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SOME CONDITIONS UNDER WHICH SEQUENCES
OF FUNCTIONS ARE UNIFORMLY BOUNDED

D.C. RUNG

§1. Introduction

After one introduces the theory of normal families in a course in complex
analysis, the usual pattern is to give an example of a non-normal family. One
of the simplest, of course, is the sequence f,(z2) =nz, n =1,2, + - -. The very
devastating effect of multiplying by zero insures the required abnormality!
If one asks for a slightly more sophisticated example, we offer f,(z) = fgi,
n=1,2-.-; here the f,(z) are zero free. However, the difference in be-
havior between the sequence {[f,,(o)l :Ln} and | f.(2)|= inm z=x+iy+0
is obvious.

In this paper we offer an explanation for this state of affairs. To be
precise given a sequence {f,} of bounded holomorphic functions defined in
the unit disk D in the complex plane we establish criteria based upon a
comparison of {|f,(0)} and {M(f,)}, M(f,) = lrzrllagil] fx(2)] insuring that the
sequence {f,t will be uniformly bounded on certain compact subsets of D.
We then extend the result in several directions to entire and harmonic
functions.

Let D(r), 0<<7<Cco, denote the open disk in the complex plane with
centre at the origin and radius », while D(r) indicates the closure of D(r);
and D(e) indicates the finite complex plane. If f is a complex valued
function defined in D(R), for 0 <7< R let

M(r, f) = sup | f(2)]

lz|< 7

and

m(r, f) =|zilrifr!f(2)l.

If E is a set contained in D(R) set
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If we need not display the dependence on f we write M(r), and m(r)Mg(r)
respectively.

§2. Basic Theorem
The results of this paper hinge on the solution of the Carleman-Milloux
problem which we give as formulated by Tsuji [1 p. 307].  For this formu-
lation we suppose that E is a set contained in D(R), 0< R<C oo, with the
properties that

i) each circle |z]=7r,0<r<R, meets E;

ii) E N D(r) is a closed set for each 0 <7r< R.

We call such a set an intersecting set.

TueoreEM A. Let E be an infersecting set in D(R) and f be holomorphic in
DR)—E, with |f(z)| <M, 2€ DIR)— E, and

lim | f(2)| <m<< M.
z—>E
2e D(R)—E

Then for 2 D(R)— E

log| 7 (2)] é—i—(arcsin %%{%}*

) log m + (1 — % aresin —%-1—}2}—) log M.

Actually this is not precisely the formulation of Tsuji who requires that
E be closed in D(R). However it is evident that if one applies Tsuji’s
formulation to the disk D(r), 0=<7r <R, and let » - R one obtains Theorem
A.

We now look for functions f with intersecting sets on which f is
bounded by some useful number., There is one rather simple condition
which insures the existence of an interesting intersecting set and it is that
f takes on some finite value o only a finite number of times. Before
giving a formal statement of this fact we introduce some standard notation.

If f takes on the value « only a finite number of times in D(R),
0<R< oo, let {#,}7., be the non-zero points, counted with proper multi-
plicity, at which f(z;) = a; and let 2 =0 be a root of f(z) —a of multipli-
city p=0 where p =0 means f(0)+ a.
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Set

Rz, 2, — % )

Ba(z) = 112l \R*— 22

2P 7
7 11
ie

LemmMa 1. Suppose f is holomorphic in D(R), 0<< R << oo, and there takes on
the value o only a finite number of times. Then the set

E.={ze DR If@|<|[-LY 5%+ lal = M|
is an intersecting set.

Proof. We first consider the case in which f omits the value 0. That
={z€ DR)||f(z)| < |F(0)|} is an intersecting set can be seen in several
ways. We can use Cauchy’s integral formula as follows: Suppose E, does

not meet some circle |z| =7, 0<<r,<R. Since 1 s also holomorphic

, 7
in D(R)
1 1 2m do
’f@fé e [ F(roei)
1 do - 1
<7§£ér|ﬂm|‘|ﬂmv

which is absurd. Since E,N{|z|<r}, 0<r<R, is a closed set E, is
intersecting.
For future exploitation we observe that if R=oc and f is an entire
function which omits 0 then E, is also an intersecting set relative to D(o).
For the general situation in which f takes on « a finite number of
times in D(R), 0 << R<< oo, we let g(z) = —L(Bf)(z_) @ , which omits the value
0. Therefore ’

E*={ze€ DR)|g(x)| < [9(0)]}

is intersecting. Now for z € E¥,

£0
o0)] = |- L& = o)
MRS

Ba(2)
=17@] — lal.
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Hence the set E, contains E,* which implies that E, is also intersecting
and the lemma is proved.

§3. Applications to functions omitting the value 0.
In this section we assume that the sequence of function {f,} all omit
the value 0.

For 0<§< o0, let B(d) = sin 2(1%37 An easy calculation gives that

the subset of D(R), 0< R< o, given by aresin - el > T3 s the

disk |z] <R(ﬁBT)> With this observatlon and the fact, already
noted, that for a holomorphic function f omitting 0 in D(R) the set

={ee DR f) =10}

is intersecting in D(R) we use Theorem A to give the key theorem.

TreoreM 1. Let f be holomorphic and bounded in D(R), 0< R < oo, and
omit there the value 0.  Then for |z| < R we have

2 arcsin R=l2l (1_1 arcsin _E—=121 )
(3. 0) [fRI<1rON" B (MR, f) T Rl /s
and thus for |z| <R (ﬁ—
1 8
(3. 1) | £(2)] < | FO)] " (M(R, £)) *°.

Proof. Since | f(z)| is bounded by |f(0)] on the intersecting set E, a
direct application of Theorem A gives (3. 0).  The convexity of the right
side of (3.0) together with the remarks preceding this theorem validate
(3. 1).

By way of illustration, if f is holomorphic, bounded by 1 in D(1), and
omits 0 there, then

n+ B(n)
Lf R =" F0)]s |zl<(7i~+—Biﬁ)‘

There are some obvious results to be gathered from Theorem I about

sequences of holomorphic functions omitting zero.

CoroLLARY 1. Let {f.} be a sequence of bounded holomorphic functions in
D(R) with each f, omitting the value 0. If for 6 >0
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| FaO (MR, fo)) <A, n=1,2, =+,

then for (2] < <,1,i‘_, B(!Z,L),Q,

| fale) =AM n=1,2, -« ..

Proof. This is an immediate application of Theorem I.
One can avoid the hypothesis that each f, be bounded.

CoroLLARY 2.  Let {f.} be a sequence of holomorphic functions in D(R),
each omitting the value 0.  If, for some sequence {r,}, 0<7r,<r,, <R, r,—>R,
n— oo, and some value 0 < § << oo,

|fn(0)[(M(7n’fn))§éA’ n = 1921 )

then for 2] < '))>rn, n=1,2, ++-,

1 + B(
,,,1,,,
| fale)] < A0,

Proof. Setting g,(¢ f,,,( 5) and invoking Corollary 1 gives this
result.

We now make several comments on Corollary 1. That each £, must
omit zero is needed. If we let §=1, R=1, and set f,(z)= n(z +%12<>,

n=1,2, ++., then £,00)= i‘ while M1, £,) = n + 714—. Thus | £.00)| M1, f.)
<2, but the sequence 1is not uniformly bounded in any D(r),
0<r<1. On the other hand the example given in the introduction
Fa(z) = nn; is without zeroes for each n=1,2, -+ .; has | £,00)|M(1, f,) = o,

and is not uniformly bounded on any subdisk [z]| <7, 0<r<1.
If {f.} is a sequence satisfying the hypothesis of Corollary 1, with

6= 1 R =1, we are guaranteed by this result that on the closed disk
L — B(1)
1+ B(1

largest p0331ble closed disk D(R* on which any sequence satisfying the

) the sequence {f,} is uniformly bounded. We ask for the

hypothesis of Corollary 1 (with 8 =1) is uniformly bounded. We do not
know the exact value of R*., The sequence

~n

falt) =27 @+ n=12 ---,
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satisfies the hypotheses of Corollary 1. Further |f,(2)|<1, for |z|< (/2 —1);
but for any ¢ >0

fn(l/z—_l'{'e)_—)m’

so that we can only estimate that

B =02 = R =T — 1),

Suppose again that {f,} is a sequence of holomorphic functions in D(R),
each of which omits the value 0. Suppose further that for each 0 <5<
there is a sequence {r,}, 7,—R, (with {r,} depending on §) such that
1im| £,(0) | (M(r,, fa))? < o0, then {f,} form a normal family. That this is so
gﬁows from Corollary 5. Given any disk D(r), 0 <7 <R, choose a value
4 and an N, so that r<< 1= B(5%>$, n >N, Then {f,} is uniformly

1+ B@
bounded in D(r) and so is a normal family.

In passing we mention that Corollary 1 can be used to give a proof of
Hurwitz’s theorem. Suppose {f,} is a sequence of holomorphic functions
defined, for simplicity, in D(1) such that {f,} converges uniformly (in the
spherical metric) on compact subsets of D(1). Suppose f,(0)—>a, n—>oo
but on some D(r), 0<<r<1, no f, takes on the value a. If « is finite,
and since each f, is continuous, we can conclude that for some 0<7,<7,
{fn} 1s uniformly bounded, say by M, on D(r,). According to Corollary
4, applied to {f, — a} on D(r,)

[ fal2) — al <V[£,00) — a|M, |2l =@/2 — 1.

Thus f,(z)—>a for all |[z] <2 —1)%, and therefore the limit function is
identically « in D(1). In the situation for which « is infinite we consider
1
)
§4. Bounded functions

With little effort we can extend Theorem I to cover arbitrary bounded
functions by invoking the usual factorization by a Blaschke product. For a
given holomorphic function f bounded by 1 in D(1) let {z,} be the set of
all non-zero roots of f with each root repeated as often as its multiplicity.

Also suppose f has a zero of order p at the origin (where » =0 means
f(0)#0). Then the Blaschke product
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_ o g _Rn  Bp—2%
Bl f) =" U1 1,

is known to converge in D(1) to a holomorphic function and f can be

factored into f= By, where g is a holomorphic function in D without
zeros. Using this fact we give

TreoreM II. Let f(z) be a holomorphic function in D(1) with
| f(2)] <1, z € DQ).

Then

2 arcsin ! “L‘"

| f(2)| = | Blz; £)]19(0)| ™ el

Proof. According to Theorem I applied to the function ¢ (and noting
that [g(z)] <1, z € D))

Since ¢ = éf the proof is complete.

§5. Entire functions omitting 0.
Our next application is to entire functions omitting 0.

Tueorem III.  Suppose f is an entire function omitting the value O such that

Jor some sequence {r,}, 0<r,<r,,<co, r,—>0, n-—>o0; some choice of
0<<d < co; and some arbitrary but fixed T > S
1—B(3)

lim m(r,, £) [M(Tr,, )1 < oo,

Then f is a constant function.

Progf. For n=1,2, -+« let [f(z,)] = m(ra, f); also set

E= 60 =g

and
9a(8) = F(E(E).

A trivial calculation shows that the disk about 2z, of radius 7,(T—1) is
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contained in D(Tr,). Consequently M(1,¢,)< M(Tr,, f), n =1,2, « + -, Since
10000 = | f(za)| = m(r,, f) we conclude that

gg | 9(0) | (M(1, g,))° < oo,

If we choose A >0 so that |g,0) (M1, g.))’ <4, all n, and notice that
each g,(z) omits 0, Theorem I allows us to conclude that for

102(8)] < [1900)|(M(1, g,))°] *F2 < A TF7,

Thus in this & disk the sequence {g,} is uniformly bounded. But this says
1

- T sk g%l - 1=B0G) ,_ 4, ..,.
that f is bounded by A on each disk T=1)r, = T B0 ,n=1,2, .

It can be seen that each of these disks contain the corresponding disk

about the origin of radius r,,,[ } :; g{%* (T—-1)—1 ] =r,p. However the

quantity inside the brackets is seen to be fixed positive number on account
2

of our choice of T >ij . Hence
_1
[f2) <A
for 2z € OQID(pr,.),

which union covers the plane and so application of Liouville’s theorem

completes the proof.
2 2
Observe that as § —0, 1———B(5)_++ co and as 6_>OO’ITBTS)7

one wants a smaller multiple of 7, in computing the maximum modulus

-2, so if

one must increase the exponent of the maximum modulus and vice-versa.

If we take 6 =1 then is about 6.82 so if f is an entire function

2
1—BQ)
omitting 0 and

lim m(r, /)M(7r, f) < o

7—>00

then f is a constant function.

§6. Harmonic functions
By the usual device of calling forth the exponential function we can

https://doi.org/10.1017/50027763000012861 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000012861

SEQUENCES OF FUNCTIONS 83

rework Theorem I to yield some results on harmonic functions. The theorem
becomes

TueoreMm IV. Let u(z) be harmonic and bounded above by M in D(R),
0<R<oco, Then for lzlsR(*}—I——ggg—) we have

u(z) < [#(0) + 6M].

1
1+90

Proof. If we let » be a complex conjugate of #(z) and form g = e*“**®
then g is holomorphic and zero-free in D(R). Hence Theorem I prevails
and the result is immediate.

We have parallel results to Corollaries 1 and 2. We give only the
analogous result to Corollary 1.

CoRroLLARY 3. Let {u,; be a sequence of bounded harmonic functions in

D(R), 0<R< oo, such that for some 0<5<co lim (u,(0) 4+ 6M(R,u,) < co.

Then the sequence {u,} is uniformly bounded from above on |z| $R<—i~1g%—>.

Proof. This follows from Theorem IV in the same way Corollary 1
follows from Theorem I.
Remark. Generalizations of our theorems in the case f (or {f,}) take

a value a only finitely often are possible by using the full force of Lem-
ma 1. However the results seem a bit technical so we do not list them.
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