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The solution of Cauchy’s Problem for linear partial
differential equations, with constant coefficients, by
means of integrals involving complex variables.

By C. A. STEWART.
(Received 5th February 1927. Read 4th March 1927.)

The object of this paper is to show how the theory of integrals
involving complex variables may be applied to the integration
of linear partial differential equations, possessing real, distinct
characteristics and constant coefficients. The problem considered is
a Cauchy problem (with analytic data)—typical of the equation of
real characteristics and the method taken is that of Riemann.! For
simplicity of exposition, the second order hyperbolic equation is
considered, but the results are given in such a form as to indicate an
obvious generalisation to equations of higher order.?

The problem is to find that solution (known to be unique by
Cauchy’s existence theorem) of

0 0 0 ov oV

) - )= — A——+B = ¢ (z,

! <8x+k18y <ax+k28y>v+ w TPy T OV =4y
{where k,, k,, A, B, C are real constants, (k;, + k,)},

which is such that on the boundary specified by x = ¢(y), V reduces

to a given function Ey(y), and a—ag to a given function E, (y).

It is sufficient for our present purpose to assume that ¢, ¢, £, E,
are analytic in a region w, containing a portion ¢ of the boundary;
and it is necessary that ¢ should not be tangential anywhere to a
characteristic.

1 Darboux : Théorie générale des surfaces, 11, pp. 75 ef seq.

2 The Riemannian method of integration has been extended by the writer to equa-
tions of higher order: Proc. Lond. Math. Soc., 26 (1927). pp. 81-94.
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Let P (xy, y,) be a point in w near ¢. Draw through P lines of
gradient k,, k, to meet o in R, Q respectively. (Fig. 1.)

P 1xo,Yo)

Fig. 1

P can be taken sufficiently near the boundary to ensure that @R
is a part of ¢; and owing to the conditions we have imposed, no
characteristic can meet o in more than one point. Any point § in
the area PQR may be taken as!

Xo+ U+ v, Yo+ kgt + kov.
The differential equation becomes

2. V'uv+a’Vu+va+CV:¢(x0+u+v, yo—{—klu—i—kzv)
__ Ak,— B _ Ak,— B .
where av-—E—_—kl,b—m;,c_C.

The boundary becomes x, + u + v = i (yo+ kyu -+ k), and there are
similar changes in the forms of the boundary conditions.
Riemann’s method consists substantially in integrating the
expression
o2 (AV)

ou v

— L — S vy -
cu v
throughout the area P, @, R of the u, v plane (Fig. 2), this expression
being zero if A is a solution of the adjoint equation:
3. Ayo — @A— bA,+ A =0
v
Q

Xo*U+Ve § (yo«rklu*kzv)

I R\—>u

Fig, 2

1 If there is no term in Vi in the original equation, take the second order terms as

., 2
a%](%-}—kl—&) V,and © =g, + %y, ¥y = yo + kyu + v.
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It is shown that the integration provides the value of V at P,
viz., V{a,, 9,), if A can be found to satisfy the supplementary
conditions:

A,= aA, when v = 0; A,= bA, when v = 0.
This solution is usually given in terms of the Bessel Function of zero
order, viz.,

4. A = ew b J U2/ {uv(ab — c)} },

but here we shall obtain A in the form of a double integral involving
two complex variables. It will be seen later that this not only
simplifies the subsequent integration but it also provides the obvious
generalisation.
Consider the double integral
R H et rdadf

(2m)2)) af —aa —bB +¢’
where a, B are complex variables describing circles in their respective
planes, given by |a|=R;, |8 = R,. R,, R, can clearly be taken so
large that the function «f —aa — 8B+ ¢ does not vanish on the
circles of integration (nor at points outside these circles). It is
sufficient to take R,, R,> R,, where R, is the positive root of the
R-equation:
6. R>={ja|+|b|}R+ |c]|.
For then
|a,3~aa—b/3+c}/>(R1-R0)(R0—[a|)+(R2~Ro)(R0—ﬂ)[)

+ (By— By) (By— Rg) +{R*— (|a| +[b])By — e}

z.e. > 0.

5.

I is an example of that class of double integrals, where the integra-
tions with respect to o, B are independent of one another. The
integrand is analytic and we can differentiate with regard to u, v
under the integral sign.
This gives
o2 ol ol 1
Fri R it A et | Lt
=0
since the integrand is everywhere analytic within the circles.

Again™I(u, 0) = ” edadf

(2m)2))aB —aa — BB + ¢
__lJ‘e“"da o
T 2mla—b
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Similarly 1(0, v) =e™; I(0, 0) = 1.
I(u, v) is therefore the required solution A; and we may easily deduce
the other form of the result by taking a =0 +¢,; B=a - t,.
bu + av uty - vty It dt
Th Tu, v) =2 - He___m
en wv) =g e i —ab e
over |t,+ b|=R,; |{,+ a| = R, and so enclosing the origins and points
where t,t,= ab — c.
ebu + av j’eut. + v/t,(ab—c)dtl
tl
= et an] (244 {uv(ab — ¢)}).

The application of this result can now be best illustrated by
taking the important case of a linear boundary; for even in the case
of a curved boundary, the solution obtained will give an approxima-
tion in the neighbourhood. (:¢.e. when the tangent is taken as the

first approximation to the bounding curve).
Take the boundary to be x = A,' (except when k; or k, becomes
infinite), and for definiteness assume x, < k&, (Fig. 3).

This gives

&TTL

1
°
py)
/
C‘

ol

Pig. 3
The solution is provided by the integration of

G2(AV) 0 9 -

where A denotes the area PQR.
The integration of the first term can be effected with regard to
either « or v first, giving two forms of the result

R .
8. Vg, o) = L A(V,+bVYdu + (A, — ad) Vdv] — )\RV,‘—}—”A Addu dv

:r[ — AVt aV)do — (u— bBA) V] — AV ot ” Mpdu do
Q A

1 Any linear boundary can be changed to « = h, by a suitable linear transformation
of the independent variables.

https://doi.org/10.1017/50013091500007410 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500007410

98

and so we may use them in a convenient combination, determined
by the boundary conditions. Suppose we are given that on

X = h V= Eo(y)s I/sz El(y)'
These become :—
On utv=h—-ua, V==~E(y+ ku+ k), kyVo— k&, V,= (ks— k) E,.

Taking therefore k, times the first expression for the solution minus
k, times the second, we find, (putting dv = — du)

kA — kdy— (@ +B) A
ky— ks,

9. V(e — ”A)\qbdudv _ jz/\Eldu n j:( )Bydu

k.L e”(h“”“)Eo {yot+Fky(h — x0)} — by e’l(h-x")Eo{?/o + k(b — )}

" ky— k, k,— &,

The substitution of our value for A gives finally
10. Vizgs o)

- 1 “'j‘.j.emu+ﬂ,'¢0(xo+ U+ v, Yot k{u—}— k2fv) d'lldvdad‘B
_(21TL)2 ] b

1 j“’ e+ 2 B (yo+ Ky + kyv)dudadfB

(270)2 af —aa —bB+¢
T m e+ ko — kB — (ky— k) (@ + 0)}Bolyo + kyu + kyv)dudadf
(2m)? (ky — k3) (af — aa — 6B +¢)
: , k
- E]fz_k e " B{yet ky(h — o)} — A _1 A e’ 2B {yo+ kaolh — o)}
17 %2 2 — 0

The scope of the integrals has already been specified, and owing
to the nature of the integrands, the integrations may be performed in
any order. It will usually be simpler to integrate with respect to
the real variables first, these being of the type

¢
“ ety By, v)dude, .[ e"G(u) . du
A 0

and so, easily integrated if, for example, F, ¢ were exponential
functions or polynomials. Take, therefore,

zf)(z, y) — epx+v1/, Eo: e\‘w’ Elz eh,

Then from the solution obtained, we can deduce the corresponding

solutions for polynomials.
We shall require certain results in integration which will be given

a general form.
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1. (i)

__J‘ et dt
2mJ, t(t—oy)(t—ay) - - (t —a.)

II . J’ eM i Fazty b o tau, duldu2 ~-du, =

where on the left hand side, the integration extends to all positive
values of u,, u,, - - u,, satisfying the relation

0<uy+uy+ - - +u,< k (k positive)

and on the right hand side, the contour y is the circle |¢| = R’,
(R'> mazx a,).

12, (i)

1 eidt
- - "'1"|+4:u:+"+°’n“nd du., - -[l n— :‘~J<
,”‘ je ety fnoy 2l (t—a) (t—ay) - - (¢ —a,)

where on the left hand side, the integration extends to all positive
values of u,, u,, - - u,_,, satisfying the relation

0<uy+ gt - - + < K, and =k — uy — uy - - - —2u,_y.

Denote the first integral on the left by ¥(1, 2, - - n) and the second
by 8(1, 2, -- n).

(@) The substitution w,= k¢, (r = 1, - - n) shows that V¥V and its first
(n — 1) differential coefficients with regard to k, vanish for
k=o0.

(b) The change of variables from

Uy, Ugy ----5 U, to
Uy, Uy, -~ Uy-1, O =2+ Uyt ~ - + u,)
gives
"
V(1,2 --n) — I F(6)do
0

F(@) = J.J j ety Favt s tay Uy e, (@-u - U - u, )duyduy - du, g

taken over all positive values of u,, u,, - - u,-, satisfying
0 < Uyt Upt - -+ Upoy <O (0O < k)

dv(l, 2, - - n)

— F(k) = 8(1, 2, - - m).
p7A F(k) = §( n)
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(c) Integration of V(1, 2, --n), in the original form, with respect
to u, gives
V(L2 --n)= 8(1,2,--»)  V(,2:-n—1)

a, Ay

d
. (d_k— a) V(L 2,--n) = V{1, 2, --n — 1).

ak
We note that V,= e _ 1 and we therefore interpret S; to
a,y ay
mean e**, Vo=1, §;=0, and deduce by continued application

of the above result that

d d ‘d

2 = —ay) - (= — 2 --n)=
13. (@ =) - (=) 2z m =
V(1, 2, - - n) is therefore that solution of equation 13 which satisfies
the initial conditions.

av ar-tv
V:O, ‘d—k——o," E]‘cn_'] =0, Whenk=0.
The contour integral
1 ekt dt

2md, Lt —ay) --- (t — a,)
gives this solution, for the result of substituting this on the left hand
side of equation 13. Gives
ij‘ e""d—t =1.
v

2 14
Also putting k& = 0 in the contour integral above and in those obtained
by differentiating once, twice up to (r — 1) times will give integrands

of the type
t??l

it —a) (t—ay) --- (£ —an)
These do not possess singularities at infinity and therefore vanish.
By differentiation we get

1 et dt
S 2,--n)_—ﬁ-“,(t—al)(t—az)---(t——an).

In the solution for V(zy, y,), the part depending on ¢ is
1 j‘-“"‘j oot + Bv + plx, + u + 0) + o(y, + k8 + k._,mdudv dadﬁ

(m=0,1,--n-—1)

(2m)? af —aa—bB+c¢
over 0ut+ov<{h—2x; |la|=R;; |B|=R,
1 e T oY +tR-zIdad Bt
- (277;)3j.”t(t——a—p—akl) (t —B—p — oky) (af — aa — bB +¢)

for |t|=2R', |a|=R,, |B|=R,.
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Now take R’ so large that [t —p — ok;|> Ry, R,
and |¢{—p—ck,| > R;, R,.
Then, in integrating with respect to a, 8, we note that the integrand
possesses a singularity only at one place outside the circles
la| =Ry, |B|=R,, viz., where a =t —p —ok,, B=1t—p — ok,
and so the above integral becomes

=)
S STt — p — o) (T — p — oF;) — al(t — p — oky) — b(t — p — okg) + ¢}
1 j erTo + o¥o + U -2 )]t

ePto + oYy + '("‘To)dt

T 2m tf(p—1, o)
where f(D,, D,)} = ¢ is the original differential equation 1, D,, D,
0 0
denoting the operators iz é/ .
The part of the solution depending on £, is proved similarly

to be
1 j 81V + th= o) ]t

f('—' t’ 61)
The part of the solution depending on E; is
L ([ b = 8 = U ) (0 5 et~
(2m)* (ky— ky) (aff — aa — bB + ¢)

T 2m

k k
- 2 oblh =)+ 6 + Bolh -k, __ 1 go(h=xy) + 0oyo + 0u(h = 2,)k
kl — g 27 M

The part of this involving the integral is

1 J‘” {kyo — kop — (ky— ky) (@ + b)}eleve + X2 -2odtdadB
(_277—‘)3 (ky— ky) (t — a — boky) (2 — B — boks) (af — aa — bB + ¢)
But in this integral, there are 3 places outside |a|=R;, |B|=R,
where the integrand has a singularity
(i) a=t—0pky, B=t—6pk, (ii) a= oo, B=t—0ok, (iil) a=t—0,k, B=o0

(a = w0, B = o is not a singularity).
ij{t-(kﬁ k3)0o— a — b} e®ovo + -2 gy
F(—1 6,) '

The second gives — %L‘k gfo¥o T (@t 0ok} (R =2y
17 e

The first gives

T

The third gives K oo + (B 8o (R - o)
ky—k,
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The part, therefore, depending on E, is simply

1 j{t — (g k)0, — @ — b} etto+ tU-20) G
f( - tl 00) '

The solution! is therefore given by

2m

4. V(Zeyo)

_ _}— "'[ ertot oy _ eh¥o {t ot (k1+ k2)00_ A} e"u-"u] et(h__ro)dt.
2m Wif(p—t, 0)  f(—1, 0 J(—1, 6p)

This solution obviously applies to equations of elliptic or para-
bolic type, although the method of obtaining it is peculiar to the
hyperbolic type.

Examples:
(i) Hyperbolic type:
Find the solution of
Ve —3Vy+ 2V, + 2V, + 4V, + V =1

which is such that V,=y, V =0 when x = 0.
The first part is

1 J' e~ odt

L1 e mED
o = 1 4 coefficient of = in
2m

w—1ye R
=1 —zpe .

The second part is obtained from

1 01y + t(h-z,) A .
J. ¢ dt which gives

(2m) I £ (30,— 2) + (26,4 40,1 1)

. s . X
2eol?/0_»’70<1 36,) Slnh ?0 ,\/(012___ 2801)
v/ (6,%— 286;)

The coefficient of 6, in this is e~ “(xyyo+ 2 2> — % 24°).

The third part is zero.

The required solution is 1 4 e *(xy + 2 2*— [ 2°— x).

1 (f. Zeilon: Arkev fiir Matematik, Astronomi och Fysik, 6 (1910).
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(ii) Parabolic type:
oy v o
Find the solution of =-.—, satisfying
Ox? oy

V=A4, V,=By on =20

1st part is zero:
2nd part is the coefficient of 6, in the expansion of
B jeexyu‘ iz, dt

o

2m

Bew sinh20v/0 g therefore is Bro(yo+ #%/6).

that is in
v/ 0y
. A (tetodt
3rd part *I — 4.
rd part is 5— | —;

Solution is 4 + Bz(y + x?/6).

(iii) Elliptic type:
Find the solution of ﬂ + —l =cV satisfying V = 4 sin py,
oy*

V,=0, when x = 0.
Corresponding to E, = e?¥, E,= 0, the solution is
1 jtetpy“‘“’o dt

2m Ji2— pi—c
= AeP¥s cosh xgy/ (p3*+ c).
Therefore the solution is

A sin py cosh x4/ (p%+ ).
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