate a device that ‘prop-

agates’ these uncertainty effects throughout the simulation exercise

up to the statistic of interest. Usually, one can obtain a distribution

of the metric or statistic as a result of propagating this uncertainty.

In computational modelling, constructing confidence intervals is not

always straightforward. The interdependencies of complex systems

make it extremely difficult to track the propagation from the source

of uncertainty to the statistic.7 Accordingly, in computationalmodels

like that described here, researchers need to pay attention to the

following issues: (1) the source of uncertainty, (2) the variation of the

source, and (3) a simulation strategy to propagate such variation to

the metric of interest.

From our experience in the intersection of development eco-

nomics and sustainability, we have concluded that one of the most

7 Contrary to the linear models of econometric analyses.
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common sources of uncertainty is the quality of the indicators (i.e.,

measurement uncertainty). In this respect, an approach is to propagate

the uncertainty behind observed indicators through an ensemble

of calibrations. Hypothetically speaking, one could randomise the

original indicator data with the suggested probability distribution.8

Then, in the next step, it is possible to generate one calibration for

each randomised dataset. Through this procedure and Monte Carlo

simulations, one could generate distributions for the model’s free

parameters requiring calibration. Then, for each of them, one could

produce the metrics of interest to describe the statistical significance

of the estimation using the empirical data.

As experienced readers using development-indicator data are

aware, this method for quantifying uncertainty is generally unfeasible

due to a limited understanding and characterisation of the source of

uncertainty. Thus, in a more realistic setting, one needs to model

the uncertainty in the data.9 For example, in Guerrero and Castañeda

(2022), we use the inter-temporal volatility of each indicator as a proxy

for the non-observed difficulties associatedwith the collection of such

indicators. The logic behind this argument is that least-developed

countries exhibit more volatility in their indicators. This trait is, to

some extent, a consequence of having more fragile infrastructure and

methods for collecting data than those of developed nations.10

Another example of this quantification is in our work in Guar-

iso et al. (2023b), where wemodel each indicator time series through a

Gaussian process. In that work, we employ indicator-specific models

to generate randomised synthetic indicators that we later use to create

the calibration ensembles. Finally, in Guerrero and Castañeda (2020),

we analyse model uncertainty by implementing different model spec-

ifications for the government heuristic.While this exercise focuses on

8 Something that data providers rarely supply.
9 As done when assuming a normally distributed error in a regression analysis.
10 Moreover, their policies and government programmes are more erratic and, as a

consequence, their effect on indicators is fickler. Hence, besides measurement
problems, such volatility captures a policymaking uncertainty.
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robustness and validation, these various alternative specifications can

also be used to produce calibration ensembles.

5.4.2 Hypothesis Testing

In the PPI research programme, we are not concerned with the statis-

tical confidence of the parameter vectors α, α′, and β. This perspective

contrasts with the regression framework to which quantitative social

scientists are more accustomed. The estimated coefficients of regres-

sions usually carry an explicit meaning in terms of the average impact

of explanatory variables and, hence, ought to be statistically tested

against the null hypothesis of being zero valued. On the contrary, in

PPI and other areas of computational social sciences, often, testing for

the significance of the model’s parameters is not something worth-

while to pursue. Under this framework, parameters do not always

carry a meaning conducive to explaining social phenomena or guiding

policymaking. Thus, defining a null hypothesis is a model-specific

task. Therefore, depending on the problem at hand, the main interest

lies in testing the statistical relevance of more meaningful metrics

such as development gaps, time savings, and efficiency gains.

In a computational framework like PPI, building a null hypoth-

esis for these statistics requires a deeper understanding of the theory

behind the model, its simulation capabilities, and the domain of

application. Instead of testing the validity of a zero-value statistic, one

can explore the observed empirical value of a metric and then check

if such an outcome also happens in a world without specific mech-

anisms or the usage of different intervention policies. This way of

thinking – creating a null model or simulation instead of deriving the

distribution of parameters – is common in several fields of study, such

as network science, statisticalmechanics, and computational biology.

In essence, a null model is a generative model of the phenomenon

under study, but where the causal factor of interest or the mechanism

being tested is ‘missing’ or ‘deactivated’. In the natural sciences,

null models are usually created via simple stochastic processes. In

social sciences, creating null models is not so straightforward as,
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even when removing the causal mechanism of interest, it is necessary

to account for other detailed social mechanisms and behavioural

elements that are likely to generate the empirical data;11 otherwise, a

null model based on purely random behaviour would tend to overstate

the significance of an estimate. This is a very common problem in

fields such as social physics and econophysics. Because of the nature

of null models and the challenges to implementing them, it is no

coincidence that social scientists whose only exposure to quantitative

methods has been through the tradition of statistical and econometric

analyses often find this approach more difficult to comprehend.

In general, the type of statistical tests that will be of most

interest in this book has to do with performing counterfactual

simulations. In principle, such a scheme requires producing two

variants of runs: one generating a set of benchmark simulations and

another simulating the model with the assumed counterfactual. For

example, as we show in Section 5.5.2, if we want to verify whether

positive spillovers indeed elicit incentives to be inefficient (as argued

in the presentation of the model), we can produce sets of simulations

with and without a spillover network. Beyond visual inspections,

in which one compares empirical and artificial data, the testing for

the statistical significance of the results has a twofold interpretation.

First, through simulations that only employ the observed data as

input, one can test using non-parametric methods whether the model

can replicate certain statistical regularities. Second, by including

uncertainty in the input and its propagation through the null model,

one can produce distributions and confidence intervals of the metric

under study. This approach allows us to compare the null hypothesis

with the metric generated through a counterfactual exercise.

Note that there is no one-size-fits-all method to formulate

statistical tests. Each problem requires carefully thinking about the

meaning of the benchmark and the counterfactual and how to use the

information derived from simulated distributions (e.g., a difference-

11 This is why agent computing is so well suited for these problems.
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in-means test, a paired test, or a custom-built non-parametric test).

Throughout the book, we present some examples in which we have

devised different strategies; thus, all application chapters come with a

section named ‘simulation strategy’. What is important to remember

is that, under this modelling framework, one should keep an open

and creative mind to different ways to pose a concept of significance

rather than sticking to the fitting-the-line practice that is so prevalent

in quantitative social sciences.

5.5 validation

The topic of validation is critical for discriminating between compet-

ing models and generating knowledge. In the computer simulation

literature, the meaning of validation varies among fields and authors.

Sometimes it refers to methods for checking the model’s theoretical

consistency, and on other occasions to procedures for testing the

model’s reliability (i.e., reality checks, generalisability, or robustness).

Furthermore, a model’s validation can be framed and tested using

multiple methodologies. Hence, in this section, we first identify

the concepts of validation that are relevant in an agent-computing

context. Something that we have previously done in the framework

of PPI (Guerrero and Castañeda, 2020), and which we discuss here.

In computational modelling (not just ABMs), the validation

process is done through several schemes that have evolved as more

data and new methods have become available (Fagiolo et al., 2019).

Perhaps one of the pioneering works in categorising several of these

conceptions is Carley (1996), which identifies up to eight levels of

validation. By today’s standards, Carley’s validation levels can be

classified hierarchically, with external and internal validations at the

core of the taxonomy and different varieties inside them. Here, we

discuss and present some of these validation strategies applied in the

context of our model.

5.5.1 External Validation

External validation in ABMs typically means replicating one or more

quantitative statistical regularities or stylised facts (e.g., distributions,
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moments, or correlations) by generating them from the bottom up.

Importantly the reader needs to be aware that matching a stylised

fact when validating the model should be disconnected from the

calibration exercise. Otherwise, the validation is trivial. Therefore,

the stylised facts to replicate should come from a dataset (testing

set) independent of that used to calibrate the model (training set).

In our early work (Castañeda et al., 2018; Guerrero and Castañeda,

2020, 2021a), we externally validate earlier versions of the PPI’smodel

by replicating two well-known statistical patterns: (1) the skewed

distribution of budgetary changes and (2) the negative relationship

between development and corruption. Here, we would like to revisit

those validation strategies briefly and show that they still hold with

this new model and data.

First, we consider the distribution of budgetary changes. A

large body of literature in political science and public administration

has documented non-normal tails in the distribution of changes in

the government budgets (total changes and disaggregated into pol-

icy issues) (Jones et al., 1998; John and Margetts, 2003; Jones and

Baumgartner, 2005; Jones et al., 2009). This evidence is not con-

vincing enough to suggest any particular distribution for generating

the budgetary data. Nevertheless, an indisputable feature is that

changes in government expenditure do not follow distributions with

exponentially decaying tails like in a normal distribution. So, the

question is whether our model can generate simulated budgetary

changes that exhibit similar tails without the influence of empirical

data on budgets.

To demonstrate that this is the case, we perform 10,000 Monte

Carlo simulations with fully randomised data. That is, in each sim-

ulation, we generate (1) a random number of indicators (between

50 and 200; besides randomly assigning which one is instrumental),

(2) a random spillover network (with weights between −1 and 1),

(3) random governance parameters, and (4) random free parameters

(between 0 and 1). Figure 5.3a shows the resulting distribution. The

plot presents a log-log scale, suggesting that the tails are non-normal

because they show a linear-decaying pattern. We build the graphic by
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figure 5.3 External validation. (a) Distribution of budgetary changes,
(b) differentiated governance, and (c) homogeneous governance.
Notes: Figure 5.3a shows the simulated distribution of budgetary changes at the

level of expenditure programmes. Figure 5.3b compares Transparency

International’s corruption index against the model’s endogenous level of

corruption (they have a linear correlation larger than 93%). Figure 5.3c shows the

association between Transparency International’s corruption index and the

model’s corruption level under a counterfactual where the governance parameters

ϕi and τi equal 0.5 for every country.

Sources: Authors’ calculations.

taking all the changes of each government allocation Pi,t. Since this

exercise does not use any empirical disbursement schedule, we can

claim external validity because this stylised fact emerges in a bottom-

up fashion from the model.

Next, let us turn to another external validation test. The SDR

dataset reports International Transparency’s corruption index for

most of the countries in the sample. We intentionally removed

this indicator from the dataset used in this book because it is
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redundant with the model’s endogenous variable of inefficiency

Pi,t − Ci,t, which one can interpret as corruption (at least partly).

Thus, while the corruption index is left out of the study, we can

use it to validate the model by assessing how well the endogenous

inefficiency variable matches this index. To compute the level

of inefficiency produced by the model across M simulations, we

calculate (
∑

i,t,M(Pi,t − Ci,t))/(M × B), which is the fraction of

the budget lost in inefficiencies. Besides, we invert the direction-

ality of the corruption index so that higher values denote less

corruption.

In this way, if the model’s emergent inefficiency across coun-

tries exhibits a positive correlation with the corruption index, we can

validate PPI’s public governance mechanisms. Precisely, Figure 5.3b

shows a strong association between the model’s inefficiency and

the corruption index. Their linear correlation is larger than 93%. In

addition, Figure 5.3c shows a similar plot where, instead of using the

empirical data on the governance parameters for ‘quality of monitor-

ing’ and for the ‘rule of law’, we fix them in 0.5 for every country.

The result clearly shows that the correlation vanishes because the

public servants’ responses, in terms of their contributions, are not

distinguishable across countries with the same quality of public

procurement.

5.5.2 Internal Validation

Internal validation tests attempt to show that the theoretically

expected outcomes (whether externally validated or not) are sensitive

to the social and behavioural mechanisms specified in the model.

That is to say, internal validation checks whether the assumed

micro and systemic mechanisms have a theoretical meaning in

the performance of the computational model.12 Accordingly, when

12 A related but different concept, often confused with internal validation, is
verification. The verification of a computational model relates to revising whether
there are programming errors (bugs) or artefacts (for further details on these issues,
Castaneda (2021b, Ch. 20)). Artefacts consist of implications in the model’s outcomes
produced by assumptions considered auxiliary at the moment of its creation. In

https://doi.org/10.1017/9781009022910.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009022910.008


148 5 calibration and validation

internal and external validation procedures deliver positive results,

the model’s causal mechanisms offer insightful information to

explain the social phenomenon under study.13 Chapter 4 provides

one example of internal validation in Figure 4.2 by showing that

the bureaucrats’ learning, as a response to public governance, is

consistent with expected real-world behaviour. Here, we provide

further evidence validating our model internally.

In Castañeda et al. (2018) and Guerrero and Castañeda (2020),

we internally validate earlier versions of the PPI model by analysing

the relationship between positive spillovers and inefficiencies. Recall

that, according to the theory behind the model, if a public servant’s

policy issue improves due to positive spillovers from other topics,

this may elicit perverse incentives from the functionary because

they would be able to ‘disguise’ their inefficiencies through the

‘inflated’ indicators. Thus, theoretically, one should expect that the

more positive spillovers received by public functionaries, the less

efficient they will be (i.e., the size of their contributions will be

lower). Notice that the connection between spillovers and efficiency

is not easy to tracemathematically due to the complexity arising from

the interactions embedded in the model and its behavioural com-

ponents. However, by employing simulations, we can confirm that

these mechanisms exert the expected influence on the functionaries’

behaviour and the system. To demonstrate that this behaviour takes

place in our model, we provide two alternative tests to validate its

occurrence.

First, we validate, at the micro level, the spillover→efficiency

mechanisms. For that, we show that public servants who receive

more positive spillovers tend to be less efficient. For functionary i,

the average amount of spillovers received across M simulations is

contrast to substantive assumptions, auxiliary assumptions do not attempt to
describe reality. Their only purpose is to close up the model in a simplified manner.

13 In an equation-based modelling approach, internal validation corresponds to
checking whether the equations (or theorems) are properly solved (or proved), while
verification refers to clarifying if the model uses ‘the right’ equations to explain the
phenomenon (Midgley et al., 2007).
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figure 5.4 Internal validation. (a) Functionary level and (b) aggregate
level.
Notes: Figure 5.4a shows inefficiencies at the agent level. Figure 5.4b indicates the

aggregate efficiency loss.

Sources: Authors’ calculations.

∑T,M
t,m Si,t,m/(T × M)/N.14 We compute this quantity for each func-

tionary across 10,000 sets of M = 100 Monte Carlo simulations each.

Each set of Monte Carlo simulations employs the same parameter

values. The latter are randomly generated in the same fashion as

we do for the external validation procedure mentioned above. At

the same time, we compute the functionary-level average efficiency∑T,M
t,m (Ci,t,m/Pi,t,m)/(T ×M). Figure 5.4a shows that our model elicits

inefficiencies through spillover effects. The plot suggests a general

negative non-linear relationship between the spillovers received and

the efficiency level (they exhibit correlations above −75% within

each set of simulations). The inset figure shows the complete relation-

ship, with large volatility at extreme spillover levels. Thus, we can

claim that, for the most part, our model is internally valid concerning

the functionary’s incentives and their response to network effects.

Second, we also validate the spillover→efficiency relationship

through aggregate evidence. For this, we use the same simulation as

before but calculate the aggregate levels of incoming spillovers and

efficiency with the following expressions:
∑n,T,M

i,t,m Si,t,m/(n × T × M)

14 We divide the spillovers over N because, to properly randomise the Monte Carlo
simulations, we compare simulations with different numbers of indicators, which
affects how many spillovers occur in the system.
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and
∑n,T,M

i,t,m Ci,t,m/(B × M), respectively. A distinctive feature of this

exercise is that, for each set of M = 100 Monte Carlo simulations,

we assemble another one with the same parameters but without the

network. In this manner, no spillovers occur in the counterfactual

simulations. Once we have the aggregate efficiency in both sets,

we can compute the difference between the efficiency in a setting

without a network and the efficiency when there is one. A positive

difference means that the economy behaves more efficiently without

positive spillovers because functionaries have fewer incentives to

engage in inefficient activities. We call this difference an efficiency

loss. Figure 5.4b shows the result of this exercise. The results are

striking. Not only because an overwhelmingmajority of the efficiency

losses are positive, but also because there is a clear negative associa-

tion between the size of the loss and the average level of spillovers

received by the public servants. The latter outcome indicates that

when positive spillover effects tend to be large, for most of the

functionaries, there are fewer incentives to misbehave since they face

more homogeneous conditions and, thus, it is more difficult for them

to hide inefficiencies. Hence, with these results, we provide evidence

that validates our model internally at different levels of aggregation.

5.5.3 Soft Validation

Soft validation is probably the most common form of testing mod-

els in the agent-computing literature, as it involves a qualitative

assessment of an observed pattern. These procedures differ from other

external validation methods because the soft assessments do not

use a formal metric but a qualitative judgement. This approach is

common when attempting to make a ‘proof of concept’ through a

simulation. Seminal examples of this kind can be found in Schelling’s

model, where aggregate segregation patterns emerge from tolerant

individuals (Schelling, 1971), or in Axelrod’s cultural model, in which

a polarisation pattern ensues despite individuals exhibiting deep

social interactions (Axelrod, 1997b). This validation criterion is com-

mon in toy models attempting to describe empirical patterns but
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without referring to statistical tests to compare means or distribu-

tions. Some artificial stock market models exemplify the use of this

validation approach since simulated time series of returns replicate

observed patterns in real data, such as extreme values and clustered

volatility.

When studying policy coherence in the context of policy pri-

orities (Guerrero and Castañeda, 2021b), we provide a ‘soft’ valida-

tion exercise for a variant of our model. This validation consists

of estimating an index of policy coherence for countries known to

have been coherent with their governments’ official discourse when

attempting to emulate the development pattern of specific nations

through budgetary prioritisation. For example, the case of Korea fol-

lowing the steps of Japan, or Estonia adopting theNordic development

model. When the coherence index is consistent with the qualitative

narrative of successful emulations of more developed economies,

the model’s outcomes provide further evidence favouring PPI. Such

exercise requires a balanced cross-national panel of development

indicators and a verifiable narrative as to why such a qualitative

pattern is likely to emerge. In Guerrero and Castañeda (2021b), such

a narrative is provided by Akamatsu’s flying geese description of

changing development patterns (Aikman et al., 2019), scholarly work

on the countries under study, and the public discourse of government

officials.

5.5.4 Stakeholder Validation

In the literature on participatory modelling (Becu et al., 2003; Gurung

et al., 2006; Guyot and Honiden, 2006; Barnaud et al., 2013; Barreteau

et al., 2014), researchers involve the stakeholders of a problem in

the modelling process. This engagement is done through role-playing

games, experiments, consultations, workshops, and feedback activi-

ties, to mention a few possibilities. The idea is that stakeholders can

help to determine the nature of the data, whichmechanisms ‘actually’

take place in decision making, and verify that the model’s features

make sense in general.
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Our work with policymakers in various consulting projects

(Castañeda and Guerrero, 2020a,b,c; Guerrero and Castañeda, 2020;

Sulmont et al., 2021; Castañeda andGuerrero, 2022a,b) has allowed us

to build a certain level of stakeholder validation. For instance, during

a collaboration with the UNDP-Mexico, several stakeholders from

the federal- and state-level governments and NGOs participated in

multiple workshops. In these events, we presented and discussed, in

detail, the model’s methodology, data, and results. The stakeholders

took part in exercises to classify the indicator dataset into instru-

mental or collateral and to reach a consensus in terms of the model’s

specification. In this and other projects, stakeholders also expressed

their opinions on the degree of flexibility in budgetary allocations

since fiscal rigidities are something that occurs quite often in public

administration. Moreover, the expert opinion of public officials from

treasuries and ministries of finance on how to conceive development

plans was also helpful insight to specify the behavioural components

of PPI. Hence, stakeholders provided early feedback on the use of the

data available and the configuration of the model.

Besides their early involvement, stakeholder validation also

took place during the elaboration of policy experiments and while

writing our policy reports. Through a review process provided by

the participants of our workshops, we refined some analyses and

interpreted their results attending to the relevant problems of these

policymakers. An example of this process is the publication of several

reports on the application of PPI to different contexts (Castañeda and

Guerrero, 2020a,b,c; Gobierno del Estado de México, 2020; Sulmont

et al., 2021).

5.6 statistical behaviour

As we have explained, agent-computing epistemology differs from

that underpinning more traditional statistical methods. The intricate

data-generating processes that one can specify in an ABMmay gener-

ate complex dynamics requiring extensive Monte Carlo simulations

to produce outcomes with a proper characterisation. This feature has
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implications for parameter calibration and the estimation of counter-

factuals. Thus, depending on the statistical behaviour of the model’s

variables, one needs to select an appropriate simulation strategy, as

discussed in Chapter 2. While providing an exhaustive account of

the model’s statistical properties is beyond the scope of this book,

we would like to discuss two features that provide solid statistical

grounds for the Monte Carlo strategy pursued in this book.

Overall, we can perform independent runs of a model when we

produce Monte Carlo simulations with the same set of parameter

values. In this section, we would like to demonstrate how, with

this approach, (1) we obtain consistent impact estimates and (2) we

can recover the true parameters by calibrating the model against

simulated data. While these two features are not the only way to

demonstrate the “good” statistical behaviour of PPI, they are some

of the most discussed among quantitative researchers when it comes

to arguing in favour of the adequacy of their methods. Thus, with

these elements, we provide further arguments for the reliability of

PPI in supporting evidence-based policy guidelines (see the appendix

of Guerrero and Castañeda (2022) for additional analyses).

5.6.1 Testing for Synthetic Counterfactuals

As mentioned in Section 2.3.3, for an ABM counterfactual to be

valid in measuring a causal impact, it must describe a system that

behaves similarly to that of the baseline. In complex systems, random

initial conditions or a sequence of random factors in the interaction

process might create non-linear effects that move the system in

opposite directions. These two types of randomness might affect the

results in the intervened and baseline simulations. In particular, they

could produce divergent paths that are not comparable for measuring

causal impacts when they come from different systems in a random

sense. In the former case, uncontrolled randomness could produce

distributions of the impact metric with two or more modes due to the

sensitivity of themodel’s initial conditions. In the latter case, the real-

isation of opposite random shocks might produce extreme impacts
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when comparing two simulation runs, one for each variant (activated

or deactivated interventions). Therefore, to test for the presence of

these complications in PPI, we produce Monte Carlo distributions of

the average differences in the final values of intervened and baseline

simulations for a set of development indicators.

Figure 5.5a shows bell-shaped distributions for seven synthetic

indicators.15 These distributions do not suggest random non-

linearities affecting the intervened and baseline populations.

Figure 5.5b shows the results of Monte Carlo simulations in which

we establish random seeds in pairwise comparisons between the two

types of synthetic trials. As expected, in this alternative procedure,

no complications appear when looking at the distributions of our

impact metric. Moreover, irrespective of using a fixed random seed or

not, we generate similar mean impact metrics in both procedures and,

most importantly, very close Monte Carlo distributions. Accordingly,

we can argue that the synthetic counterfactuals we implement

throughout the book are valid instruments to assess causal impacts.

5.6.2 Parameter Recovery

A common concern addressed in statistical models is whether an

estimation procedure can recover the true parameters of the under-

lying stochastic process. We must highlight that this way of assessing

the quality of a model and its estimation method comes from a very

particular way of thinking about models; usually, one in which the

production account of causation is dominant. In the ABM literature,

recovering parameters is not always straightforward; because the

dynamics in an ABM emerge in a bottom-up fashion from the micro-

level interaction of agents. Consequently, micro-level parameters are

mapped into macro-level outcomes, which are empirically observable

and used for determining error functions.

15 We choose to illustrate this behaviour with only seven indicators as it is easy to
appreciate their distributions in a single plot. However, these results also apply to a
larger set of indicators.
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figure 5.5 Well-behaved impact estimates. (a) Impact under fully
randomised trials and (b) impact under pairwise randomised seeds.
Notes: We present the results from simulating indicators and calculating the

impact metric of counterfactuals. All parameters are randomly determined and

fixed across all simulations. The counterfactual consists of duplicating

government expenditure. The impact metric consists of the difference between the

indicator’s average final value from 500 Monte Carlo simulations under the

counterfactual and the mean final value under the baseline. We generate the set of

impact metrics by repeating the previous calculation 5,000 times. Figure 5.5a

corresponds to simulations where the seed is fully randomised. Figure 5.5b refers

to simulations in which the seed is the same for a pair of baseline and

counterfactual estimates but different between different pairs.

Sources: Authors’ calculations.

Furthermore, if the system exhibits qualitative changes (such

as transition phases and discontinuities) under certain parameter

combinations, the probability of recovering true parameters could be

low. For this reason, researchers in the agent-computing literature

often rely on direct microdata imputation to explore how the model’s

simulations respond in the parameter space. Often, what a statistician

may interpret as an overfitting problem (because different combina-

tions of parameters may yield the same outcome) could be, for a
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computational modeller, a sign of equally valid states of the world

(so the relevant type of analysis is deriving the probability distribution

over these states). Therefore, while the exercise of parameter recovery

would be a desirable feature in an agent-computingmodel, its absence

does not necessarily speak of a poor specification or a weakness in the

estimation method.

Aware of the differences between the traditional statistical

and the agent-computing points of view, we intentionally developed

PPI to avoid free parameters at the micro level. Conciliating both

views would require deciphering themapping of these unknowns into

relevant errors, a task that is not always easy to carry on. Thus, by

making all behavioural parameters endogenous, we bring our model

closer to the statistical tradition of a more direct mapping between

outcomes and parameters. Next, we would like to illustrate how one

can perform the parameter recovery to demonstrate the empirical

strengths of PPI. Notice that α and α′ are associated with the same

α-error; thus, there is an identification issue. However, this is not

a drawback for us, as it would be in regression analyses. We have

previously discussed that, in agent-computing, the aim is not to inter-

pret parameters because they do not necessarily convey information

such as average effects. Instead, agent-computing researchers cali-

brate these parameters and, later on, perform counterfactual analyses.

Thus, instead of focusing on the true αi and α′
i of indicator i, we are

concerned about recovering their difference αi − α′
i, as this is the key

parameter determining the trend feature of the data.16

The procedure is straightforward. We randomly define the num-

ber of indicators, their initial conditions, those that are instrumental,

the governance parameters, a spillover network, and the parameter

vectors α, α′, and β. We are interested in vectors α − α′ and β, so we

16 In earlier versions of PPI, the model only generated positive trends, so α′
i did not

exist. Under this specification, the identification issue is not a problem as the α-error
is only associated with parameter αi. When generalising PPI to account for negative
trends in the indicators, it is necessary to introduce α′

i, so the identification shifts to
its difference with respect to αi.
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figure 5.6 Parameter recovery. (a) Parameter difference αi − α′
i and

(b) Parameter βi.
Notes: The 45-degree dashed line indicates a perfect match. Each dot corresponds

to the average calibrated parameter in each bin of the true parameters. The vertical

lines denote the standard error in each bin.

Sources: Authors’ calculations.

say that they are the ‘true’ parameters to be recovered. Next, using

these true parameters and the other random data, we run a single

simulation to generate one-time series with a similar length as those

from empirical data. Then, with these synthetic data, we calculate the

success rate γi, the indicators’ final values, and calibrate the model

using our optimisation algorithm. Once calibrated, we compare the

parameters that we obtain against the true parameters. If we make a

scatter plot and most dots lie close to the 45-degree line, the result

indicates that we recovered the true parameters reasonably well.17

Figure 5.6 shows the results of repeating the above procedure

for 100 different random parameterisations. This setting implies that,

in total, we collect approximately 10,000 pairs of true and calibrated

values for each parameter. The plot presents the results by binning

17 Since we generate only one set of simulated time series for a given collection of
random parameters, one should not expect a perfect match between the true and
calibrated parameters. The reason is that a single realisation of the model may carry
idiosyncratic fluctuations that are not representative of the average behaviour of the
model. One could, instead, generate multiple sets of time series and compute average
success rates and average final values. However, this procedure defeats the purpose
of the exercise as, in the real world, we only see one realisation of the underlying
mechanisms. Thus, if the overall pattern across indicators reflects a consistency
between calibrated and true parameters while using a single set of time series, it is
possible to argue that there is strong evidence in favour of the model’s robustness.
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the true parameters and displaying the average calibrated parameter in

each bin. Figure 5.6a shows the case of the differences αi −α′
i, whereas

Figure 5.6b displays the matches for βi. In both cases, most of the

scatter plot lies near the 45-degree line, meaning that our calibration

procedure recovers the true parameters of the model reasonably well.

The vertical lines depict the standard error intervals, so their absence

in most dots denotes a high matching density between true and cali-

brated parameters. This result provides statistical validity to PPI and

increases our confidence in the inferences drawn from this toolkit.

5.6.3 Overfitting

A typical concern of any reader facing amodel containing a large num-

ber of parameters is the potential problem of overfitting. Overfitting

means different things in different communities. Inmachine learning,

for example, it usually refers to the poor capacity for making accurate

predictions outside of the sample used to train a model. In agent

computing, overfitting commonly relates to the insensitivity of the

outcome variables to changes in specific parameters. Intuitively, if a

model has an ‘excess’ of parameters, somemay be redundant and con-

tribute with no new information to generate the same outcomes. This

scenario can occur when the amount of parameters exceeds the num-

ber of error functions used to calibrate or estimate amodel. In PPI, this

logic could apply to the parameters αi and α′
i, since we calibrated them

against the same error. Alternatively, because of the stochasticity of

the model and the calibration method, one may say that different

calibration runs may lead to very different parameter combinations.

In terms of parameter insensitivity, it is easy to see that chang-

ing αi and α′
i inducesmajor changes in the associated indicator, as their

difference determines the trend component (see Figure 4.1). Regarding

the possibility of multiple parameter combinations yielding the same

fitting, we can argue that this scenario is unlikely. Because of the

interdependencies and the model’s vertical mechanisms, there is a set

of implicit constraints preventing numerous heterogeneous combina-

tions of αi and α′
i from being feasible parameters. To test this, we could
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verify if, across different calibrations, the distribution of a parameter

is bell shaped. Intuitively, a high concentration of estimations around

the mean implies a tendency to produce a particular parameter value.

Let us demonstrate this point by doing a simple exercise that

involves performing a large set of independent calibrations for a

synthetic dataset.We randomly create a set of 100 artificial indicators,

a network, and governance variables, and perform 1,000 independent

calibrations. Then, for each indicator, we test if the distribution of αi

is unimodal. We do the same for α′
i and βi. A suitable test for this

exercise can be found in Siffer et al. (2018), which yields a simple

metric called the ‘folding statistic’. When the folding statistic is

greater than 1, we are in the presence of a unimodal distribution.

In Figure 5.7, we show all the mean parameter values and their

corresponding folding statistics. Notice that the vast majority of the
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figure 5.7 Overfitting detection (‘folding statistic’). (a) Parameters αi,
(b) Parameters α′

i, and (c) Parameters βi.
Notes: Each panel contains 100 values (one per indicator) for the mean parameter

and the folding statistic.

Sources: Authors’ calculations.
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parameters exhibit unimodal distributions, suggesting that potential

overfitting is unlikely.

5.6.4 Time Equivalence

A couple of clarifications regarding parameter T are in order. While

T represents the number of simulation periods, the reader may be

interested in producing simulations with the temporal equivalence

of calendar time. This equivalence is straightforward since we can

establish it using only the information about the coverage time of

the sample period. For example, if T = 20 and the data cover 10

years, then each computational period represents 6 calendar months.

Another clarification is that T should not be too small. The reason

for this is the learning process of the agents. For PPI to produce

consistent simulations in a Monte Carlo setting, agents need to

emerge a social norm of inefficiency. Accordingly, we need enough

simulation periods for this emergent property to be a likely outcome.

From our experience, agents learn, and social norms stabilise after

T = 25. Furthermore, in the appendix of Guerrero and Castañeda

(2022), we show that PPI’s results are robust to different values of

T ≥ 25. Throughout this book, we use T = 50.

5.7 on interdependency networks

The last issue to be discussed in this chapter is the network of

interdependencies between indicators. In Chapter 3, we argued that

one of the empirical challenges to be overcome in the future relates to

the ability to produce reliable network estimates of interdependencies

between indicators. This challenge is especially troublesome given

the coarse-grained nature of development-indicator data. We also

explained that, to PPI, these networks are an exogenous input

as they reflect long-term structural relationships or conditional

dependencies. Hence, we do not expect the empirical configuration

of these networks to change considerably when looking at data

covering two decades. Thus, PPI is agnostic of the particular method

of choice to obtain these networks. It is up to the researcher to devise

https://doi.org/10.1017/9781009022910.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009022910.008


5.7 on interdependency networks 161

empirical strategies tomake a proper selectionwith the available data.

Nevertheless, readers would surely appreciate some initial pointers

regarding potential methods to construct such networks. Thus, we

describe a Bayesian method in this section that we have employed in

the past.18

Notice that, although our preferred choice is to specify a quan-

titative network structure, there exist qualitative approaches – based

on expert opinions – that may be suitable when the data available is

of poor quality (Weitz et al., 2018). Of course, qualitative frameworks

suffer from scalability issues as it is neither cheap nor logistically

feasible to gather experts in hundreds of different development dimen-

sions. In addition, these experts are not readily available, especially

when there is an urgent need for evidence-based policy prioritisation.

Throughout the development of PPI, we have been fortunate enough

to have data suitable for quantitative methods. Furthermore, we com-

bine quantitative estimates with a qualitative validation/correction

approach in multiple projects. In particular, we ask stakeholders to

identify links between indicators that could be false positives or point

out missing links that could be false negatives. This methodological

approach is an example of how to combine PPI with other assessment

tools.

The network-estimation method that we have employed the

most is known as Sparse Gaussian Bayesian Networks, which was

developed by Aragam et al. (2019) (and is known as sparsebn). This

procedure has the distinct advantages of working well with high-

dimensional datasets, even if they have short series, and producing

adjacency matrices that try to minimise the number of links that

may be false positives (hence the “sparse” term in the name). Without

becoming too technical, it is important to mention that this method

assumes that each observation in a time series comes from an inde-

pendent random draw from a normal distribution. To increase the

18 In Ospina-Forero et al. (2022), we conduct a thorough review of quantitative methods
to be deployed when estimating networks of interdependencies between
development indicators.
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chances of complying with such an assumption, one can transform

the time series of an indicator into a vector of first differences (the

difference between an observed value in period t and t − 1). Thus, a

data-prepossessing step consists of transforming the normalised time

series into vectors of first differences.

Another critical assumption of sparsebn that the reader should be

aware of is that it can only estimate what is known as directed acyclic

graphs. This assumption means that, in an estimated network, it is

not possible to find a structure that would generate cycles. While this

may be important in some contexts, it is not a crucial feature in PPI

as the network is just an exogenous component generating spillover

effects; that is to say, it is not the leading causal mechanism. Thus,

we choose to leave aside network cycles and, instead, gain the ability

to use more robust network estimates. Again, this is not a feature of

PPI but a personal modelling choice. Another user could easily opt

for a different network estimation method that they consider more

suitable for their particular context and data.

We find two key benefits of using this method. First, we do not

need long time series, an unfeasible requirement inmultidimensional

sustainable development. This issue is very important because one

can produce country-specific networks, so no cross-national pooling

is required. Arguably, one can capture much of the context of a

nation by specifying how its different development dimensions are

interconnected. Thus, by estimating country-specific networks, we

allow PPI to preserve context specificity. Second, because this is

a Bayesian framework, it can consider prior information about the

potential structure of the network. That is, if a stakeholder knows,

according to their experience, that certain links should be present

in the network and others should be absent, sparsebn can consider

this information through ‘white’ and ‘black’ lists. Thus, this method

also facilitates the incorporation of qualitative insights from expert

knowledge.

The reader should also be aware that once we produce an

estimate of the interdependency network, we have to remove those
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links with extreme weights. Removing outliers helps us to clean the

network from cases that are highly likely the result of correlated

idiosyncratic shocks. In this procedure, we estimate the distribution

of weights in a network; then, we remove those edges with weights

below the 2.5 percentile and above the 97.5 percentile. As for the

choice of the network estimation method, this step is not a feature of

PPI but a choice informed by our experience from conducting several

studies in this field. Currently, there is no gold standard for estimating

these networks in the context of sustainable development. Thus, PPI

is not tied to any particular method, as the estimated network is just

one more input and is optional.

Finally, from our experience in this field, we have noticed that

the analysis of SDG networks has led to several misinterpretations

about what one can directly learn from these objects.19 We have

explained (in Chapter 3) that SDG networks cannot convey causal

information and, as such, one should rather use them as stylised

facts that inform other modelling frameworks. Contrary to this, we

have seen numerous academic and policy studies arriving at conclu-

sions and recommendations based on correlation networks and other

similar analyses. Clearly, such interpretations do not hold under the

scrutiny of more rigorous impact-evaluation frameworks. To advert

this kind of mistake, we avoid emphasising any particular network in

the book. It is sufficient to know that, in every chapter, we estimate

networks according to the procedure described in this section.20

5.8 summary and conclusions

This chapter has covered several empirical aspects of PPI, with a

certain degree of technicality. It provides the more methodologi-

cally oriented reader with various statistical elements of our frame-

work. These statistical assessments make the inferences presented

19 For this reason, we do not present, throughout the book, any analysis or figures
related to networks of interdependencies.

20 The reader can access the data and code for estimating these networks from the
companion depository.
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throughout the book more reliable. Some of these elements cover

the calibration method, assessing goodness of fit, performing sta-

tistical tests, validating the model, and characterising its statistical

behaviour. With this, we conclude the first part of the book. Then,

we proceed to demonstrate the many different insights to be obtained

through the PPI framework. We divide the remainder of the book into

twomore parts, onewith various analyses at a global scale and another

with more specific and nuanced studies (e.g., country specific, at a

subnational level, or focusing on particular topics).
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