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Abstract

Characterization of generalized Schur functions in terms of their Taylor coefficients was established by
Krein and Langer [‘Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren
im Raume Πκ zusammenhängen. I. Einige Funktionenklassen und ihre Darstellungen’, Math. Nachr. 77
(1977), 187–236]. We establish a boundary analogue of this characterization.
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1. Introduction

Generalized Schur functions are functions of the form

f (z) =
s(z)
b(z)

, (1.1)

where the numerator s is an analytic function mapping the open unit disk D into the
closed unit disk (that is, s is a Schur-class function) and where the denominator b is
a finite Blaschke product. Such functions appeared first in [15] in the interpolation
context and were studied later in [12, 13]. In what follows, we will write S, GS
and FB for the set of Schur functions, the set of generalized Schur functions and
the set of finite Blaschke products, respectively. Formula (1.1) is called the Krein–
Langer representation of a generalized Schur function f (see [12]); the entries s
and b are defined by f uniquely up to a unimodular constant provided they have no
common zeroes. Via nontangential boundary limits, theGS-functions can be identified
with the functions from the closed unit ball of L∞(T) which admit meromorphic
continuation inside the unit disk with a finite total pole multiplicity. The class GS
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can be alternatively defined as the class of functions f meromorphic on D and such
that the associated kernel

K f (z, ζ) :=
1 − f (z) f (ζ)

1 − zζ̄

has finitely many negative squares on ρ( f ), the domain of analyticity of f . A
consequence of this characterization is that, for every point z ∈ ρ( f ), there exist
integers κ ≥ 0 and n0 > 0 such that, for every integer n > n0, the Hermitian matrix

P f
n(z) =

[ 1
`!r!

∂`+r

∂z`∂z̄r

1 − | f (z)|2

1 − |z|2

∣∣∣∣∣
z=ζ

]n−1

`,r=0
(1.2)

which will be referred to as the Schwarz–Pick matrix, has κ negative eigenvalues
counted with multiplicities. This number κ turns out to be equal to the total
pole multiplicity of f , that is, to the degree of the denominator b in the coprime
Krein–Langer representation (1.1). In what follows, we will denote by ν(P) the
number of negative eigenvalues, counted with multiplicities, of a Hermitian matrix P.
Straightforward differentiation in (1.2) gives explicit formulas

[P f
n(z)]`,r =

min{`,r}∑
s=0

(` + r − s)!
(` − s)!s!(r − s)!

zr−sz̄`−s

(1 − |z|2)`+r−s+1

−
∑̀
α=0

r∑
β=0

min{α,β}∑
s=0

(α + β − s)!
(α − s)!s!(β − s)!

zβ−s
i z̄α−s f`−α(z) fr−β(z)

(1 − |z|2)α+β−s+1

for the entries of P f
n(z) in terms of Taylor coefficients f j(z) := f ( j)(z)/ j! and the

uniform bound ν(P f
n(z)) ≤ κ (with actual equality ν(P f

n(z)) = κ if n is large enough)
eventually leads to a characterization of generalized Schur functions in terms of their
Taylor coefficients (see [13]). The objective of this paper is to establish a similar
characterization in the boundary context where the ambient point z is moved to the
unit circle T, the boundary of D, and where the Taylor coefficients at z are replaced
by the boundary limits f j = limz→t0 ( f ( j)(z)/ j!). In contrast to the interior case, the
boundary limits f j may not exist; however, if the limit f j exists for some j ∈ N, the
limits fk also exist for all k = 0, . . . , j − 1. We will distinguish two cases: the finite
(truncated) problem PN and the infinite problem P∞. We will say that z ∈ D approaches
a boundary point t0 ∈ T nontangentially and write z→̂t0, if z ∈ D approaches t0 and
satisfies |z − t0| < α(1 − |z|) for some fixed α > 1.

P PN . Given a point t0 ∈ T and given N <∞ complex numbers f0, . . . , fN , find
a function f ∈ GS which admits the asymptotic expansion

f (z) = f0 + f1(z − t0) + · · · + fN(z − t0)N + o(|z − t0|
N) as z→̂t0. (1.3)

P P∞. Given a point t0 ∈ T and given a complex sequence { fi}i≥0, find a function
f ∈ GS which admits the expansion (1.3) for all N ≥ 0.
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R 1.1. It is known that condition (1.3) holds if and only if the first N + 1
nontangential derivatives of f exist at t0 with values

lim
z→̂t0

f ( j)(z)
j!

= f j for j = 0, 1, . . . , N. (1.4)

To present the answers to the above problems we first introduce some needed
definitions and notation. Given a sequence f = { fi}Ni=0 (with N ≤∞), we define the
lower triangular Toeplitz matrix Uf

n and the Hankel matrix Hf
n by

Uf
n =


f0 0 · · · 0

f1 f0
. . .

...
...

. . .
. . . 0

fn−1 · · · f1 f0

 , Hf
n =


f1 f2 · · · fn
f2 f3 · · · fn+1
...

...
...

fn fn+1 · · · f2n−1

 (1.5)

for every appropriate integer n ≥ 1 (that is, for every n ≤ N + 1 in the first formula
and for every n ≤ (N + 1)/2 in the second). Given a point t0 ∈ T, we introduce the
upper-triangular matrix

Ψn(t0) =


t0 −t2

0 · · · (−1)n−1
(

n−1
0

)
tn
0

0 −t3
0 · · · (−1)n−1

(
n−1

1

)
tn+1
0

...
. . .

...

0 · · · 0 (−1)n−1
(

n−1
n−1

)
t2n−1
0


(1.6)

with the entries

Ψ j` =


0 if j > `

(−1)`−1

(
` − 1
j − 1

)
t`+ j−1
0 if j ≤ `

( j, ` = 1, . . . , n), (1.7)

and finally, for every n ≤ (N + 1)/2, we introduce the structured matrix

Pf
n = [pf

i j]
n
i, j=1 = Hf

nΨn(t0)Uf∗
n (1.8)

with the entries (as follows from (1.5)–(1.7))

pf
i j =

j∑
r=1

( r∑
`=1

fi+`−1Ψ`r

)
f j−r. (1.9)

Since the factors Ψn(t0) and Uf∗
n in (1.8) are upper-triangular, it follows that Pf

k is the
leading submatrix of Pf

n for every k < n. Although the matrix Pf
n defined in (1.8) does

not have to be Hermitian, it then follows that if it is Hermitian, then the matrices Pf
k
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are Hermitian for all k < n. We may thus introduce the quantity n0 ∈ N ∪ {∞} (the size
of the maximal Hermitian matrix Pf

n) by

n0 =


0 if Pf

1 = f1t0 f0 < R,

sup
1≤k≤(N+1)/2

{k : Pf
k = (Pf

k)∗} otherwise,
(1.10)

with the convention that n0 =∞ if the matrices Pf
k are Hermitian for all k ≥ 1. We

also observe that formula (1.9) defines the numbers pf
i j in terms of f = { f0, . . . , fN} for

every pair of indices (i, j) subject to i + j ≤ N + 1. In particular, if n ≤ N/2, one can
define via this formula the numbers pf

n+1,n and pf
n,n+1 and therefore the number

γn := t0 · (pf
n+1,n − pf

n,n+1). (1.11)

The two theorems below are the main results of this paper.

T 1.2. Let t0 ∈ T and f = { f0, . . . , fN} (1 ≤ N <∞) be given. Let the integer
n0 be defined as in (1.10) and, in case 0 < n0 ≤ N/2, let γn0 be given by (1.11). The
problem PN has a solution if and only if one of the following holds:

(1) | f0| < 1;
(2) | f0| = 1, n0 = (N + 1)/2;
(3) | f0| = 1, n0 = N/2, γn0 ≥ 0;
(4) | f0| = 1, 0 < n0 < N/2, γn0 > 0.

Whenever the problem is solvable, it has infinitely many rational solutions.

T 1.3. Let t0 ∈ T and f = { fi}i≥0 be given. Let n0 be defined as in (1.10) and,
in the case 0 < n0 <∞, let γn0 be the number given by (1.11). The problem P∞ has a
solution if and only if one of the following holds:

(1) | f0| < 1;
(2) | f0| = 1, n0 <∞, γn0 > 0;
(3) | f0| = 1, n0 =∞, ν(Pf

n) = κ for all large n and some κ <∞.

The problem may have a unique solution only in case (3).

The Problems PN and P∞ have been studied for Schur-class functions f ∈ S in [5]
and [10], respectively. It was shown that the Problem PN has infinitely many solutions
if and only if either | f0| < 1 or the maximal Hermitian matrix Pf

n0
is positive definite and

one of the cases (2)–(4) in Theorem 1.2 is in force. In contrast to the present setting,
the Schur-class problem PN may have one solution which is the case where the matrix
Pf

n0
is positive semidefinite (singular) and satisfies certain rank conditions. The infinite

problem P∞ turns out to be solvable in the class S if and only if either | f0| < 1 or the
case (2) in Theorem 1.3 is in force with the additional condition Pf

n0
> 0, or the case

(3) occurs with the additional condition that Pf
n is positive semidefinite for all n ≥ 1.

The paper is organized as follows. In Section 2 we present the proof of Theorem 1.2
based on recent results [5] on Schur-class boundary interpolation. The proof of
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Theorem 1.3 is given in Section 3, at the end of which we also discuss the possible
determinacy of the problem.

2. The truncated problem PN

Since the boundary values of generalized Schur functions cannot exceed one in
modulus, the condition | f0| ≤ 1 is necessary for the problem PN to have a solution.
On the other hand, the condition | f0| < 1 is sufficient: in this case there are infinitely
many Schur functions solving the problem (see, for example, [2]). It remains for us to
consider a more subtle case where f0 is unimodular.

Since every function f ∈ GS can be written in the form (1.1) and since the
denominator b ∈ FB is analytic on D, it is clear that the limits in (1.4) exist if and only
if the similar limits for the numerator s exist and satisfy the convolution equalities

lim
z→̂t0

s( j)(z)
j!

= s j :=
j∑

`=0

b` f j−` for j = 0, . . . , N. (2.1)

Here we have set

b j :=
b( j)(t0)

j!
(2.2)

to be the Taylor coefficients of b ∈ FB at the given boundary point t0 ∈ T. For any
fixed b ∈ FB we can calculate the sequence s = {s0, . . . , sN} via the second equality
in (2.1), and if this sequence satisfies the first equality in (2.1) for some s ∈ S, then
the problem PN has a solution: namely, f = s/b. On the other hand, if f is such that
for every b ∈ FB, the interpolation conditions (2.1) are satisfied by no Schur function,
then the problem PN has no solutions. This simple idea allows us to reduce the problem
PN to a similar problem for Schur-class functions the answer for which is known [5].

With any b ∈ FB we may associate the matrices Ub
n, Hb

n and Pb
n constructed via

formulas (1.5) and (1.8) from the Taylor coefficients (2.2). On the other hand, for the
sequence s = {s0, . . . , sN} obtained via convolution formulas (2.1) from the given f and
a fixed b ∈ FB, we may define the structured matrices

Ps
n = [ps

i j]
n
i, j=1 = Hs

nΨn(t0)Us∗
n

as in (1.8), with the entries ps
i j defined in the same way as in (1.9). We also may define

the numbers
γs

n := t0 · (ps
n+1,n − ps

n,n+1) (2.3)

for every n ≤ N/2 and the integer

ns
0 =


0 if Ps

1 = s1t0s0 < R,

max
1≤k≤(N+1)/2

{k : Ps
k = (Ps

k)∗} otherwise.
(2.4)
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L 2.1. Let b ∈ FB and let us assume that the two sequences f = { f0, . . . , fN}

(| f0| = 1) and s = {s0, . . . , sN} are related as in (2.1), Then:

(1) for every n ≥ 1,

Pb
n := Hb

nΨn(t0)Ub∗
n ≥ 0 and Ub>

n Ψn(t0)Ub∗
n = Ψn(t0), (2.5)

where Ub>
n is the transpose of Ub

n;
(2) for every n ≤ (N + 1)/2,

Ps
n := Hs

nΨn(t0)Us∗
n = Uf

nP
b
nU

f∗
n + Pf

n; (2.6)

(3) the integers n0 and ns
0 defined in (1.10) and (2.4) are equal;

(4) the numbers γn0 and γs
n0

defined in (1.11) and (2.3) are equal; and
(5) if b(z) = zm, then Ps

n0
is positive definite for m large enough.

P. The proof of the inequality in (2.5) can be found in [4, Lemma 2.1]. The
second relation in (2.5) is a consequence of the identity b(z)b(1/z̄) ≡ 1 (see [8, Theorem
2.5] for details). To prove (2.6) we observe that the convolution equalities (2.1) are
equivalent to the matrix equality Us

n = Uf
nU

b
n and imply that

Hs
n =


0 f0 f1 · · · fn

. .
. ...

... . .
. ...

f0 · · · fn−1 fn · · · f2n−1





bn · · · b2n−1
...

...
b1 · · · bn

b0 · · · bn−1
. . .

...
0 b0


= Uf

nH
b
n + Hf

nU
b>
n .

Making use of the two last identities and of equality (2.5), we get (2.6):

Ps
n = Hs

nΨn(t0)Us∗
n = (Uf

nH
b
n + Hf

nU
b>
n )Ψn(t0)Ub∗

n U
f∗
n

= Uf
nP

b
nU

f∗
n + Hf

nΨn(t0)Uf∗
n = Uf

nP
b
nU

f∗
n + Pf

n.

Since Pb
n is Hermitian (by the first relation in (2.5)), it follows from (2.6) that Ps

n − P
f
n

is Hermitian for all n ≥ 1. Statements (3) and (4) are now immediate.
Since | f0| = 1, the triangular Toeplitz matrix Uf

n0
is invertible, which allows us to

write (2.6) (for n = n0) equivalently as

(Uf
n0

)−1Ps
n0

(Uf
n0

)−∗ = Pb
n0

+ (Uf
n0

)−1Pf
n0

(Uf
n0

)−∗. (2.7)

The second term on the right-hand side is completely determined from the given
f. Theorem A.1 below gives asymptotics for all eigenvalues of the matrix Pbm

n0

for bm(z) = zm as m→∞. These asymptotics show, in particular, that the minimal
eigenvalue of Pbm

n0
tends to infinity as m→∞. Hence, for sufficiently large m, the

matrix on the left-hand side of (2.7) is positive definite and so is Ps
n0

, as desired. �
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P  T 1.2. As we mentioned at the beginning of this section, the problem
PN has infinitely many rational Schur function solutions if | f0| < 1 and has no solutions
if | f0| > 1.

A Carathéodory–Julia-type theorem for generalized Schur functions (see [8,
Theorem 4.2]) asserts that whenever a function f ∈ GS admits finite boundary limits

f0 = lim
z→̂t0

f (z) and f1 = lim
z→̂t0

f ′(z)

and | f0| = 1, then necessarily t0 f1 f 0 ∈ R. Therefore, if | f0| = 1 and n0 = 0 (that is, if
t0 f1 f 0 < R), the problem PN has no solutions.

If | f0| = 1 and n0 > 0, we fix a finite Blaschke product b and construct the sequence
s = {s0, . . . , sN} by the convolution formula (2.1). No matter what b we take, we will
have |s0| = 1 (since s0 = b0 f0), ns

0 = n0 and γs
n0

= γn0 . By [5, Theorem 2.3], if γs
n0
< 0 (if

n0 = N/2) or if γs
n0
≤ 0 (if 0 < n0 < N/2), there is no Schur-class function s subject to

equalities (2.1). Thus, there is no function f of the form (1.1) with s ∈ S and b ∈ FB
satisfying conditions (1.4). In other words, the problem PN has no solutions in the
following two cases: (1) n0 = N/2 and γn0 < 0; (2) 0 < n0 < N/2 and γn0 ≤ 0. On the
other hand, upon choosing b(z) = zm with m sufficiently large, we can guarantee that the
structured matrix Ps

n0
associated with the sequence s = {s0, . . . , sN} constructed as in

(2.1) is positive definite. In the case when n0 = (N + 1)/2, this is enough to guarantee
the existence of infinitely many rational functions s ∈ S satisfying conditions (2.1)
(see [2] or [7]). The existence of such functions in the two remaining cases where
n0 = N/2 and γn0 ≥ 0 or where 0 < n0 < N/2 and γn0 > 0 is guaranteed by [5, Theorem
2.3]. For every such s, the function f (z) = s(z)/zm solves the problem PN . This proves
the sufficiency of the cases (2)–(4) in Theorem 1.2 which together with the sufficiency
of the first case completes the proof of the ‘if’ part of the theorem. Since we have
examined all possible cases and shown that in all other cases the problem has no
solutions, the ‘only if’ part follows. �

R 2.2. We have shown that whenever the problem PN has a solution, it has a
solution of the form f (z) = s(z)/zm (if | f0| < 1, we can let m = 0). On the other hand,
the integer m in the latter representation might be far from optimal in the following
sense: the problem may have solutions in GS with the total pole multiplicity κ and no
solutions of the form f (z) = s(z)/zκ.

3. The infinite case

Comparing the formulations of Theorems 1.2 and 1.3 we can see that only the
third case in Theorem 1.3 is essentially infinite. The proof of its sufficiency requires
some preliminary work which will be done below. First we will prove the rest of
Theorem 1.3.
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3.1. Beginning of the proof of Theorem 1.3. As in the finite case, a necessary
condition for the problem P∞ to have a solution is that | f0| ≤ 1. If | f0| < 1, then there
are infinitely many functions f ∈ S subject to conditions (1.4); see [10, Theorem 2.2]
for the proof.

It is obvious that if the truncated problem PN has no solutions for some N <∞, the
infinite problem P∞ has no solutions either. Thus, the absence of solutions in some
cases follows from Theorem 1.2. In particular, the problem P∞ has no solutions if
| f0| = 1 and n0 = 0. Also, the problem P∞ has no solutions if 0 < n0 <∞ and γn0 ≤ 0
(recall that n0 and γn are defined in (1.10) and (1.11), respectively). On the other hand,
if

| f0| = 1, 0 < n0 <∞ and γn0 > 0, (3.1)

then the problem P∞ has infinitely many solutions of the form f (z) = s(z)/zm. Indeed,
under assumptions (3.1), we may use the function b(z) = zm to define the infinite
sequence s = {s j} j≥0 via convolution equalities (2.1). We then have

|s0| = |t
m
0 f0| = 1, ns

0 = n0 <∞, γs
n0

= γn0 > 0, Ps
n0
> 0, (3.2)

where the first equality is obvious and the next two equalities and the positivity of
the structured matrix Ps

n0
for a sufficiently large m follow from Lemma 2.1. By [10,

Theorem 1.2], conditions (3.2) are sufficient for the existence of infinitely many
functions s ∈ S such that

lim
z→̂t0

s( j)(z)
j!

= s j :=
j∑

`=0

b` f j−` for j = 0, 1, . . . .

For each such s, the function f (z) = s(z)/zm solves the problem P∞.
It remains to consider the case where | f0| = 1 and n0 =∞; the latter means that the

structured matrices Pf
n are Hermitian for all n ≥ 1. Let us show that in this case uniform

boundedness of the negative inertia of matrices Pf
n is necessary for the problem PN to

have a solution. To this end, we first recall a result from [8, Theorem 1.5].

T 3.1. Let n be a positive integer, let f be analytic in a ‘neighborhood’
{z ∈ D : |z − t0| < ε} of t0 ∈ T and let us assume that the nontangential boundary
limits f j = limz→̂t0 ( f ( j)(z)/ j!) exist for j = 0, . . . , 2n − 1 and are such that | f0| = 1
and the structured matrix Pf

n constructed from these limits as in (1.8) is Hermitian.
Then the Schwarz–Pick matrix P f

n(z) (see (1.2)) converges as z→̂t0 and, moreover,
limz→̂t0 P f

n(z) = Pf
n.

Note that in Theorem 3.1 the function f is not assumed to be inGS. We now assume
that f belongs to GS and meets conditions (1.4) for all j ≥ 0. Then all the assumptions
in Theorem 3.1 are met and we conclude that

lim
z→̂t0

P f
n(z) = Pf

n for all n ≥ 1. (3.3)
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Let us denote by κ the total pole multiplicity of f , that is, the degree of the Blaschke
product b in the coprime Krein–Langer representation (1.1) for f . By a result of
Krein and Langer, the Schwarz–Pick matrix P f

n(z) given by formula (1.2) has at most
κ negative eigenvalues for every z ∈ ρ( f ) and for every n ≥ 1. Then we conclude from
(3.3) that ν(Pf

n) ≤ ν(P f
n(z)) ≤ κ for all n ≥ 1.

To complete the proof of Theorem 1.3 it remains to justify the sufficiency of the case
(3), which will be done at the end of this section, after some needed preliminaries. For
the next three subsections we assume that

| f0| = 1, Pf
n = Pf∗

n and ν(Pf
n) ≤ κ for all n ≥ 1. (3.4)

By the third condition in (3.4), we may assume without loss of generality that Pf
n has

exactly κ negative eigenvalues if n is large enough:

ν(Pf
n) = κ for all n ≥ n1. (3.5)

For technical convenience we assume that t0 , 1, which we can also do without loss of
generality.

3.2. Schur complements and Stein identities. If | f0| = 1 and the structured matrix
Pf

n is Hermitian, then (see [7, Section 3]) Pf
n satisfies the Stein identity

Pf
n − TnP

f
nT ∗n = EnE∗n − MnM∗n, (3.6)

where Tn ∈ C
n×n and En, Mn ∈ C

n×1 are given by

Tn =


t0 0 · · · 0

1 t0
. . .

...
. . .

. . . 0
0 1 t0

 , En =


1
0
...
0

 , Mn =


f0
f1
...

fn−1

 . (3.7)

For every positive integer d < n we write conformal block decompositions

Pf
n =

[
Pf

d B∗

B C

]
, Tn =

[
Td 0
R Tn−d

]
, En =

[
Ed

0

]
, Mn =

[
Md

M̃

]
, (3.8)

where Td, Tn−d, Ed, Md are defined accordingly to (3.7) and where

R =


0 · · · 0 1
0 · · · 0 0
...

...
...

0 · · · 0 0

 ∈ C(n−d)×d, M̃ =


fd
...

fn−1

 ∈ C(n−d)×1.

Substituting block decompositions (3.8) into (3.6) and comparing the corresponding
blocks we get the following three equalities:

Pf
d − TdP

f
dT ∗d = EdE∗d − Md M∗d,

B − Tn−dBT ∗d − RPdT ∗d = −M̃M∗d,

C − Tn−dCT ∗n−d − RPf
dR∗ − Tn−dBR∗ − RB∗T ∗n−d = −M̃M̃∗.

(3.9)
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Assuming that det (Pf
d) , 0, we define the Schur complement of Pf

d in Pf
n as

Sn−d = C − B(Pf
d)−1B∗.

P 3.2. Let Pf
d be an invertible leading submatrix of Pf

n. Then its Schur
complement Sn−d satisfies the Stein identity

Sn−d − Tn−dSn−dT ∗n−d = Gn−dG∗n−d − Yn−dY∗n−d, (3.10)

where Gn−d and Yn−d are defined in terms of decompositions (3.8) as

Gn−d = (R − (I − Tn−d)B(Pf
d)−1)(I − Td)−1Ed,

Yn−d = M̃ + (R − (I − Tn−d)B(Pf
d)−1)(I − Td)−1Md.

(3.11)

For the proof, it suffices to multiply both sides of (3.6) by [−B(Pf
d)−1 I] on the

left and its adjoint on the right and then to invoke equalities (3.9). Equality (3.10) was
proved in [9] for the interior case t0 ∈ D, but the proof does not rely on this assumption,
so we refer to [9, Theorem 2.5] for computational details.

Let us denote by g j and y j the entries in the columns (3.11) so that Gn−d =

[g0 · · · gn−d−1]> and Yn−d = [y0 · · · yn−d−1]>. Explicit formulas for g j and y j

are easily derived from (3.11):

g0 = (ed − (1 − t0)B(Pf
d)−1)(I − Td)−1Ed,

y0 = fd + (ed − (1 − t0)B(Pf
d)−1)(I − Td)−1Md,

(3.12)

where ed = [0 · · · 0 1] ∈ C1×d, and

g j = U j(Pf
d)−1(I − Td)−1Ed,

y j = f j+d + U j(Pf
d)−1)(I − Td)−1Md for j ≥ 1,

(3.13)

where U j is defined in terms of numbers (1.9) as follows:

U j = (t0 − 1) ·
[
pf

j+d+1,1 · · · pf
j+d+1,d

]
+

[
pf

j+d,1 · · · pf
j+d,d

]
.

Formulas (3.13) enable us to define g j and y j for every j ≥ 1. Combined with
(1.9), they also show that the numbers x j are completely determined by t0 and
f0, f1, . . . , f2d+ j for every fixed j ≥ 0. Observe that the term R in (3.11) affects only
the top entries g0 and y0 making formulas (3.12) and (3.13) slightly different.

L 3.3. For g0 and y0 defined as in (3.12), |g0| = |y0| , 0.

P. Since |t0| = 1, by examining the top-left entries on both sides of (3.10), we get
0 = |g0|

2 − |y0|
2 so that |g0| = |y0|. It will be shown below that

g0E∗ − y0M∗ = (ed + B(Pf
d)−1(t0I − Td))(I − Td)−1Pf

d(I − T ∗d ). (3.14)
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Since the matrix (I − Td)−1Pf
d(I − T ∗d ) is invertible (recall that t0 , 1) and since the

rightmost entry in the row-vector ed + B(Pf
d)−1(t0I − Td) is 1, it follows that the row-

vector on the right-hand side of (3.14) is not zero and thus g0 and y0 cannot both be
zeros.

It remains to verify (3.14). We have from (3.12) that

g0E∗d − y0M∗d = − fd M∗d
+ (ed − (1 − t0)B(Pf

d)−1)(I − Td)−1(EdE∗d − Md M∗d). (3.15)

Due to the first equation in (3.9),

(I − Td)−1(EdE∗d − Md M∗d) = (I − Td)−1Pf
d(1 − T ∗d ) + Pf

dT ∗d , (3.16)

while by equating the top rows on both sides of (3.9),

− fd M∗d = B − edP
f
dT ∗d − t0BT ∗d .

Substituting the last two identities into the right-hand side of (3.15) gives

g0E∗d − y0M∗d = B − edP
f
dT ∗d − t0BT ∗d

+ (ed − (1 − t0)B(Pf
d)−1)((I − Td)−1Pf

d(1 − T ∗d ) + Pf
dT ∗d )

= B(I − T ∗d ) + ed(Pf
d)−1(I − Td)−1Pf

d(1 − T ∗d )

− (1 − t0)B(Pf
d)−1(I − Td)−1Pf

d(1 − T ∗d ),

which is clearly equivalent to (3.14). This completes the proof. �

The next theorem is the main result of this subsection.

T 3.4. Given f = { f j} j≥0, let us assume that conditions (3.4) are met and that
the matrix Pf

d is invertible. Define the sequence x = {x j} j≥0 as a (unique) solution of
the infinite linear system

j∑
k=0

xkg j−k = yk for j = 0, 1, . . . , (3.17)

where g j and y j are defined in (3.12) and (3.13). Then

|x0| = 1, Px
n = Px∗

n and ν(Px
n) ≤ κ − ν(Pf

d) for all n ≥ 1. (3.18)

P. Letting j = 0 in (3.17) we get x0g0 = y0; therefore, |x0| = 1, by Lemma 3.3. For
every fixed n > d, letGn−d denote the (n − d) × (n − d) lower triangular Toeplitz matrix
with the leftmost column equal to Gn−d, so thatGn−dEn−d = Gn−d. By Lemma 3.3, g0 ,
0, and hence the matrix Gn−d is invertible. The column Xn−d = [x0 x1 · · · xn−d−1]>

satisfies
Xn−d = [x0 x1 · · · xn−d−1]> = G−1

n−dYn−d (3.19)
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due to (3.17). Let us introduce the matrix

P̃n−d = G−1
n−dSn−dG

−∗
n−d = G−1

n−d(C − B(Pf
d)−1B∗)G−∗n−d. (3.20)

By a well-known property of the Schur complement, ν(Pf
n) = ν(Pf

d) + ν(Sn−d). Since
P̃n−d is congruent to Sn−d, it follows that

ν(P̃n−d) = ν(Sn−d) = ν(Pf
n) − ν(Pf

d). (3.21)

Since the matrixG−1
n−d is lower triangular, it also follows from (3.20) that P̃k is a leading

principal submatrix of P̃n for every k < n.
Multiplying both sides of (3.10) by G−1

n−d on the left, by its adjoint on the right,
commuting G−1

n−d and Tn−d and making use of (3.19) and (3.20), we obtain the Stein
identity

P̃n−d − Tn−dP̃n−dT ∗n−d = En−dE∗n−d − Xn−dX∗n−d.

Since the latter identity holds for every n > d, we conclude that

P̃n − TnP̃nT ∗n = EnE∗n − XnX∗n for all n ≥ 1.

By [6, Theorem 10.5], a necessary and sufficient condition for the Stein equation

A − TnAT ∗n = EnE∗n − XnX∗n (3.22)

to have a solution A ∈ Cn×n is that

Ux>
n Ψn(t0)Ux∗

n = Ψn(t0), (3.23)

where Ux
n and Ψn(t0) are defined via formulas (1.5) and (1.6). Thus, equality (3.23)

holds for all n ≥ 1. By [8, Theorem 2.5], the double-sized equality

Ux>
2n Ψ2n(t0)Ux∗

2n = Ψ2n(t0)

guarantees that the structured matrix Px
n is Hermitian (which proves the second equality

in (3.18)) and, therefore, it satisfies the same Stein equation (3.22) as P̃n. It is known
that the Stein equation (3.22) uniquely determines the entries ai j (for 2 ≤ i + j ≤ n) of
its solution A = [ai j]n

i, j=1 (see [6, p. 77]). Therefore, the (i, j) entry in P̃n is equal to

the corresponding entry in Px
n for all (i, j) subject to 2 ≤ i + j ≤ n. Since P̃n and Px

n
are leading submatrices of respectively P̃m and Px

m for all m > n, we may increase
n to conclude that Px

n = P̃n for all n ≥ 1. Now the last relation in (3.18) follows
from (3.21). �

By our assumption (3.5), ν(Pf
d) = κ if d is large enough. For such d we would

conclude from the third relation in (3.18) that ν(Px
n) = 0, that is, that the matrix Px

n is
positive semidefinite for all n ≥ 1. The question is whether there exists an invertible
matrix Pf

d which captures the maximally possible negative inertia. The next lemma
shows that such d always exists.
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L 3.5. Let us assume that conditions (3.4) and (3.5) are in force. Then there exists
an integer d ≥ 1 such that Pf

d is invertible and ν(Pf
d) = κ.

P. Let us define ñ = sup{n ∈ N : det Pf
n , 0}. If ñ =∞, the statement of the lemma

is obvious due to (3.5). If ñ <∞, we can take d = ñ, since for this choice of d, as we
will show below, ν(Pf

d) = κ. Indeed, since Pf
d is invertible, we can define the sequence

x = {x j} j≥0 as in (3.17). By the proof of Theorem 3.4, the structured matrix Px
m is

congruent to the Schur complement Sm of Pf
d in Pf

d+m for every m ≥ 1. The definition
of d = ñ tells us that det Pf

d+m = 0 for every m ≥ 1 so that Px
m is singular for every

m ≥ 1. Due to the structure (1.8) of Px
m = Hx

mΨm(t0)Ux∗
m and since the matrices Ψm(t0)

and Ux∗
m are invertible (recall that |x0| = 1, by Theorem 3.4), it follows that the Hankel

matrix Hx
m = [xi+ j−1]m

i, j=1 is singular for every m ≥ 1. The latter implies that x j = 0

for every j ≥ 1. Therefore, Px
m = 0 and hence ν(Pf

d+m) = ν(Pf
d) + ν(Px

m) = ν(Pf
d) for all

m ≥ 1. Combining this with (3.5) leads us to ν(Pf
d) = κ, which completes the proof of

the lemma. �

3.3. The matrix-function Θ. Still assuming that t0 , 1, | f0| = 1 and the matrix Pf
d is

Hermitian and invertible, let us introduce the 2 × 2 matrix-valued function

Θ(z) = I + (z − 1)
[
E∗d
M∗d

]
(I − zT ∗d )−1(Pf

d)−1(I − Td)−1[Ed −Md] (3.24)

and let

Θ̃(z) =

[̃
θ11(z) θ̃12(z)
θ̃21(z) θ̃22(z)

]
:= (z − t0)d · Θ(z). (3.25)

Since (I − zT ∗d )−1 is the upper-triangular Toeplitz matrix with the top row equal to

[(1 − zt0)−1 z(1 − zt0)−2 · · · zd−1(1 − zt0)−d],

the function Θ is rational with the only pole of multiplicity d at t0, whereas Θ̃ is a
matrix polynomial. It is not hard to see from (3.24), (3.25) and (3.7) that

Θ̃(t0) = (−1)dt2d−1
0 (t0 − 1)

[
1
f̄0

]
ed(Pf

d)−1(I − Td)−1[Ed −Md], (3.26)

where ed is the row-vector introduced just above formula (3.13). The next lemma
establishes several equalities needed for the subsequent analysis.

L 3.6. Let Θ and Θ̃ be defined as in (3.24), (3.25) and let Gn−d, Yn−d be the
columns given in (3.11) with the top entries g0, y0 displayed in (3.12). Then

θ̃21(t0)ḡ0 + θ̃22(t0)ȳ0 =
(−1)dt2d−1

0 (t0 − 1) f̄0
1 − t̄0

. (3.27)

Furthermore, if for some n > d, the numbers f2d, . . . , f2n−1 are such that the matrix Pf
n

is Hermitian, then

(zI − Tn)−1[En −Mn]Θ(z) =

[
0

(zI − Tn−d)−1[Gn−d −Yn−d]

]
+ Φ(z), (3.28)
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where Φ(z) is defined in terms of decompositions (3.8) as follows:

Φ(z) =

[
Pf

d
B

]
(I − zT ∗d )−1(Pf

d)−1(I − Td)−1[Ed −Md]. (3.29)

Finally, det Θ̃(z) = (z − t0)2d for all z ∈ C and |̃θ21(t0)| = |̃θ22(t0)| , 0.

P. It follows from (3.26) that

θ̃21(t0)ḡ0 + θ̃22(t0)ȳ0 = (−1)dt2d−1
0 (t0 − 1) f̄0ed(Pf

d)−1(I − Td)−1

× (Edḡ0 − Mdȳ0). (3.30)

Taking adjoints on both sides of the second equality in (3.9) we see that

ed(Pf
d)−1(I − Td)−1(Edḡ0 − Mdȳ0)

= ed(I − T ∗d )−1{e∗d + ((t̄0 − T ∗d )Pf
d)−1B∗} =

1
1 − t̄0

, (3.31)

where the last equality holds true since ed(I − T ∗d )−1(t̄0 − T ∗d ) = 0. Substituting (3.31)
into (3.30) gives (3.27).

Since | f0| = 1 and since Pf
n is Hermitian, it follows that the Stein identity (3.6) holds

(we again refer to [7] for the proof) which is equivalent to the three identities in (3.9).
To verify (3.28), it suffices to plug in the formula (3.24) for Θ, the decompositions
(3.8) and the conformal decomposition

(zI − Tn)−1 =

[
(zI − Td)−1 0

(zI − Tn−d)−1R(zI − Td)−1 (zI − Tn−d)−1

]
into the left-hand side of (3.28) and then to invoke the two top identities in (3.9). The
calculations are straightforward and will be omitted.

To prove the formula for det Θ̃(z) we use the well-known determinantal equality
det(I + AB) = det(I + BA) along with the explicit formula (3.24) and the Stein identity
from (3.9):

det Θ(z) = det
(
I + (z − 1)(I − zT ∗d )−1(Pf

d)−1(I − Td)−1[Ed −Md]
[
E∗d
M∗d

])
= det(I + (z − 1)(I − zT ∗d )−1(Pf

d)−1(I − Td)−1(Pf
d − TdP

f
dT ∗d ))

= det((I − zT ∗d )−1(Pf
d)−1(I − Td)−1(zI − Td)Pf

d(I − T ∗d ))

=
det(zI − Td) · det(I − T ∗d )

det(I − zT ∗d ) · det(I − Td)
= 1 (z , t0),

where the last equality follows from the special structure (3.7) of Td. The desired
formula det Θ̃(z) = (z − t0)2d follows from (3.25).
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Finally, we have from (3.26) and (3.16) that

|̃θ21(t0)|2 − |̃θ21(t0)|2

= |t0 − 1|2 · ed(Pf
d)−1(I − Td)−1(EdE∗d − Md M∗d)(I − T ∗d )−1(Pf

d)−1e∗d
= |t0 − 1|2ed((Pf

d)−1(I − Td)−1 + T ∗d (I − T ∗d )−1(Pf
d)−1)e∗d, (3.32)

where the first equality follows from (3.26) and the second equality is a consequence
of (3.16). Due to the special form of Td and ed,

(I − Td)−1e∗d =
1

1 − t0
e∗d, edT ∗d (I − T ∗d )−1 =

t̄0
1 − t̄0

ed =
1

t0 − 1
ed,

which being substituted in (3.32) gives |̃θ21(t0)|2 − |̃θ21(t0)|2 = 0. Since by (3.27), θ̃21(t0)
and θ̃22(t0) cannot both be equal to zero, it follows that |̃θ21(t0)| = |̃θ22(t0)| , 0, which
completes the proof. �

3.4. The Schur reduction. The idea going back to Schur [14] is to reduce a given
interpolation problem to a similar one but with fewer interpolation conditions.

T 3.7. Let us assume that t0 , 1, | f0| = 1 and that the matrix Pf
d = Pf∗

d is
invertible. Let Θ̃ be defined as in (3.25) and (3.24). Then a function f belongs to
GS, has ν(Pf

d) poles inside D and admits the boundary asymptotic

f (z) = f0 + f1(z − t0) + · · · + f2d−1(z − t0)2d−1 + O(|z − t0|
2d) (3.33)

as z→̂t0 if and only if it is of the form

f =
θ̃11h + θ̃12

θ̃21h + θ̃22

(3.34)

for some h ∈ S such that the boundary limit h0 = limz→̂t0 h(z) either does not exist or
satisfies

θ̃21(t0)h0 + θ̃22(t0) , 0. (3.35)

The proof is given in [2] (see also [1, 3]) for rational functions (in which case h0 =

h(t0) always exists and the nontangential approach to the boundary can be replaced by
evaluation at t0), but all the arguments go through in the general meromorphic setting.
We remark, however, that in the general setting condition (3.33) is not equivalent to the
condition with the additional term of the form o(|z − t0|2d−1) as in the problem P2d−1.

We now use Theorem 3.7 to carry out the Schur reduction.

T 3.8. Given f = { f j} j≥0, let us assume that conditions (3.4) and (3.5) are met
and that the matrix Pf

d is invertible. Let x = {x j} j≥0 be the sequence defined in (3.17).

https://doi.org/10.1017/S1446788712000432 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000432


218 V. Bolotnikov, T. Wang and J. M. Weiss [16]

A function f is a solution to the problem P∞ and has κ poles inside D if and only if it
is of the form (3.34) for some h ∈ S such that

lim
z→̂t0

h( j)(z)
j!

= x j for all j ≥ 0. (3.36)

P. Let us assume that f is a solution to the problem P∞ and has κ poles inside
D. In particular, f satisfies condition (3.33) and, therefore, it can be represented in
the form (3.34) for some Schur function h ∈ S. Since θ̃22(t0) , 0 (by Lemma 3.6),
the Schur function s ≡ 0 meets condition (3.35) and, therefore, the rational function
a = (̃θ11s + θ̃12)/(̃θ21s + θ̃22) = θ̃12/̃θ22 satisfies condition (3.33), by Theorem 3.7. We
have

f =
θ̃11h + θ̃12

θ̃21h + θ̃22

= a +
det Θ̃ · h

θ̃22(̃θ21h + θ̃22)
.

Since both f and a satisfy the same asymptotic equality (3.33) and since f solves in
addition the problem P∞, it follows that

f (z) − a(z) = f2d −
a(2d)(t0)

(2d)!
+ O(|z − t0|

2d).

Since det Θ̃(z) = (z − t0)2d (by Lemma 3.6), we may conclude from the two latter
equalities that the limit h0 = limz→̂t0 h(z) exists and satisfies the equality

f2d −
a(2d)(t0)

(2d)!
=

h0

θ̃22(t0)(̃θ21h0 + θ̃22(t0))
. (3.37)

By Theorem 3.7, h0 satisfies inequality (3.35) (this can be derived directly from
(3.37)). Observe that

f (z) −
n−1∑
j=0

f j(z − t0) j = (z − t0)n · en(zI − Tn)−1
[
En −Mn

] [ f (z)
1

]
, (3.38)

where en =
[
0 · · · 0 1

]>
∈ C1×n. Also observe that equality (3.34) can be written

as [
f
1

]
= Θ̃

[
h
1

]
· q where q = θ̃21h + θ̃22. (3.39)
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Substituting (3.39) into (3.38) and making use of (3.29) gives

f (z) −
n−1∑
j=0

f j(z − t0) j

= (z − t0)n · en(zI − Tn)−1
[
En −Mn

]
Θ̃(z)

[
h(z)

1

]
q(z)

= (z − t0)n+d · en

[
0

(zI − Tn−d)−1
[
Gn−d −Yn−d

]] [
h(z)

1

]
q(z)

+ (z − t0)n+d · enΦ(z)
[
h(z)

1

]
q(z)

= (z − t0)n+d · en−d(zI − Tn−d)−1(Gn−dh(z) − Yn−d)q(z)

+ (z − t0)n+d · enΦ(z)
[
h(z)

1

]
q(z).

(3.40)

Since f solves the problem P∞,

f (z) −
n−1∑
j=0

f j(z − t0) j = O(|z − t0|
n) (3.41)

for all n ≥ 1 as z→̂t0. Since h is uniformly bounded on D, it follows from (3.35) and
formula (3.29) for Φ that

(z − t0)n+d · enΦ(z)
[
h(z)

1

]
q(z) = O(|z − t0|

n) for all n ≥ 1.

Now we conclude from (3.40) that

(z − t0)d · en−d(zI − Tn−d)−1(Gn−dh(z) − Yn−d) = O(1) (3.42)

for all n > d. Of course, the latter relation is trivial and contains no information for
n = d + 1, . . . , 2d. For n > 2d, let us multiply both sides of (3.42) by (z − t0)n−2d and
take into account the structure of Tn−d to get[

1 z − t0 · · · (z − t0)n−2d−1
]

(Gn−dh(z) − Yn−d) = O(|z − t0|
n−2d)

or equivalently (in terms of the entries g j and y j defined in (3.12) and (3.13)) as

h(z) ·
n−2d−1∑

j=0

g j(z − t0) j −

n−2d−1∑
j=0

y j(z − t0) j = O(|z − t0|
n−2d).

Due to convolution relations (3.17) and since g0 , 0, the latter equality is equivalent to

h(z) −
n−2d−1∑

j=0

x j(z − t0) j = O(|z − t0|
n−2d)
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which, in turn, implies equalities (3.36) for j = 0, . . . , n − 2d − 1. Since n can be
chosen arbitrarily large, we get equalities (3.36) for all j ≥ 0.

Conversely, let us assume that h is a Schur-class function satisfying conditions
(3.36). Since x0 = y0/g0 by the first equation in (3.17) and since x0 is unimodular
(by Lemma 3.3), it follows from (3.27) that

θ̃21(t0)x0 + θ̃22(t0) =
1
y0

(̃θ21(t0)g0 + θ̃22(t0)y0) =
(−1)dt2d−1

0 (t0 − 1) f 0

y0(1 − t0)

and thus condition (3.35) is satisfied. By Theorem 3.7, the function f constructed from
h by formula (3.34) has κ poles inside D and satisfies (3.33), that is, the requested
boundary derivatives fn at t0 for n = 0, . . . , 2d. For n > 2d we use calculation (3.40)
to conclude that equalities (3.36) for j = 0, . . . , n − 2d − 1 for h imply the asymptotic
equality (3.41) for f . Letting n go to infinity we then conclude that f is a solution to
the problem P∞. �

3.5. Completion of the proof of Theorem 1.3. We complete the proof of
Theorem 1.3 by demonstrating the sufficiency of conditions (3.4) and (3.5). By
Lemma 3.5, we can find d ≥ 1 so that Pf

d is invertible and ν(Pf
d) = κ. Let x be

the sequence defined in (3.17). By Theorem 3.8, the problem P∞ has a solution
f ∈ GS with κ poles inside D if and only if there exists a Schur function h ∈ S
subject to interpolation conditions (3.36). Since the structured matrices Px

n are positive
semidefinite for all n ≥ 0 (by Theorem 3.4 and since ν(Pf

d) = κ), such a function h does
exist (see, for example, [11]). Substituting this h into (3.34) results in a solution f to
the problem P∞.

3.6. Concluding remarks. Since in cases (1) and (2) the problem P∞ is
indeterminate, the last statement in Theorem 1.3 need not be proved. However, we
will show that in case (3) the problem P∞ indeed may be determinate.

Let us consider the subcase of (3) where there exists the maximal invertible
structured matrix Px

d. Then for the associated sequence x = {x j} we have x j = 0 for
all j ≥ 1 and the only Schur function h satisfying conditions (3.36) is a unimodular
constant function h ≡ x0. Substituting this h into (3.34) we get a solution f to the
problem P∞. This f is rational and has κ poles inside D (by Theorem 3.7). It is not
hard to show that deg f = d and that f is unimodular on T. Therefore, f is the ratio
of two Blaschke products of the respective degrees d − κ and κ. So far, we have shown
that P∞ has a unique solution f ∈ GS with κ poles inside D. Let us assume that f̃ ∈ GS
is another solution to the problem P∞. Take it in the form of (1.1), that is, f̃ = s/b for
some s ∈ S and b ∈ FB. Then the associated structured matrices Pf

n, Ps
n and Pb

n are
related as in (2.6) for all n ≥ 1. Since rank Pb

n = max{n, deg b} and since rank Pf
n = d

for all n ≥ d, it follows from (2.6) that the rank of Ps
n stabilizes for large n. Therefore, s

is a finite Blaschke product so that the function f̃ is rational and therefore it is analytic
at t0. Thus, f and f̃ are two rational functions with the same Taylor coefficients at t0.
Therefore, f ≡ f̃ , which means that the problem P∞ has only one solution in GS.
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In the complementary subcase of (3) where ν(Pf
d) = κ and det Pf

d , 0 for all n ≥ d
(and, therefore, all structured matrices Px

n are positive definite), the problem (3.36)
may be indeterminate or determinate depending on the convergence or divergence of
certain positive series (see [11]). In the first case the problem P∞ is indeterminate,
since every h ∈ S subject to (3.36) leads via formula (3.34) to a solution f to the
problem P∞ and since the transformation (3.34) is one-to-one. In the second case,
it follows that the problem P∞ has a unique solution f ∈ GS with κ poles inside D;
however, we do not know if it may or may not have solutions in GS with a larger pole
multiplicity. A separate topic in interpolation theory for generalized Schur functions is
to characterize all possible pole multiplicities for solutions of the problem and to find
the minimally possible one. This issue will be addressed on a separate occasion.

Appendix A. Asymptotics for eigenvalues of the matrix Pb
n

T A.1. Let b(z) = zm and let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of the matrix
Pb

n. Then

λr =
(n − r)!2(2r − 1)!(2r − 2)!

(r − 1)!2(n + r − 1)!2
m2r−1 + O(m2r−2).

In particular, all eigenvalues tend to infinity as m→∞.

P. Recall that Pb
n is constructed via formulas (1.5)–(1.8) from the parameters

b j =
b( j)(t0)

j!
=

(
m
j

)
tm− j
0 .

Thus, Pb
n = [pb

i j]
n
i, j=1 = Hb

nΨn(t0)Ub∗
n and we can compute its entries using the

formula (1.9) (with b j instead of f j) and the explicit formula (1.7) for the numbers
Ψ`r:

pb
i j =

j∑
r=1

( r∑
`=1

bi+`−1Ψ`r

)
b j−r

=

j∑
r=1

r∑
`=1

(−1)r−1

(
m

i + ` − 1

)(
r − 1
` − 1

)(
m

j − r

)
t j−i
0

= t j−i
0

j∑
r=1

(−1)r−1

(
m

i + r − 1

)(
m − r
j − r

)

= t j−i
0 mi+ j−1

j∑
r=1

(−1)r−1

(i + r − 1)!( j − r)!
+ O(mi+ j−2)

=
t j−i
0 mi+ j−1

(i − 1)!( j − 1)!(i + j − 1)
+ O(mi+ j−2).

(A.1)
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For 1 ≤ i1 < i2 < · · · < ir ≤ n, denote by Mi1i2···ir the principal minor of the matrix Pb
n

with rows and columns i1, . . . , ir. Then∑
1≤i1<i2<···<ir≤n

λi1λi2 · · · λir =
∑

1≤i1<i2<···<ir≤n

Mi1i2···ir . (A.2)

If {i1, . . . , ir} , {n − r + 1, . . . , n}, then

Mi1i2···ir = O(m(2i1−1)+···+(2ir−1)) = O(mr(2n−r)−1). (A.3)

If {i1, . . . , ir} = {n − r + 1, . . . , n},

Mi1i2···ir = det
[ mi+ j−1t j−i

0

(i + j − 1)(i − 1)!( j − 1)!
+ O(mi+ j−2)

]n

i, j=n−r+1

= det
[ mi+ j−1t j−i

0

(i + j − 1)(i − 1)!( j − 1)!

]n

i, j=n−r+1
+ O(mr(2n−r)−1)

= det[mDHn
n−r+1D∗] + O(mr(2n−r)−1),

(A.4)

where

D = diag
( t−i+1

0 mi−1

(i − 1)!

)n

i=n−r+1
and Hn

` =

[ 1
i + j − 1

]n

i, j=`
.

The matrixHn
` is a Hilbert-type matrix and it is known that

detHn
` =

(n − `)!!2(n + ` − 2)!!2

(2n − 1)!!(2` − 3)!!
, (A.5)

where we use the notation n!! := n!(n − 1)! · · · 1!. Hence, if {i1, . . . , ir} = {n − r +

1, . . . , n}, we have from (A.4) that

Mi1i2···ir = cn,rm
r(2n−r) + O(mr(2n−r)−1), (A.6)

where

cn,r =
(n − r − 1)!!2(r − 1)!!2(2n − r − 1)!!2

(n − 1)!!2(2n − 1)!!(2n − 2r − 1)!!
.

We now claim that, for r = 1, . . . , n,

λn−r+1 =
cn,r

cn,r−1
m2n−2r+1 + O(m2n−2r). (A.7)

We prove (A.7) by double induction, first on n, then on r. For all n ≥ 1, if r = 1, the
claim is about the asymptotics of the largest eigenvalue of Pb

n. From (A.1), the bottom-
right entry of Pb

n is pb
n,n = (m2n−1/((n − 1)!2(2n − 1))) + O(m2n−2), which dominates all

other entries. Therefore, the largest eigenvalue of Pb
n is

λn =
1

(n − 1)!2(2n − 1)
m2n−1 + O(m2n−2) =

cn,1

cn,0
m2n−1 + O(m2n−2).
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Suppose n ≥ 2 and we have proven the claim for all eigenvalues of Pb
n−1. Denote

the eigenvalues of Pb
n−1 in increasing order by λ′0, λ

′
1, . . . , λ

′
n−1, then we have the

asymptotics λ′n−r+1 = (cn−1,r/cn−1,r−1)m2n−2r+1 + O(m2n−2r). Assume also that the r − 1
largest eigenvalues (r ≥ 1) of Pb

n, namely λn, λn−1, . . . , λn−r+2, all have asymptotics as
described in (A.7). Note that Pb

n−1 is the leading submatrix of Pb
n. So by the Interlacing

theorem,
λ1 ≤ λ

′
1 ≤ λ2 ≤ · · · ≤ λ

′
n−1 ≤ λn.

Then, for {i1, . . . , ir} , {n − r + 1, . . . , n},

λi1λi2 · · · λir ≤ λn · · · λn−r+2λn−r ≤ λn · · · λn−r+2λ
′
n−r = O(mr(2n−r)−2). (A.8)

Substituting the estimates (A.8), (A.3) and (A.6) into the identity (A.2),

λnλn−1 · · · λn−r+1 + O(mr(2n−r)−2) = crm
r(2n−r) + O(mr(2n−r)−1).

Dividing the above identity by the asymptotics for λn, . . . , λn−r+2,

λn−r+1 =
cn,r

cn,r−1
m2n−2r+1 + O(m2n−2r)

=
(r − 1)!2(2n − 2r)!(2n − 2r + 1)!

(n − r)!2(2n − r)!2
m2n−2r+1 + O(m2n−2r),

which can be rewritten as

λr =
(n − r)!2(2r − 1)!(2r − 2)!

(r − 1)!2(n + r − 1)!2
m2r−1 + O(m2r−2).

This completes the proof. �
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