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SOME CONDITIONS UNDER WHICH SEQUENCES

OF FUNCTIONS ARE UNIFORMLY BOUNDED

D.C. RUNG

§1. Introduction

After one introduces the theory of normal families in a course in complex

analysis, the usual pattern is to give an example of a non-normal family. One

of the simplest, of course, is the sequence fn{z) = nz, n = 1,2, . The very

devastating effect of multiplying by zero insures the required abnormality!

If one asks for a slightly more sophisticated example, we offer fn{z) = ——,

n = 1,2 here the fn{z) are zero free. However, the difference in be-

I /n(0) I = — and I fn{z) | = — z — % + iy Ψ§

is obvious.

In this paper we offer an explanation for this state of affairs. To be

precise given a sequence {fn} of bounded holomorphic functions defined in

the unit disk D in the complex plane we establish criteria based upon a

comparison of {|/n(0)|} and {M(/J}, M(fn) — max|/n(3)| insuring that the

sequence {/„} will be uniformly bounded on certain compact subsets of D.

We then extend the result in several directions to entire and harmonic

functions.

Let D{r), 0 < r < o o , denote the open disk in the complex plane with

centre at the origin and radius r, while D(r) indicates the closure of D{r);

and D{OΌ) indicates the finite complex plane. If / is a complex valued

function defined in D{R), for Q^r^R let

and

M(r,f)= sup
\z\<r

m{r,f)= inf
\z\<r

If E is a set contained in D(R) set
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If we need not display the dependence on / we write M{r), and m{r)ME{r)

respectively.

§2. Basic Theorem

The results of this paper hinge on the solution of the Carleman-Milloux

problem which we give as formulated by Tsuji [1 p. 307]. For this formu-

lation we suppose that E is a set contained in D{R), 0 < R< oo, with the

properties that

i) each circle \z\ = r,0 < r< R, meets E;

ii) E Π D(r) is a closed set for each 0 < r < R.

We call such a set an intersecting set.

THEOREM A. Let E be an intersecting set in D(R) and f be holomorphic in

D{R)-E, with |/(3)| < M , z <E D(R) - E, and

lim \f{z)\^m< M.
z<=DtR)~E

Then for z e D{R) - E

log|/(z) I ̂  ^-{arcsin ^ ~ | ^ | ) log m + ( l - A arcsin ^\\\ ) log M.

Actually this is not precisely the formulation of Tsuji who requires that

E be closed in D(R). However it is evident that if one applies Tsuji's

formulation to the disk D(r), 0^r<R, and let r->R one obtains Theorem

A.

We now look for functions / with intersecting sets on which / is

bounded by some useful number. There is one rather simple condition

which insures the existence of an interesting intersecting set and it is that

/ takes on some finite value a only a finite number of times. Before

giving a formal statement of this fact we introduce some standard notation.

If / takes on the value a only a finite number of times in D{R),

0 < R< oo, let {Zi}n

i=sl be the non-zero points, counted with proper multi-

plicity, at which /(zj = a; and let z = 0 be a root of f{z) — a of multipli-

city #;>0 where p = 0 means /(0) ψ a.
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Set

Rz{ zt-z

LEMMA 1. Suppose f is holomorphic in D{R), 0<R< oo, and there takes on

the value a only a finite number of times. Then the set

/(0) ~ a =Ma

is an intersecting set.

Proof. We first consider the case in which / omits the value 0. That

EQ = {z e D{R)\ 1/(̂ )1 ^ |/(0)|} is an intersecting set can be seen in several

ways. We can use Cauchy's integral formula as follows: Suppose EQ does

not meet some circle \z\ = rQ, 0 ^ r 0 < R. Since -~ is also holomorphic

in D(R)

dθ
/(0) 2it

<
dθ

*1 = r

which is absurd. Since Eo Π {_\z\ ^Lr}, 0^Lr<R, is a closed set Eo is

intersecting.

For future exploitation we observe that if R = oo and / is an entire

function which omits 0 then EQ is also an intersecting set relative to D(oo).

For the general situation in which / takes on a a finite number of

times in D{R), 0<R<oo9 we let g{z) = ^ ,~T a , which omits the value

0. Therefore

is intersecting. Now for z e E*,

/(0) - a

= f(z) - a

\g(z)\
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Hence the set £ α contains £ 0* which implies that EΛ is also intersecting

and the lemma is proved.

§3 Applications to functions omitting the value 0.
In this section we assume that the sequence of function {/„} all omit

the value 0.

For 0 < £ < o o , let B(δ) = sin * . An easy calculation gives that
Δ\l. i O)

the subset of D(R), 0 < i ? < o o , given by —- arcsin ^ ~ H > -, } » is the
π i\-\-1ZI 1+d

disk \z\ ^R( ; 7 nϊil )• With this observation and the fact, already
\ 1 + n(o) /

noted, that for a holomorphic function / omitting 0 in D(R) the set

is intersecting in D(R) we use Theorem A to give the key theorem.

THEOREM I. Let f be holomorphic and bounded in D(R), 0 < R < oo, and

omit there the value 0. Then for \ z \ < R we have

(3.0)

and thus for

(3.1) 1/(2)1

Proof. Since \f{z)\ is bounded by |/(0)| on the intersecting set Eo a

direct application of Theorem A gives (3. 0). The convexity of the right

side of (3. 0) together with the remarks preceding this theorem validate

(3. 1).

By way of illustration, if / is holomorphic, bounded by 1 in D(ί), and

omits 0 there, then

There are some obvious results to be gathered from Theorem I about

sequences of holomorphic functions omitting zero.

COROLLARY 1. Let {fn} be a sequence of bounded holomorphic functions in

D(R) with each fn omitting the value 0. If for δ>0
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\fM\(M{R,fn))s^A, » = 1,2,

then for \z\ <(^=--fg> >,

Proof. This is an immediate application of Theorem I.

One can avoid the hypothesis that each fn be bounded.

COROLLARY 2. Let {fn} be a sequence of holomorphic functions in D{R),

each omitting the value 0. If for some sequence {rj-, 0 < rn< rn+1< R, rn-±R,

n -> oo, and some value 0 < δ < oo,

\fn(0)\(M(rn,fn))δ^A, w = l,2,

then for \ z | < (-~~f j |f) rn, n = 1,2, - -,

1

l+T

Setting grΛ(|) = fn (-*£- ί) and invoking Corollary 1 gives this

result.

We now make several comments on Corollary 1. That each fn must

omit zero is needed. If we let δ — 1, R = 1, and set /„(#) = n(z + —g-J,

w = 1,2, , then /n(0) - \~ while M(l, /n) = w + - U Thus | /JO) | M(l, /n)

^ 2 , but the sequence is not uniformly bounded in any D{r),

0 < r < 1. On the other hand the example given in the introduction

fn(z) - ~— is without zeroes for each n — 1,2, has |/Λ(0)|M(l, fn) -> oo5

and is not uniformly bounded on any subdisk | z | < r , 0 < r < l .

If {A} is a sequence satisfying the hypothesis of Corollary 1, with

δ = 1, R = 1, we are guaranteed by this result that on the closed disk

•^vΓX^Snw t ' i e s e c t u e n c e {A} i s uniformly bounded. We ask for the

largest possible closed disk D(R*) on which any sequence satisfying the

hypothesis of Corollary 1 (with δ = 1) is uniformly bounded. We do not

know the exact value of R*. The sequence

— «/»(«) = 2 2 (2 + 1)% » = 1,2,
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satisfies the hypotheses of Corollary 1. Further \fn(z)\^l, for

but for any ε > 0

Λ(/2~ ~ 1 + e) -> oo,

so that we can only estimate that

• = d/2" - I)2 <; Λ* ^ (/2~ - 1).

Suppose again that {fn} is a sequence of holomorphic functions in D{R),

each of which omits the value 0. Suppose further that for each 0 < δ < oo

there is a sequence {rj-, rn-+R, (with {rn} depending on δ) such that

lim I /Λ(0) I (M{rn, fn))δ < m, then {/J- form a normal family. That this is so
n—>oo

follows from Corollary 5. Given any disk D{r), 0 < r < R, choose a value
δ and an No so that r<()~ ^%) - ^ - , n>JV0. Then {/J is uniformly

bounded in D(r) and so is a normal family.

In passing we mention that Corollary 1 can be used to give a proof of

Hurwitz's theorem. Suppose {fn} is a sequence of holomorphic functions

denned, for simplicity, in Z>(1) such that {fn~} converges uniformly (in the

spherical metric) on compact subsets of D(ϊ). Suppose /n(0) -> a, n -> oo

but on some D(r)9 0 < r < 1, no / Λ takes on the value a. If α is finite,

and since each fn is continuous, we can conclude that for some 0<r1<r,

•[fn} is uniformly bounded, say by M, on D(rx). According to Corollary

4, applied to {fn — a} on Dί^)

Thus /„(«) -> a for all 121 ̂  (/2~ — l)2r1 and therefore the limit function is

identically a in Z>(1). In the situation for which α is infinite we consider

fn

§4. Bounded functions

With little effort we can extend Theorem I to cover arbitrary bounded

functions by invoking the usual factorization by a Blaschke product. For a

given holomorphic function / bounded by 1 in D{ϊ) let {^zn} be the set of

all non-zero roots of / with each root repeated as often as its multiplicity.

Also suppose / has a zero of order p at the origin (where p = 0 means

0). Then the Blaschke product
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9 f\ _ -P TT
Z, J) - Z 11

1

is known to converge in D(l) to a holomorphic function and / can be

factored into / = Bg, where g is a holomorphic function in D without

zeros. Using this fact we give

THEOREM II. Let f(z) be a holomorphic function in D(l) with

I/0OK1, z

Then

\f(z)\^\B(z;f)\\g(0)\π

Proof According to Theorem I applied to the function g (and noting

that \g(z)\ < 1 , z e D{1))

\g(z)\<\g(o)\π

Since g = ^ the proof is complete.

§5. Entire functions omitting 0.

Our next application is to entire functions omitting 0.

THEOREM III. Suppose f is an entire function omitting the value 0 such that

for some sequence {rn}, 0 < rn < rn+ί < oo, rn -> oo, n ~> oo some'

0 < δ < oo and some arbitrary but fixed T > y>τ^r

Urn m(rn9 f) [M(Trn, f)f < oo.

Then f is a constant function.

Proof For n = 1,2, let \f(zn)\ = m(rn,f); also set

~ Zn

and

A trivial calculation shows that the disk about zn of radius rn(T — 1) is

https://doi.org/10.1017/S0027763000012861 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000012861


82 D.C. RUNG

contained in D{Trn). Consequently M(l,gn)^M(Trn,f), n = 1,2, . Since

l0n(O)l = I/(*„)! =m{rn9f) we conclude that

]im\gn(0)\(M(l,gn))'<<χ>.

If we choose A > 0 so that \gn{0)\{M{l,gn))δ <A, all n, and notice that

each gn{z) omits 0, Theorem I allows us to conclude that for

l£l ^ 1 "" B{δ) _ 1 9 #

Thus in this ξ disk the sequence {grΛ} is uniformly bounded. But this says

that / is bounded by A1*5' on each disk 4?£^U-L «- -f^-fff|- ,w = l,2, .

It can be seen that each of these disks contain the corresponding disk

1 + β,δl (Γ — 1) — 1 I = rnp. However the

quantity inside the brackets is seen to be fixed positive number on account

of our choice of T > -—%τ^r . Hence
l β ( δ )

for z G U D{prn),
n=l

which union covers the plane and so application of Liouville's theorem

completes the proof.

Observe that as δ-+0, -.—^r- -> + oo and as δ ->oo,-—?__._->. 2, so if
1 — .£>((); 1—r>(δ)

one wants a smaller multiple of rn in computing the maximum modulus

one must increase the exponent of the maximum modulus and vice-versa.
If we take δ = 1 then - — ^ ^ is about 6.82 so if / is an entire function

I—23(1;

omitting 0 and

lim m{r, f)M(7r, f) < 00
r—> oo

then / is a constant function.

§6. Harmonic functions

By the usual device of calling forth the exponential function we can
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rework Theorem I to yield some results on harmonic functions. The theorem

becomes

THEOREM IV. Let u(z) be harmonic and bounded above by M in D(R),

0 < # < o o . Then for \Z\^R( { + β[fy) we have

Proof. If we let y be a complex conjugate of u{z) and form g - eu+ίv

then g is holomorphic and zero-free in D{R). Hence Theorem I prevails

and the result is immediate.

We have parallel results to Corollaries 1 and 2. We give only the

analogous result to Corollary 1.

COROLLARY 3. Let {u^} be a sequence of bounded harmonic functions in

D{R)9 0 < i? < oo, such that for some 0 < δ < oo Hm (un{0) + δM{R, un)) < oo.
n-»oo

Then the sequence {uny is miiformly bounded from above on \z\ -<, R ( ^ ( ) .
\ 1 + -B\δ) /

Proof This follows from Theorem IV in the same way Corollary 1

follows from Theorem I.

Remark. Generalizations of our theorems in the case / (or {/„}) take

a value a only finitely often are possible by using the full force of Lem-

ma 1. However the results seem a bit technical so we do not list them.
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