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Abstract

Let x0, xlt x2, x3 be polynomials in a variable / and with coefficients in a field k of character-
istic 0. Ifxl + xl = t(xl-x%) and t{x%x\) = *§ + *§, then x0 = xx = x2 = x3 = 0. This partially
answers a question of Pjatetskii-Sapiro and Safarevic about the A"3-surface *o + *3 = x\ + x\.
The proof uses a technique of M. R. Christie.

Subject classification (Amer. Math. Soc. (MOS) 1970): 14 J 25

1. Introduction

THEOREM 1. Let k be afield of characteristic 0 and let t be transcendental over k.
Then there are no k(t)-rational points (x0, xlt x2, x3) on the curve

Xl+xl = t(xl-xl), (1.1)

t(xl-x\) = xl+xl (1.2)

This partially answers a question raised by Pjatetskii-Sapiro and Safarevic (1971).
Dem'janenko (1977) claims to have proved Theorem 1 without the restriction on
the characteristic of k, but his argument appears to be incomplete (see Section 5
below). I cannot decide whether Theorem 1 remains true in prime characteristic.
Theorem 1 will be deduced from:

THEOREM 2. Let k,t be as in the enunciation of Theorem 1. If g,T)ek(t) satisfy

t*) = y\ (1.3)
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then
£ = 0,l,t2ortl. (1.4)

Theorem 2 will be proved by a technique of M. R. Christie (1976). There is
clearly no loss of generality in proving Theorems 1 and 2 under the additional
assumption that k is algebraically closed.

2. Deduction of Theorem 1 from Theorem 2

Put

so that (1.

Put

so that by

Then (2.5)

that is

Put

Then

where

1) and (1.2)

a = xo+ix1, b

c = x2+x3, d

become
ab = ted,

/(a2+62) = c2

a = a/c, jS =

(2.3) we have

becomes
a:b : c : d= aj9 :

(a2~'3) = ^ °

f = to?.

f(f-l)(f-r«)

•aid.

f.p-.a.

t-1).

= '?>

If now $ is given by (1.4), then there is clearly no a satisfying (2.9).

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

3. Theorems of Christie and Hellegouarch

We enunciate some results which we shall need later.
Let K be any field of characteristic 0, let k be any algebraically closed field

containing K and let ( be transcendental over k. Suppose that

u,veK[t], (3.1)
that

(3.2)
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and that
u/v$K. (3.3)

Then

£ie-u)tf-v) = iP (3.4)

is an elliptic curve defined over K(t) but not fc(f)-equivalent to an elliptic curve
defined over k. We denote by G the group of points on (3.4) defined over k(t),
so G is finitely generated by the function-field analogue of the Mordell-Weil
Theorem.

For deK*, we consider also the curve

x(x-u)(x-v) = df (3.5)

and denote the group of points defined over K{t) by H(d). We shall identify
H(d) with a subgroup of G by putting £ = x, y = d*y.

THEOREM 3 (Christie (1976), Proposition 2). Suppose that u,v and u—v all split
into the product of linear factors in K[i\. Then there is a finite set D<^K* such
that the H(d), deD generate a group of finite index in G.

Christie considers only the case when k is the field of complex numbers and K
is algebraic over Q but his argument is clearly general. He writes k for our K and
works with a,b where u = a+2b, v = a—2b.

We need only the

COROLLARY. Suppose that G is infinite. Then H(d) is infinite for some deK*.

We also require:

THEOREM 4 (Hellegouarch (1970), Theoreme 8). Let t be transcendental over the
field k of characteristic 0 and let H ^ O , V^O be elements of k[t] such that u/v$k.
Then the group of points (£, rj) on (3.4) defined over k(t) has no p-torsion, where p
is any prime other than 2 or 3.

COROLLARY. Suppose that G has p-torsion for some p ^2. Then there is a point
(a,j8) on (3.4) with a,pek(t) and

3a4 - 4(M+v) a3 + 6uva? + u2 v2 = 0. (3.6)

For, as Christie (1976) remarks (end of his Section 3), this is the condition that
(a, /}) have order 3.

We also recall for convenience
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LEMMA 1. Let L be a field of characteristic ^ 2 and let M = M(^s) for seL.

Suppose that there are infinitely many points defined over M on the elliptic curve

no = i2, 0.7)
where f(tj)£L[$] is a cubic polynomial. Then there are infinitely many points defined
over L either on (3.7) or on

V- (3-8)

LEMMA 2. Let ex,e^,ez be distinct elements of a field L of characteristic =£2 and
let G be the Mordell-Weil group of the elliptic curve

For j = 1,2,3 let <pt be the map from G to L*/(L*)2 defined by

if £ = e,, where

Then y>j is a group homomorphism. Further,

4. Proof of Theorem 2

The points on (1.4) with ij = 0,1, t* are of order 2 and those with $ = t2 are of
order 4. It is routine to show using Lemma 2 that there is no further 2-torsion and
an application of Theorem 4, Corollary shows that there is no further torsion.
We shall suppose that there are infinitely many points on (1.4) defined over k(t)
and will ultimately arrive at a contradiction.

We first apply Lemma 1 with s = t% and L = k(s). There will thus be infinitely
many points defined over k(s) on at least one of the curves

s*) = ri\ (4.1)

s*) = srf. (4.2)

To (3.4) we apply the same argument. If it has infinitely many &(.s)-points, then
there are infinitely many fc(r)-points on one of

r) = i?«, (4.3)

r) = njs , (4-4)

where r = s2 = t* is transcendental over k.
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The curve (4.4) reduces to (4.3) on taking r~x ̂ r-1^,^1 for £,rj,r respectively.
Hence we need consider only (4.2) over k(s) and (4.3) over k(r). We suppose, as
we may, that k is algebraically closed.

The equation (4.3) requires no deep machinery. On considering possible common
factors on the left-hand side we have

I = r«A2, (4.5)

(4.6)

(4.7)

where \,fi.,vek(r) and a,/? = 0 or 1. Hence, by Lemma 2, G*/2G* has order at
most 22, where G* is the group of points defined over k(r). Since all the points of
order 2 are defined over k(r), there can thus be no points of infinite order.

There remains (4.2). We put

X = s£, Y = s*v (4.8)
and so have to consider

X(X-s)(X-s*) = Y2 (4.9)

over k(s). On considering common factors of the factors on the left-hand side we
have

X=s0iX2, (4.10)

(4.12)

where X,[i, vek(s) and a,j8,y, S, e = 0 or 1 with a+j3+y=0 (mod 2). On con-
sidering (X, Y) + (Xo, YQ) if necessary, where Yo = 0 and Xo = 0, s or s3, we may
suppose by Lemma 2 without loss of generality that

a = j3 = y = 0. (4.13)

We now apply Theorem 3 Corollary with K = Q, s instead of t, and u = s, v = s3.
If there are infinitely many points on (4.9) over k(s) then there is some deQ*
such that there are infinitely many points over Q(s) on

x(x -s)(x- sa) = dy2. (4.14)

By (4.10)-(4.13) we need consider only the following four cases, in all of which

l,m,neQ*, lmned(Q*f (4.15)
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U,V,WeQ(s):

x =

x = W2

x = IU\

x-s = m(s-l)V2,

(I)

(II)

(III)

(IV)

-ss = n(s+l)W2.

We consider these in turn.

Case I. We have

On localizing at s = 0, this is clearly seen to imply that

l/me(Q*f.
Similarly

and so by (4.15),
l/ne(Q*f;

l,m,ned(Q*f.

[6]

(4.16)

Hence (x, y) = 2(xlfy^) by Lemma 2, where (xlt y^ is a point on (4.14) defined over
Q(s). Since the group of points on (4.14) over Q(y) is finitely generated, if there are
infinitely many such points, then there will be some of them not in Case I.

Case II. We have

/e(Q*)2

On localizing at s = 1, we have
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and on localizing at s = — 1 we have

Hence Case II cannot occur.

CaselH. We have

lU2-s = m(s-\)V2.

On localizing at s = 1, we have

/e(Q*)2

and on localizing at s = 0 we have

-l/me(Q*f.

Similarly,

lU2-s3 = n(s-l)W2;
and so

-l/ne(Q*)2.

Hence, on absorbing elements of Q* into U, V, W, we need consider only

U2-s = (\-s)V2,

U*-s3 = (l-s)W2.

On specializing s to 2 we have

u2-2h2 = -v\ (4.17)

u2-8h2 = -w2, (4.18)

where u,v,w,heQ and are not all zero. By homogeneity we may suppose that
u, h are integers without common factor. Then (4.17) implies that u is odd, whereas
(4.18) implies that u is even. The contradiction shows that Case III cannot occur.

Case IV. This reduces to Case III on changing the signs of X and s.

This concludes the proof of Theorem 2.

Hellegouarch's proof of Theorem 4 is somewhat obscure and so we note that
it is not really essential to our argument for the following two reasons.

(i) We could have used the analogue of the Nagell-Lutz Theorem for k(f). This
asserts that if /(£) is a cubic with coefficients in k[t] and top coefficients 1, and if
g,r) is a point of finite order defined over k(t) on y2 =/(£) , then g,r]ek[t] and
either rj = 0 or rf divides the discriminant of/. This reduces the determination of
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the torsion on (1.3) to a rather tedious case-by-case discussion. (It is enough to
look at the odd torsion on (4.2) and 4.9).)

(ii) So far as the proof of Theorem 1 is concerned, it would, in any case, be
enough to have the weaker form of Theorem 2 which asserts that there are no
points of infinite order on (1.3) and that the 2-torsion is given by (1.4). It then
follows from Lemma 2 that £ is a square for all torsion points: so (2.9) cannot hold.

5. Dem'janenko's argument

By a process similar to that in our Section 2, Dem'janenko deduces Theorem 1
from the assertion that the points (u, V, W) defined over k(t) on

M4 - 2(2f4 - 1 ) M2 w2 + w4 = v2 (5.1)
satisfy

w = 0 or w = 0 or K2 + H>2 = 0. (5.2)

By homogeneity we may suppose that u,v,wek[t]. Dem'janenko then considers
a point (M, V, W) for which u^O, w=£ 0 and

degw+degw

is minimal. By a descent argument he shows that then (5.2) holds. This does not,
however, imply that (5.2) holds for every solution u, v, w. It does not seem to me
that Dem'janenko's argument can be modified so as to give a proof. Since (5.1) is
isogenous to (1.3) we have, however, shown that Dem'janenko's assertion is
true in characteristic 0.

ADDED IN PROOF. Professor Swinnerton-Dyer has shown me a geometric proof
of Theorem 1 which extends to some (but not all) finite characteristics.
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