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MULTIPARAMETER VARIATIONAL EIGENVALUE
PROBLEMSWITH INDEFINITE NONLINEARITY

TETSUTARO SHIBATA

ABsTRACT.  We consider the multiparameter nonlinear Sturm-Liouville problem

/00— 30 mUl0P + 30 (P =\, x€ = (~1,1)
k=1 k=m+1
ux) >0, xel,

u(-1) =u@) =0,

Where i = (i1, fi2, . fms e, - pin) € RE x RE™(Ry = (0,00)) and \ € Rare
parameters. We assume that

1<gs<p<p<---<ph<29+3
We shall establish an asymptotic formula of variational eigenvalue A = A(u, ) ob-
tained by using Ljusternik-Schnirelman theory on general level set N, o (o > 0 : pa-

rameter of level set). Furthermore, weshall givethe optimal condition of {(x, )}, under
which zij(m+ 1 <i < n: fixed) dominates the asymptotic behavior of \(u, «).

1. Introduction. Thispaperisconcernedwith thefollowing nonlinear multiparam-
eter problem

W0 — 3 Ut + >0 U = A, xe€ 1= (—1,1)
=1 k=m+1

ux) >0, xel,
u(—1) = u(1) =0,

(1.1)

where 1 = (11, (2, - - s fomsds - - - i) € RD x REM (R, = (0,00), R: = [0, 00))
and A € Rare parameters. We assume

1.2 1<g<<pr<p<---<ph<29+3.
The purpose of this paper isto extend the asymptotic formula of variational eigenvalue

A = Ay, ) obtained in Shibata[4] by using Ljusternik-Schnirelman theory on general
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NONLINEAR MULTIPARAMETER PROBLEMS 1067
level set N, , dueto Zeidler [7], where
={ue wm(l) : B(u,u) = —a},
B(u, U) = / u'(0)? 2k | UGO[P* dx

+1

P / UG o,
and « > 0is aparameter. Furthermore, we shall give the optimal condition of {(, @)},
under which pi(m+1 <i < n: fixed) dominates the asymptotic behavior of A\(u, @).

Differential equationswhich involve several parameters have been extensively inves-
tigated and numerous references are available. In linear case, searching the asymptotic
direction of eigenvalues (the limit of the ratio of two eigenvalues) has drawn most of the
attention in the literature. Werefer to Faierman [2] and Turyn [6] for further information.
As for the asymptotic properties of eigenvalues of nonlinear multiparameter problems,
however, afew results seemsto have been given. Recently, Shibata [4] studied asimple
two-parameter problem

u’(x) + pu(x)P = Au()9, 0<x<1,
(1.3) ux) >0, 0<x<1,
u0) = u() =

where 4, A € R, are parametersand 1 < q < p < (+ 2 are constants. By using
L justernik-Schnirelman theory on general level set

Suar = [“ SWE(©O.1) : 5 [ P x— —u/ UG dx = —

(o > 0 : afixed constant), the following asymptotic formula for variational eigenvalue
A = A\(u, @) as p — oo was obtained:

2(p-q g+3

1.4 AMu, ) = Cla P P73 +0(up+3)
where
2p—a)

(
(1.5) clz{(q”)%(pﬂ)(qﬂ)(p—q) 2 r(%)}m.

p+1 220-p+3)  \m@+)r(5=5)

In this paper, we shall extend this asymptotic formula (1.4) to our problem (1.1) under
the following condition (B.1) for {(i, &) }: Letm+1 <i < n befixed. Furthermore, let
E:= R x R¥™ x R.. A sequence{ (i, @)} C Eissaid to satisfy the condition (B.1) if
the following conditions hold:
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(B.1)
2
(1.6) o — o0, aui—l/z 0
2(p—pj 7pk_:§ i
(3.7) @ P gy 7T 0 (KA ).

Thetypical example of {(i, @)} C E which satisfies (B.1) is:
P +3
pi+3
Theimportant pointisthat, without the condition (B.1), the asymptotic formulaof A(u, )
is not dominated by pi (m+1 < i < n: fixed) any more. For example, if we assume a
simple and natural condition

i = S— 00, pk:s”k<k7éi,0<yk< ) o = op(= constant).

(18) =01 <j<m), pma—o00, Clyj < pma <Cpj (M+1<j<n),

where C > Qisaconstant, then we find that jim+1 IS the dominant term of the asymptotic
behavior of A\(u, ) automatically. The reason why is that, roughly speaking, the maxi-
mum norm of the associated eigenfunction tends to 0 under the condition (1.8). Hence,
the dominant nonlinear term should be uP~1, the lowest term.

We shall show that, under the condition (B.1), ui(m+ 1 < i < n: fixed) dominates
the asymptotic behavior of A\(u, «), and establish an asymptotic formula of A(u, @) in
Theorem 2.1.

Secondly, we consider the simple condition (B.2), in which the condition (B.1) fails:
(B.2)

{(u, @)} C Esatisfies (1.6), (1.7) for L <k < n(k # i) and

_ a8
p+3

(1.9) w

pioe pi+3 1 — C2|

where C, > 0 isaconstant.

Under the condition (B.2), we shall establish the different kind of asymptotic formula
for A(u, &) in Theorem 2.2.

Finally, we consider (1.1) under the following condition (B.3) and give an asymptotic
formula of A(u, @) in Theorem 2.3:
(B.3)
{(u, @)} C Esatisfies

(1.10) ap — 0.
Furthermore, for k # i

(1.11) pkgy; " — 0.
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2. Main Results. We explain notations before stating our results. Let X := Wé'z(l)
be the usual real Sobolev space. For u € X, let

Jullf = fueo”dx ul§ = [ luefex (d= 1),
(u,v)2 := /l u(x)v(x) dx,

il = max Uy

A = My, o) is caled the variational eigenvalue of (1.1) when the associated eigenfunc-
tion u(y, o, X) € N, satisfiesthe following conditions (2.1)+2.2):

(2.1) (1o @, Ay @), U, @, X)) € E X R x N, satisfies (1. 1).

+ 1 [+
>y, 8 = B, @) = g

2.2) g1

q+l
We note that (i, ) is obtained as a Lagrange multiplier and explicitly represented as
follows:

—1 1 1
& — Sy B, o, VP + T B G, 0, )P

(e, o, )1

(2.3) A, o) =
Actualy, multiplying (1.1) by u(u, «, X), we obtain by integration by parts that

m n
(2 4) —HU(/j,,O(, )H)Z( - kZ:;:uk”u(:u’! «, )H&Ii + k:zrr:rl—lukHU(u’ «, )“&:i

= >\(/J” (X)”U(M, , )Hg:ii

this along with the fact that u(i, o, -) € N, implies (2.3).
Now we state our main results.

THEOREM 2.1. Assumethat a sequence {(u, o)} C E satisfies (B.1). Then the fol-
lowing asymptotic formula holds:

_qt3 2(p|_:3q) q+3 z(p}:;)
(2.5) My, ) = Cg(auiz(prq)) LRI O(((X’ulzm q)) i )’
where
2(p;—q)
I+ 3 |—+
26 Co—|@*3@*DE -0 T( q+ 1)2@,3@ (R 7
. 2(29+3—p) g+ \p +1 F( (g3q)) .

Next, we shall show that the condition (B.1) is optimal to obtain Theorem 2.1. More
precisely, we consider the case where the condition (B.1) does not hold:
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THEOREM 2.2. Assume that p1 = @. Furthermore, suppose that a sequence
{(u, @)} C E satisfiesthe condition (B.2). Then the following asymptotic formula holds:

_ar3 Z(P_i*;) gz 2 ;q)
2.7 My, o) = C4(a’,ui2(p'7q)) LI o(<a‘ui2(pi—q)) P ) ’
where C4 > 0isa unique positive solution x of the following equation:

2 20+3—p;

W{(Zq +3—p)x—2(p — g)Co} = La(x+Cp) %9,
(2.8)

2 (q+l>ﬁr(%)
r

Li = (o — Q) g+ 1) \p +1 (Z(qu)) )

We see from (2.8) that if C, = 0, then C3 = C4. Therefore, the formulas (2.5) and
(2.7) are connected continuously.

THEOREM 2.3.  Supposethat {(u, o)} C E satisfies (B.3). Then the following asymp-
totic formula holds:

LE] L]
(2.9) Aus@) = Coprf ™ + o),
where Cs = (i — 1)[IVollP1/{(pi + )lIVoll$:1} and Vo is the unique minimizer of the
problem
minimize Hv||gﬁ under the constraint
(2.10)

R . 1 2 1 pi+1
veVyi={veX: §||VHX_ pi+l||v| i VZEO).

The remainder of this paper is organized as follows. In Section 3, we shall show the
existence of variational eigenvalues. We prepare some fundamental lemmasin Section 4.
Section 5 and Section 6 are devoted to the Proof of Theorem 2.1 and Theorem 2.2, re-
spectively. Finally, we shall show Theorem 2.3 in Section 7.

3. Existence of Variational Eigenvalues. In what follows, let C denote various
positive constants independent of {(x, «)}. Furthermore, for a subsequence, we use the
same notation as that of original sequence for convenience. To obtain the existence of
variational eigenvalue A(u, ), we shall apply the result of Zeidler [7, Proposition 6a).
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LEMMA 3.1. Let (i, @) € E befixed. Then N, o # 0.
PrROOF. Weput fort >0

m(t) := B(u, tcos(rx/2)) = %t2|| cos(rrx/2)||>2<

m
+ (utP*|| cog(mx/ 2)||Ptt
> ] cos(me/2) B
n
_ P+l 2 P+l
O gt cosmx/ 23
Then, m(0) = 0 and m(t) — —oo ast — oo. Hence, there existst, > 0 such that
mM(to) = —«, that is, to cos(mx/2) € N, 4. "

LEMMA 3.2. Let (i, @) € E befixed. Then
m n
1 inf | —[Jull3 — Pl ul|> > 0.
3.1 uéﬂu,ﬂ [[ullk k;lukllullwl k:;Hukll [l >

Furthermore, for all constants C¢ > 0, theset M, o := {u € N, : [Jullq+1 < Ce} C X
is bounded.

PrOOF. Forue N, o

m
Pl
l;ka_'__’Luk”"'lnptﬂ_
(3.2 1 N . "
N
R L LRV T [ ot S VO P ot
Hence, by (1.2) and (3.2)
m pk_l P+l petl
< K
3 BT < = Y il
Pt
(3.3) < (P2 — 1) Z o +1uk|| [y
: Pk—
< 3 Dol
Then by (3.3), we obtain thet for u € N, o
2 P+l P+l 0Pk — P+l
—IIUIIX—kgluklllJIkaﬂ+ Z HkHU||pk+1— k:% 5 +1ukH et
(3-4) _ m pk_ P+l
= pk+ 1,U/kHu”pk+1
> 2a > 0.

Therefore, we obtain (3.1). Next, since we know Gagliardo-Nirenberg inequality

(3.5) ullp+1 < Cllullgey lull,

https://doi.org/10.4153/CJM-1997-053-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-053-0

1072 TETSUTARO SHIBATA
for u € X, wherev, = 2(px — ) /{(pc + 1)(@+ 3)}(1 < k < n), weobtainfor u € M, o

12

m n
||z = — ul[Pt + ullPert —
2|| 1% k;lpk+luk|| [y k:%l pk_|_1Mk|| [t —
< >
k=m+1 pk+1 P

n 1)(1— 1)y
<C le~bk||U||gf1+ YTy | Pt
=m+

2Ape—9)

n =K 7
<C 2 pdlul™ -
k=m#+1

Since 2(px — 0) /(g + 3) < 2, we obtain our conclusion. n

By Lemma 3.1 and Lemma 3.2, we now apply [7, Proposition 6a] to (1.1) and obtain
the following lemma:

LEMMA 3.3. For afixed (1, a) € E, thereexistsu,, «(X) € N, which satisfies (2.2).

By Lagrangemulltiplier theory, there exists A(1, @) € Rsuchthat (p, A, @), Uy (X))
satisfiesthe equation in (1.1). Furthermore, by (2.3) and (3.3), we obtain

2x

Uy el g1
The existence of positive solution is obtained as follows.

LEMMA 3.4, Thereexists (1, &, A(u, @), U(, @, X)) € E X Re X N,,  Which satisfies
(2.1)<(2.2) for afixed (1, @) € E.

PrROOF. Let u(u,,X) = |U,q4(X)|, whereu,, € N, is a function obtained in
Lemma3.3. Clearly,

[ups, e, )lIx = el
U, &, e = (Ul e
Ju(u, &, Ylper1 = [[Upellpert-

Hence, u(u, a,X) € N, Moreover, by (2.3), we find that (u, o, A(u, @), U(, @, X)) €
E x R+ x N, satisfiesthe equation in (1.1) and (2.2) for the same Lagrange multiplier
A(u, o) asthat of u, .. If there exists xp € | such that u(y, o, o) = 0, then U (i, o, Xo) =
0, sinceu(u, ,X) > 0for x € |. Then by the uniquenesstheorem of ODE, we obtain that
u(e, @, X) = 0in |. However, this is impossible, since u(i, o, X) € N, and 0 & N, 4.
Thus, u(y, a,X) > 0forx € 1. n
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4. Preliminaries. In what follows, for the usual L9-norm of g € L9(J) (d > 1,

J C R: openset), we write ||g||q for simplicity. We put 0, := MaXyel U(i, o, X). By
Gidas, Ni and Nirenberg [3], we know that u(y, o, X) satisfies the following properties:

(4.1 u(e, a, —X) = u(p, a,X), U, a,X) <0, x€(0,1),

4.2 U'(u,@,0) =0, 0,0 =U(u,a,0).

LEMMA 4.1. For afixed (u, @) € E, the following equality holds for x € I:

1 ! 2 m
Eu (w0, = >

,uku(,u, a, X)pk+l +
g P

,uku(,u, a, X)pk+l
keme1 P+ 1
1
~ g e e, a, )
@3 =—3 el
. = 1 ke
$ P+l 1 Y ) q+l
o per 1,U/k0u,a q+1 Hy X)0 ) o

= %UI(H' a,1)? > 0.

PROOF.  Multiplying (1.1) by U'(, @, X), we obtain for x € I

(U030 = 3 e 0P+ D i, P = A, e, 0

k=m+1
u(p, a,X) = 0;
namely,
O o = 35 A P > et
ax 2" 1P+l o ke Pk +1 Y
1
__t a1 —
g7 U @) } =o.

Thisimplies that

1 ! 2 m
EU (1,0, X" =

n
,ltku(,lt, a, X)pk+1 + Z
Ikt l
(4.4) k=1

keme1 Pk +1

LuU(pe, o, X)P<tL

e 1)\(u, a)u(p, o, X)¥*1 = constant.

Now put x = 0, 1 in (4.4). Then (4.3) follows immediately from (4.2).
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LEMMA 4.2. Assumethat {(u, @)} C E satisfies (B.1). Then

2Ap—9) &3
(4.5) A, @) > Ca w3 ™,

2 pol
PROOF. Let# = n,q = (" *)"™ . Furthermore, let w, satisfy

W, (8) + W, (9P —w,(9)9 =0, —npua <S< T
W,](S) > O, e <s< Ny,
W, (£17,,«) = 0.

The existence of w;, is obtained easily, for instance, by direct variational method. We put
1 _
Una(®) = dua(e®ui AW, (),  X=1,%S,

where
. T T
Ao = inf{t > 0: t(a®u ) AW, (17,.0%) € Nuo )

For afixed (u, o), we know that

eft) = B(u1, e ) A=W, (X)) — —00 @St — 00, €(0) = 0,
Hence, d,,» > 0 exists. We shall show that
(4.6) cl<d,<C

Sincen,,« — oo by (1.6), weknow from Shibata [5, Lemma4.7, Proof of Theorem 2.2]
that w, — w.,, uniformly on any compact subset in R, and furthermore, w, — W, in
LP(R) (p > 1). Here, w,, isthe ground state solution of

w () +wit)? —w(t)¥=0, teR,

4.7 wt) >0, teR
‘Ilim w(t) = 0.
t|—o0

We have by (1.7)

2
n/t,a(azﬂi_l) il =,

(4.8)
>oc —o(Da (k£i).

P+l 2Ap—p)  — '3
—1¢.2, —1\573 i3 pi+3
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Then we abtain by (4.8) that
—o = e(d,q)
1 1 41
= di,aa E”WU”)Z( pi + 1 dﬁialH rll E,+l
(4.9) : 1 Pt
— 0(1) dpka N
k—ng]_:k# 1L, Pi +1H alk+l
pctl
+o(1)2 s ~ w221,
Hence, d, , — O and d,,» — oo areimpossible. Hence, we obtain (4.6). Then by (3.6)
20 1 "
< Ul
A, o) ~ q+1
g+l
(4.10) O|+1||U”a”q+l
< C(O{ ,LL 1) p|+3 77u (XHW’] ||g:i
20+3—p; _Lg
S Co w+s 1 P .
Then (4.5) follows from (4.10). ]

LEMMA 4.3. Assumethat {(u, o)} C E satisfies(B.1). Then o, — O.
PROOF. We haveby (4.3)

n

S x? = 3

k= rmlpk"'l

-

k1p+

puc(oD — U, o, )P

1Hk(02k21 — U(u, &, X))
(4.11)

(0% — u(, o, %)

n
pk+1
k;ﬁl Pk + e
Let X3 = Xyue € [0,1] satisfy u(p, a,%1) = (1 — €)o,uq, Where 0 < e < lisafixed
constant. By mean value theorem and (4.11) we havefor y1 ;o € [0, X1,,q]

€0y, uuyo_uuyx | 4
(4.12) L } hur(®) = U 1)} = U, o (rp0)| < QC > ol
1 X1 k=m+1
By (4.10) and (4.12)
n
Ce(1 — e)qﬂaﬂf( >k O'Ekzl) S C(1l—e)™o E+OJ(-X1
k=m+1
X1
g+l
(4.13) <C /o Uy, ()T dx
< Clluuellgiz
20+3— pl q+3

< COC i3 /’l’| P|+3;
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this implies that
n Wew) X3\ 1/2 0, 28 g
(4 14) O—ETO%S Z <uka pi+3 /h P|3) (aul /) pi+3 0’;4,2()/ .
k=mt+1

Our conclusion follows from (1.6), (1.7) and (4.14), sinceq+2 > (pc+ 1) /2 by (1.2). =

LEMMA 4.4. Assumethat {(u, @)} C E satisfies (B.1). Thenfor m+1 <k <n

(4.15) poet < Cpiofsl.

JUNe]

ProOF. For afixed (i, ), thereexistsm+ 1 < j(u, &) < nwhich satisfies

ptl Pip.e+1
(4 16) nHTg)((SnukUp,a = Hj(u,)Op,o * -

Then there exists a subsequenceof {(u, )} andm+1 <j < nsuchthatj = j(u, ) for
this subseguence. We consider this subsequence. Then by (4.14), we obtain

2 n Dt 20+3—p; _L+33 1/2 Pt 2qe3—p _L+33
Pi P
o-ﬂ,oc <C § HkO 00 & n*s M < CMJ o-,u,zoza s ot
k=m+1

2g+3—p;

a8 2
(4.17) O < C(le/za- pi+'3‘ui Pi+3> 273 )

that is,

By Lemma4.2, (4.2) and (4.17)

2p—9) 43
o ™ < CA(u, @)

n
<C > moh*

k=m+1
-q
< Chjoja
2(p-9)
29+3—p; 7&3 /|
1/2 R —o55\ Teh
SCu,'(u,- o g ) "
namely,
2pi-p)) pn_:g
MJ Z Ca pi+3 ,L[’ipl .

Thisalong with (1.7) impliesthat (4.16) holdsfor j = j(u, @) = i except finite elements
of {(u, @)}. Thus, we obtain (4.15). "
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5. Proof of Theorem2.1. Let
. _1a_ p-1
E =& = ()‘(N, O‘)/Mi)pl q, VI= Ve = Miz(P.fq))\(u, o) T,
ti=vX, W) = ¢ u(, a,x).

Then by (1.1), w, «(t) satisfies the following equation:

n
W0+ WP — W e®I+ > v 2P Tw, o)
k=m1, ki

m

(5.1) S v 2P W, (O = 0, tE L,y = (—v,v),
k=1

W, o) >0, tel,,,
W,,o(£r) = 0.

It follows from (1.6) and Lemma 4.2 that

g 2Ap—) @3\ L 2 bkl
2o — =l 3\ 20i—a) —1\ Pi+3
(5.2 Via > Cp®° (a A ) = c(aui"' ) " — 0.

Hence, we expect that w,, o (t) — Woo(t) if {(u, )} C E satisfies (B.1), where w,,, is the
ground state of (4.7). We recall here some important properties of w,,. We know from
Berestycki and Lions[1] that there uniquely existsasolutionw,, of (4.7), whichiscalled
the ground state solution of (4.7), and satisfies the following properties:

W@ == (BE2)T,

W, (t) <0, t>0,
:_L 2 1 pi+l _ L arl _
(5.4) 2\/\/00(t) to TWeo ) I W =0, teR
(5.5) W) <Ce @l teR

We shall show that w, ,(t) — W, (t) in L3*Y(R). To do this, we need some preparations.
Let o 1= MaXier,, Wuolt) = 1oy

LEMMA 5.1. Assumethat {(u, @)} C E satisfies (B.1). Then

Cl<(¢a.<C
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PROCF. By (4.3) and (4.15), we have

(5.6) A, a) <C Z pkotr,® < Cpioft 9
k=m+1
This implies the first inequality. Next, since (4.17) holds for j = i, we see from
Lemma 4.2 that
2pi—9)
(5 7) O_ﬁi’;q S C((X/,Lrl/z) pi+3 < C)\()uﬁ a)

Hi

Thus we obtain the second inequality. ]

It follows from Lemma4.1 that

1

(5.8) W, (0% + R(p, o, t, W0 (1)) = R, @, 0,0,
where
o 1 i+l 1 +1
Ry, o, t, W) := —pi 1 —q+ 1Wq
1 n

> v P tweet
Dk + 1 T kA

ZV ngpk 1ka+1

Pk+1

LEMMA 5.2. Assumethat {(u, @)} C E satisfies (B.1). Then

(5.9) My, o)y 291 =1

(5.10) v 2Pt S 0k #).

ProoF. (5.9) followsfrom the definition of  and £. We shall show (5.10). It follows
from (5.6) and (5.7) that

g3 P9

(5.12) Au, @) < C(auim) A2

Then by (1.7), Lemma4.2 and (5.11), we obtain that for k # i

”k q 2Ap—py) pk*s

(5.12) V2Pt = A, @) T gy P < Ca B P — 0,

Thus the proof is complete. ]
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LEMMA 5.3. Assumethat {(i, @)} C E satisfies (B.1). Then ||wj,|[q+1 < C.
PrOOF. By (4.10) and Lemma 4.2

L - 1
W52 = €Dy g, )52
- + 2q+3—p;

< c(Aw, a)-la%m;—é)

<C. [

LEMMA 5.4.  Assumethat {(u, )} C E satisfies (B.1). Then wj, o(t) — W.o(t) uni-
formly on any compact subsetson R.

By using Lemma 5.1-Lemma 5.3 and a standard limiting argument, we can easily
prove this lemma. Hence, we omit the proof.

LEMMA 55. Assume that {(u, @)} C E satisfies (B.1). Then there exists y(t) €
L%*L(R) such that w,, .(t) < y(t) < Cfort € R

PROOF. Letq<r < 2q+3befixed. Theny(t) := (t + 1)~%/ (D satisfies

(5.13) vit) = —/Yo(t.y1(®), t>0,

y1(0) =1,

where Yo(t,y) := 4(r — 1)72y"*1. Sincer < 29+ 3 < 2p, + 3, we see that yi(t) €
LT(Ry) N LPYL(R,). We put y(p, o, t) = ¢, 2w(u, o, t). Then it follows from (5.8) that
Y(u, o, t) satisfies

(5.14) Yo t) = — Mty o), 0<t<w,

(@, 0) = 1,

where
(515 Yaty) = 26, 2{R1,2,0,Gua) — R, @t ooy, ) .
Fix 0 < e < 1. We shall show that for 0 <y <e.

Ya(t,y) — Yo(t,y) > 0.
By Lemmab5.1 and Lemma5.2
(5.16) v 2P TIROTYPT = oLyt (K #).
We note that R(i, o, 0, §.,) > 0 by (4.3). Then we obtain by (5.16) that for 0 <y <e

Yt y) — Yo(t,y) > 26, 2R(1, @, 0,Gu0)

2 2

g-1,a+1 pi—1,,0+1
(5.17) tgr oY T G Y
n 4
—o(1 K — >0
( )k:§(¢iyp = 1)2)/
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Lettp > 1 satisfy yi(to) < e. Then by (5.5) and Lemma 5.4, we find that y(u, o, tp) <
yi(to). Now, by (5.17), we apply the comparison theorem of ODE. Then we have
y(p, o, t) < yi(t) for t > to. This together with Lemma 5.4 implies that w, o(t) =
Gy, o, ) < 2Cy4(t) for t > to. Now, put

C It| <to,
5.18 t) =
(5.18) YO =12t 11l >t
where C > 1lisaconstant. Then y(t) isthe desired function. ]

The following lemma is a consequence of Lemma 5.4, 5.5 and Lebesgue’s conver-
gence theorem:

LEMMA 5.6. Assume that {(u, o)} C E satisfies (B.1). Then w,, o(t) — Woo(t) in
L9Y(R) and LP(R).

LEMMA 5.7 ([4, LEMMA 4.6]). Let w,(t) bethe ground state of (4.7). Then

2 |7m(q+1) q_+3'_('2(q»+—3q)‘)
5.19 ()T dt = s A
N A

Now we shall prove Theorem 2.1.
PROOF OF THEOREM 2.1.  Multiply (4.7) by w,(t) and integrate it over Rto obtain

(5.20) W |13 = [[Wiao [P T — [|Weo |53

Integrate (5.4) over Rto obtain

1 1
= P+l =
L e
this along with (5.20) implies that

pi+1 — (pl + 1)(q +3) ||W ||q+l
PR (m+3@+D) T

IWsllgiz = O;

1
§||V\/oo||%+ gl — ¥

(5.21) oo |

By Lemma 5.6, we obtain

1 1 1 1
(5.22) Wl ger — [IWaoll Gz IWisellB — IIWsoll3s-

Moreover, by (1.7) and (5.12)

P
1 ||u(u, Q, )“g:i = )\(’u, O() 2(p|.fq) 1, 2 -9 ||Wu,a| g::iy

20+3—p; ,J%
|u(u, «, )||g:i = A, @) %9 g, 2= ”WH,O(HEE'
(5.23)

P+l e o Pl
U, 0, NIy = pueA(pes ) P gy P N @) T g1y " Wy oD

pi+3 a3

— 0(1){>\(u,a)z(pi7q)ui Zp-a ||W#,a||&ﬁ} (k #i).
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It follows from (2.3) and (5.23) that

—1 1 1

My, ) = 200+ Y Mk%““w&“&il YRl Hk pk+1||uu a||',§t11
S O
Hallgrl

pi+3 _ g3
20+ Bl )Wy, 2"’i*q){llwu,a||2:11+°<1>}.

T w3

AMp, o) =9 0 14 a1

this along with (5.22) implies that

A, @) S 2\ 23
(5.24) Mo (HW - (ﬁ) !
o pi+3 /Jql 5
where
Huo = (1+0(1 w1 P—Lig,0a Pl o1
i = (14 00) o3 = T (1 o)Wl + 0(0)).
(5.25) '
H = |jw. ||q+1_pi_1||w Hpi+1 MH ||q+1
Plla ™ e elle = (pgg eyl
Now, Theorem 2.1 is adirect consequence of (5.24), (5.25) and Lemma5.7. ]

6. Proof of Theorem 2.2. We first note that by Lemma 4.2 and (5.11) still holds
under the condition (B.2), namely,

2(p—9) q* 2p—q a3

(6.1) Cla s uF < A(u,a) < Ca s p?”

In fact, to prove Lemma 4.3, we used the condition (B.1) for (4.8) to derive (4.9). If we
assume (B.2), then instead of (4.9), we obtain

—x = e(d,u,oz)

1 1 " N
=d; EHWWH)Z( P Hlw, [P+ (Cz+0(1))—dq Hiw, 165

p+1 o pi+1 1 1, q+]_

1
” :;||EE:1 :

n 1
- 0(1) dpka ! w, per + 0(1) d 1,00
k—rr%k#l A +1” o Z o

Then it is easy to see that neither the case where d,, , — 0 nor the casewhere d,, , — oo
occur. Hence, Lemma 4.3 holds under the condition (B.2). Moreover, to obtain (5.11),
Lemma4.3 and Lemma4.4 were used, and we find that these lemmas were proved with-
out using the condition for u1. Hence, (5.11) also holds under the condition (B.2). Then
we see that

D:= {a> 0: there exists asubsequenceof {(u, )} such that
(6.2)

A/ {a B | —af 20
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We shall show that D = {Cy4}. Let a3 € D. We put

=L 1/2 a1 _
n=nu =@/ )", T=7,:= ul/ Nz, S:=T7X Z.9:=n Yu(u, a, X).

Then by (1.1), we seethat z, , satisfies

n
z,,(9+2, -2, Z T e A O L D DT L e AN C L
6 3) k=mt1, k#i
@ = Au, )T 1772z, 4,99, —T<s<rT,

Z,a(8) >0, —7<s<T1, Z,(Er)=0
We obtain by (1.9) and (6.2) that for by :=a;/C;

(6.4) A, @) = (by +0(1)) 1.

LEMMA 6.1. Assumethat a sequence {(u, a)} C E satisfies (B.2). Thenfor 2 <k <
n(k # i)
(6.5) A, )% 1772 = by + 0(1) — by,

waP % — 0.

PROOF. The first assertion is a direct consequence of (6.4). Further, we obtain by
(1.7) and (1.9) that for 2 < k < n(k # i)

Pk*q PP 2Ap—p;) _ 3

(6.6) P % = gy P < Cuia PRy 7T — 0.

Thus the proof is complete. ]

By repeating the same arguments as those used in Lemma 5.4-Lemma 5.6, we see
from (6.3) and (6.4) that if {(i, @)} C E satisfies(B.2), then z, (s) — z(s) uniformly on
any compact subsetsin R, and furthermore, z, »(s) — z(s) in LP*1(R), LY(R), where z(s)
is the ground state solution of the following equation

Z'(9) +2(9)P —bz(9)? =0, seR,
(6.7) 7(s) >0, seR
lim z(s) =

|s|—o0

where b, := b; + 1. By definition, we have

29+3—p; __g+3
69 ||U(,u, «a, )Hgﬁ — 7]q+l 1|| zZ G’Hgii ’u12(p. 9 m 27— ”Z“’a”gﬁ,
P+l _ pk+1 -1 ptl _ zg(kr;:;Ji _% P+l
|, «, )“Pk+l 12, a||pk+1 =t i quya”pkﬂ-
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Then we obtain by (2.3), (6.4) and (6.8) that

2q+3—p; q+3

(bl + o(l))uluf(p. qQ /Li7 2(p—a) ” /ha||g:
— 1 Zp.+_3fp. _ 2p+3-q
=2+ F;Tluiulz(prq) 1 20— ”ZuaHg:i
i
q-— 22%.37;), 72qf3 "
— 4+ 1ul’u1(prq) i (P —0) ” “’a”gﬂ
m p _ 2pt3-p _ 2p3q "
2(pj — 200 —q)
— kzz BcF 1/Jk,U1 (Pi —0) ; (i —a) qu a”gtﬂ
n _ 1 225:::';)' 22p(l;+3q)q
+k k# e+ 1/ T [zl
=m1, ki
that is,
b +q -1 +0o(1 g+l pi — pi+1
1 q+ 1 0( ) ||Z,u,o!||q+1 pi + 1 ” ;LD(||pi+1
+3 -
= 2a MI 2(’:)'i—q) iZ(Si —3q>
(6.9) m e — Bk _Bcd N
- kz:Z Pk +1'u Ml Ml o HZN'O(HS:E:l
: —1 M _M pe+1
+ 1 Hik 'ul ‘U/I I quva”pt"-l'

k=me ki Pkt

Hence, by passing to the limit in (6.9), we obtain by (1.9) and (6.6) that

(6.10) (bu+ S D)2t - B

q+1

pit+1

p+3
p+l _ 2C Z(p. 9

pi+l —

=

pt+l.
Pl

1083

Hence, it is necessary to investigate ||Z||q+1 and ||Z||p+1 precisely. To do this, we recall
some properties of z. Similar to (5.3) and (5.4), we have

teR

(6.11) z0) = ( (qu +1ib2) oAty =2z~t), teR Z@® <0, t>0,
2 1 pi+l g+l
(6.12) —z’ () + z(t) ' 1b22(t) =
LEMMA 6.2. Letzbethe ground state solution of (6.7). Then
+ 2 |@@+Yr q"3r(2(p q))
(6.13) l2lgs = 5= 07 5 1
Topmay e ()
" y + 1)(q+ 3)b "
(6.14) gt = BN Iyt
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PROCOF. By (6.11) and (6.12), we obtainfort > 0

(6.15) Z(t) = —z(t)\J qubzlz(t)ql - i L2AOP

Then by puttingw = z(t), y = 6w = sin x and using (6.15) we obtain

1 + 00
Sl = [0 Ay

=/ ” At —20 dt
o @z(t)q-l — p,—ilz(t)p'—1

_ |a*?
B 2b2 / v/ 1 — G9—PwP
_ q+1 q+3/ m
- 2b2 1/1 yp.
q+l 2 g3 gm/2 23
= — 07 sin P xdx
2b, pi—q /
o3
_ q+1 VT T (709 Q))_
2, p—d r( pes)

2pi—a)
Thus, we obtain (6.13). Similarly, we obtain

q+3
2P\ 2o pi—q M55 +1)

20—

q+3
(6.16) _ (p+D@+ 3)b2¢ 9+l /7 0% Mz5-g)
G+3@+D) \ B p-q r(2%5)

_ (P +1)(g+3)b, 22t
~ 2pi+3)(q+1) T

Thus, (6.14) follows from (6.17). ]
Now we are ready to prove Theorem 2.2.

PROOF OF THEOREM 2.2. Now, a simple calculation with the aid of (6.10), (6.13)
and (6.14) showsthat X = a; satisfies:

m{(zq +3—p)x—2(p — 9)Co} = La(x+ C3) zz(;.&q)

wherelL; > Oisdefinedin (2.8). Since2q+3—p;, pi —q > 0, it isclear that the positive
solution x = C4 of equation (6.17) uniquely exists. Hence, we obtain that a; = Cjy.
Now, full assertion follows from a standard compactness argument. Thus the proof is
complete. n

(6.17)
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7. Proof of Theorem 2.3. Let

1
Vo= {v eX: —||v||§<
al :11 +1 . _pk_:1l +1 %1
*30 o IR = 2 e TV = —an .

1
p+1
_ Y®-D
Sinceu(y, a,X) € N, weseethat v, (X) == g

find that v, , satisfies the following equation:

u(p, o, X) € V,,.. Using (1.1), we

k*l _ Pt
V(¥ — Zuku. Vo) + Z fiicht " V()P
k=m+1
a1

(7.2) = A o Ve, X €,
V,oX) >0, xel,

Vio(£1) =0

LEMMA 7.1. Assumethat {(u, @)} C E satisfies (B.3). Then ||v,,||q+1 < C.
PrOOF.  We choose ug € X (Up # 0) and define afunction m(t) for t > 0 by:

1 2 2 m 1 +1 +1 n
m(t) == =t?||ugl|2 + P ug|| P —
() == St uolli kijlpk+1uk [[Uollpst kZ

=nmt+1

£ Huo 321

D1k Pl

Sincem(0) = 0 and m(t) — —oo ast — oo, we have
Guo ={t>0:mt) = —a} # 0.

Lett,, = inf{t >0:t e G,q}. Thenm(t, o) = —c, namely, t, ;up € N, , and by
definition, m(t) < —« impliesthat t, , < t. We seefrom (1.11) that m(t) < —« implies:

m
pi—1 pi+1
pit? ™ |uo ||pi+1 lek_'_l

ol D43

— 2 u—
Sl — o

n

- X o
kemed ki Pt 1

1 7o\ Pl +1

; () ol

Pkl

1
Tht " (b T

1 . ] _
L P <o

_ 1
Wt ol Py

1
(7.2) = Slluoll% -

e

Pk +
n

k=mid, kefi

_L
-1

ForC > 1,weputt = Cp, . Thenit follows from (1.11) and (7.2) that

m n
- 2 _ pi—1 P+l p—1 _ p—1
> ol pi+1c el 3 +o@) 3t —om) >

(7.3) k=1, kefi

2
< —ap’C2
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— L
Therefore, we obtain that t,, , < Cy, " . Now, by using (2.2), we obtain
1 -
(7.4) oI < gt ol < G ™
Thus the proof is complete. ]

LEMMA 7.2. Assumethat {(u, o)} C E satisfies (B.3). Then ||v,«||x < C.

PrROOF. Sincev, € V,,«, Weobtain by (1.11), (3.5) and Lemma 7.1 that

1
Ml € o eallB 3 2 P IVl
wallX = pi+ el p+1 T it Pk +1Mkﬂ| mellpe+1

+1)(1—Y 1)y
< Vol @3y, o[

(7.5) n 2 — .
+0(1) v, ol (A=) v, (Pe+)
k:rrglz,k# pk+1” o Hq*l Viallx

2(pi—q) n 2(p—9)

< ClVuellx™ +0(1)k lek# Vysallx™
=mt+

where, = 2(p—0) /{ (P +1)(a+1) }. Sinceweknow from (1.2) that 2(pk—a) / (g+3) < 2
for 1 < k < n, our assertion follows from (7.5). Thus the proof is complete. ]

LEMMA 7.3. Assumethat {(i, @)} C E satisfies (B.3). Then ||V, «|/q+1 > C.
PrOOF. By Sobolev’s embedding theorem, (3.5) and Lemma 7.2
Vi allger < ClIVsall

n
<Clvuollpiz+o® > [Viuollph

pi+l
k=m+1, ki
(q+1)(g.+3) 2(p; 3q)
< ClViallgs™  Vinallx®
n (q*l)(r;k‘rS) Z(Dk3q)
+o) X [Vuallg™  IVuell”
k=mr+1, ki
(q+1)(g +3) n (q+1)(p3k+3)
< ClViallges™  +0(1) X || nallgd™
k=m+1, k:
that is,
pia+pi+a—3 n pkq+pk+q 3
(7.6) 1< ClVuallger™  +0@) 2 [Vuallgn™
k=m+1, k#i
Sincepg+pk+g—3 >0 (1 < k < n)by (1.2), we obtain our conclusion. ]

We introduce the uniquenesslemma of the minimizer of the problem (2.10).
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LEMMA 7.4 ([5, PROPOSITION 3.9]). There uniquely exists the minimizer vq of the
problem (2.10).

Next, we shall show that v,, o — Vo in X. Let

e aqtl, aq+l . g+l
(7 7) T(,lt, O() L Véof,u HV||q+l - Hvu,a||q+]_ ’ TO T JQ&O ||V||q+1'

LEMMA 7.5. Assumethat {(u, )} C E satisfies (B.3). Thenlimsup T(u, @) < To.

ProOF. We defines,, > Oby s, Vo € V,,«. We shal show that s,, — 1. By
definition of s, , and the fact that vo € Vo, we have

_HVOH t()({l I, 0(1} Z

1uku o lsﬁkZlHVoH&ii

n

1 B 1
"o N keme, ki Pt 1HKH N 1sﬁk;'(l||vo||gtil
2
= —O(,u,ipifl,
that is,
2
HVO|| o Z 1Nkﬂ, -5 1sﬁk;1||vo||gtﬁ+auipi—1

el

1 L |
=§||V0|| SHR DY Dot 1HkH (o P+l

o
k=m+1, k#i

Thisalong with (1.10) and (1.11) impliesthat s, . < C. Next, assume that there exists a
subsequenceof {s, .} suchthat s, , — 0. Then we obtain by (7.7) that

IV elliss = T, @) < 18,0Vl gis — O.

This is a contradiction, since we have Lemma 7.3. Hence, C* <'s,, < C. Thenit
follows from (1.10), (1.11) and (7.8) that s, — 1. Now,

(7.9) T(u, @) = [Vl < lialvollciy = siaTo
By passing to the limit in (7.9), we obtain our assertion. ]

LEMMA 7.6. Assumethat {(u, o)} C E satisfies (B.3). Thenv, o — Vo in X.

PrROOF. By Lemma7.2, we can extract asubsequenceof {v,, . } suchthat v, , — V.,
weakly in X, strongly in C(1), LP<*1(1), L9*4(1). By Lemma7.3, we seethat v.,, Z 0. Since
Vo € Vya, it follows from (1.10), (1.11), (7.1) and Lemma 7.2 that

N a1 20% +5 1HVu a”gﬁ +h(u, @) G
! 1
(7 10) ”Vﬂ,O(Hg:l

1
pi—1 ||V00||g:1

— - 1,
P 1 Voo gy
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where -
m k™
. pk—1 -5 1
)= _kzl pe+ 1/ " Viallpet
n Pl
k—1 -5 1
+ faichy; 1||Vur,oc||gt:1-

ket ki Pct 1
We shall show that v., € Vp. By (1.11), (7.1) and (7.10), V., is a weak solution of the
following equation, namely, for ¢ € X

(710 = Vv d+ [Ve0)Pv0) dx = Cs [ Veol)T(9) dix.
Multiplying (7.1) by v, , along with integration by parts, we have

m _ Bt
”Vﬂ,oc”)z( = F(u, @, Vo) == —kZ Hk n ”Vu,or”&ﬁ
=1
(7 12) : _El'(_::ll P+l _3;711 g+l
+ kZ 1Mkﬂi ' ||Vu,a||pt+1 = AMu, opy " HVu,a||q+1-
=m+

We put 1) = V4, in (7.10). Then we obtain by (1.11), (7.10) and (7.12) that
VoI = [IVeollp s = Csllvaolgiy = M F(, @, V,0) = 1im [[Vise[%-

Hence, v, — Vs in X and thisimplies that v., € Vo. Now, it follows from Lemma 7.5

that
(7.13) To < Vool 33 = lim Vet < To.
This along with Lemma 7.4 implies that v, = vp. Now full assertion follows from a
standard compactness argument. Thus the proof is complete. ]
PROOF OF THEOREM 2.3. Theorem 2.3 follows immediately from (7.10) and
Lemma7.6. [
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