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Recent studies have shown that superimposing rhythmic perturbations to oscillating
tailbeats could simultaneously enhance both the thrust and efficiency (Lehn et al.,
Phys. Rev. Fluids, vol. 2, 2017, p. 023101; Chao et al., PNAS Nexus, vol. 3, 2024,
p. 073). However, these investigations were conducted with a tethered flapping foil,
overlooking the self-propulsion intrinsic to real swimming fish. Here, we investigate
how the high-frequency, low-amplitude superimposed rhythmic perturbations impact the
self-propelled pitching and heaving swimming of a rigid foil. The swimming-speed-based
Reynolds number ranges from 1400 to 2700 in our study, depending on superimposed
perturbations and swimming modes. Numerical results reveal that perturbations
significantly increase swimming speeds in both pitching and heaving motions, while
enhancing efficiency exclusively in the heaving motion. Further derived scaling laws
elucidate the relationships of perturbations with speeds, power costs and efficiency,
respectively. These findings not only hypothesise the potential advantages of perturbations
in biological systems, but also inspire designs and controls in biomimetic propulsion and
manoeuvring within aquatic environments.
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1. Introduction

Nature has developed various strategies to enhance swimming efficiency while preserving
swimming agility. For instance, there has been longstanding hypothesis and research
regarding how fish adapt their body kinematics to achieve high swimming efficiency
(Taylor, Nudds & Thomas 2003; Gazzola, Argentina & Mahadevan 2014). In addition
to optimising kinematic properties like the Strouhal number (defined as the ratio of
the product of vortex shedding frequency and width of the wake to the swimming
velocity) (Triantafyllou, Triantafyllou & Yue 2000), recent research has unveiled that
rhythmic perturbations, often considered as ‘noise’ and neglected, can indeed have a
positive influence on the hydrodynamic performance of the tethered flapping swimmer
(Lehn et al. 2017; Gao, Huang & Pan 2021). Lehn et al. (2017)’s study revealed that
introducing high-frequency, low-amplitude rhythmic perturbations to a basic sinusoidal
oscillation significantly improves thrust and efficiency compared with using a pure
basic sinusoidal oscillation. A later study by Gao et al. (2021) using computational
fluid dynamics (CFD) simulations with a rigid foil flapping in a flow confirmed the
increase of thrust with superimposed rhythmic perturbations, but not of efficiency.
This poses a question about the factors influencing efficiency since Quinn, Lauder &
Smits (2014) show that the specific stiffness of a foil itself can significantly improve
it. As a result, it remains uncertain whether the efficiency improvement observed
by Lehn et al. (2017) comes from the flexibility effect, the perturbations effect, or
the combination of flexibility and perturbations effects. To resolve this uncertainty,
a further study by Chao et al. (2024) systematically investigated the impact of
rhythmic perturbations on both thrust and efficiency through experiments on robotic
fish, CFD simulations, and modelling. They identified the critical frequency and
amplitude of perturbations, and highlighted the crucial role played by the necessary
phase lag between the body motion and resulting fluid dynamics response in improving
efficiency.

However, all the aforementioned studies (Lehn et al. 2017; Gao et al. 2021; Chao
et al. 2024) were conducted on the tethered flapping foil. While in nature, fish are
self-propelled by balancing the propulsive force with drag from water. This results in a
positive time-averaged swimming speed and net time-averaged thrust of zero (Carling,
Williams & Bowtell 1998). Recently, several investigations have been carried out in
the field of self-propulsion, aimed at exploring the impact of various parameters, such
as swimming kinematics (Lauder et al. 2007), Reynolds number (Zhang et al. 2018),
foil thickness (Zhang et al. 2018), foil geometry (Zhang et al. 2009) and foil flexibility
(Zhu, He & Zhang 2014), on the hydrodynamics of self-propelled bodies (Wang, He &
Zhang 2016).

Superimposed rhythmic perturbations of high frequency and low amplitude have
shown their capability to enhance both propulsive thrust and efficiency in tethered
flapping motion. It is still unclear whether and, if so, how such rhythmic perturbations
affect swimming performance during self-propulsion. To address this question,
we conducted a comprehensive analysis of the hydrodynamic characteristics of
self-propelled pitching and heaving foil using numerical and theoretical methods.
The paper is structured as follows: § 2 provides an introduction to the definition of
superimposed rhythmic perturbations and outlines the numerical method employed;
§ 3 presents the numerical results; § 4 gives the mathematical model for predicting
the swimming performance; § 5 shows the wake structures generated by the
self-propelled foil; and § 6 summarises the findings of our study and provides a
conclusion.
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Figure 1. (a) Sketch of the computational domain; geometry and kinematics of the (b) pitching foil and
(c) heaving foil; definition of (d) basic motion (BM), (e) perturbation motion (PM) and ( f ) accumulated motion
(AM). Here, A_max denotes the maximal tailbeat amplitude.

2. Problem description and methodology

A two-dimensional tear-shaped rigid foil with a semicircular leading edge of diameter
D and chord length L (D/L = 0.2) is positioned in a quiescent fluid. The foil is free to
move horizontally from right to left, and the foil’s swimming direction is the negative
x-axis (figure 1a). In the self-propelled pitching mode, the foil rotates around the centre of
its semicircular leading edge, exhibiting a time-dependent pitching angle θ(t) that varies
during the oscillation (figure 1b). In the self-propelled heaving mode, the foil oscillates
transversely to the swimming direction (y), where its vertical movement (y-direction) is
controlled by h(t) (figure 1c).

We have established three modes: the basic mode (BM) characterised by a sinusoidal
wave (figure 1d); the perturbation mode (PM) composed of high-frequency, low-amplitude
oscillations (figure 1e); and the accumulated mode (AM), which combines the sinusoidal
wave (BM) with perturbations (PM) to describe the rhythmic tailbeats of the foil
(figure 1f ). The definitions of these modes are as follows:

Ab(t) = Ab_max sin(2πfbt) basic mode, BM,
Ap(t) = Ap_max sin(2πfpt) perturbation mode, PM,
Aa(t) = Ab(t)+ Ap(t) accumulated mode, AM,

⎫⎪⎬⎪⎭ (2.1)

where Ab(t) and Ap(t) denote the time-dependent taibeat amplitude in BM and PM, Ab_max
and Ap_max describe the maximal taibeat amplitude in BM and PM, fb and fp refer to the
oscillating frequency in BM and PM, respectively, and t is the time. In the rest of the paper,
subscripts b and a refer to BM and AM, respectively. We describe the foil’s motions as
follows:

Ab(t) = θb(t) = θb_max sin(2πfbt) BM, Pitching mode,
Ap(t) = θp(t) = θp_max sin(2πfpt) PM, Pitching mode,
Ab(t) = hb(t) = hb_max sin(2πfbt) BM, Heaving mode,
Ap(t) = hp(t) = hp_max sin(2πfpt) PM, Heaving mode,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.2)
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where θb_max and θp_max refer to the maximal pitching angle in BM and PM, respectively.
Since the foil thickness is D/L = 0.2, we have sin(θb_max) = Ab_max/(L − D/2) =
Ab_max/0.9L and sin(θp_max) = Ap_max/(L − D/2) = Ap_max/0.9L for the pitching mode,
respectively. However, hb_max = Ab_max and hp_max = Ap_max are the maximal heaving
distance for the heaving mode in BM and PM, respectively. Without loss of generality,
both the self-propelled pitching and heaving modes employ Ab_max = 0.15L and fb = 1 Hz
in our simulations.

We have introduced non-dimensionalised flapping frequency and amplitude, denoted as

f̃ = fp/fb, Ã = Ap_max/Ab_max, (2.3a,b)

to control the superimposed perturbations. In the present study, we considered f̃ = 4 − 10
with an interval of�f̃ = 1 and Ã = 0.01, 0.02, 0.04, 0.05, 0.06, 0.08 and 0.10. We further
defined the swimming number (Gazzola et al. 2014) ratio as

S̃w = Swp

Swb
= (2πLfpAp_max)/ν

(2πLfbAb_max)/ν
= f̃ Ã, (2.4)

where ν is the fluid kinematic viscosity. To describe the swimming efficiency of the
self-propelled foil, we employed the energy consumption coefficient CE, defined as
CE = CoT/ρν2, where CoT = P̄/ū is the mechanical cost of transport (Bale et al. 2014;
Zhang, Zhang & Huang 2022), given by the ratio of time-averaged total power (P̄) to
time-averaged steady swimming speed (ū), and ρ is the fluid (foil) density.

All swimming speeds observed in our simulations are normalised by the foil length L.
The non-dimensionalised time-averaged swimming speed is defined as

ũ = ūa/ūb, (2.5)

to evaluate the effect of perturbations on the swimming speed generated by self-propelled
foils. Furthermore, we defined

P̃ = P̄a/P̄b, C̃E = CE_a/CE_b, (2.6a,b)

to assess whether AM incurs greater energy cost and enhances swimming efficiency,
respectively. In (2.5) and (2.6), ūa (ūb), P̄a (P̄b) and CE_a (CE_b) denote the time-averaged
swimming speed, time-averaged power cost and swimming efficiency generated by the
self-propelled flapping foil undergoing the AM (BM) when the swimming is steady,
respectively. A larger ũ and P̃ indicate AM enjoys a faster swimming speed and greater
energy consumption than BM, respectively. For AM, C̃E < 1 and C̃E > 1 correspond to
improvements and decreases in swimming efficiency compared with the non-perturbed
conditions (BM), respectively.

The unsteady flow around the self-propelled foil was simulated using the immersed
boundary (IB) method (Peskin 2002). The IB method (also referred to as ‘Cartesian grid
methods’) employs a non-body conformal Cartesian grid, where the Cartesian grids are
generated regardless of the body surface. As a result, the body surface cuts through this
Cartesian grid. Because the grid does not conform to the body surface, imposing the
boundary conditions will require modifying the governing equations in the vicinity of the
solid boundary. With the precise modifications, the governing equations can be discretized
without resorting to coordinate transformation or complex discretization operators. More
details about the IB method and relevant mathematical formulation can be found from
Mittal & Iaccarino (2005) and Griffith & Patankar (2020). We employed the open-source
CFD software IBAMR to conduct the numerical investigations (IBAMR 2014).
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Figure 2. (a) Grid and (b) time step size convergence study of self-propelled pitching motion; (c) grid and
(d) time step size convergence study of self-propelled heaving motion, respectively. t∗ = tfb. M1,
�x/L = �y/L = 0.008; M2, �x/L = �y/L = 0.005; M3, �x/L = �y/L = 0.002. �t1, �t × fp = 0.01;
�t2, �t × fp = 0.001; �t3, �t × fp = 0.0005.

This software has been widely employed to gain insights into the hydrodynamics of
fish-like swimming (Bhalla et al. 2013a; Bhalla, Griffith & Patankar 2013b; Tytell et al.
2016; Hoover et al. 2018; Zhang et al. 2018; Yang & Wu 2022; Chao, Bhalla & Li 2023).
In our research, we adopted a computational domain in the form of a rectangular box
measuring 80 × 20L, with periodic boundary conditions applied along the axial direction
and no-slip boundary conditions imposed in the lateral direction (figure 1a). To ensure
statistically steady swimming, all cases were simulated for twenty normalised swimming
periods t∗ = tfb.

The grid and time step size convergence study is conducted for both the self-propelled
pitching and heaving mode with the most strenuous parameter values of ( f̃ , Ã) =
(10, 0.10). For the grid convergence study, three different grids with uniform mesh
spacings of�x/L = �y/L = 0.008 (M1), 0.005 (M2) and 0.002 (M3) are considered. The
time step size is fixed at �t × fp = 0.001. Figures 2(a) and 2(c) present the instantaneous
swimming velocity upitching (self-propelled pitching mode) and uheaving (self-propelled
heaving mode) for the three grids, respectively. Table 1 lists the time-averaged steady
swimming speeds derived from the self-propelled pitching (ūpitching) and heaving (ūheaving)
mode. There is a relatively small difference between M2 and M3, i.e.�ūpitching = 0.712 %
and �ūheaving = 1.270 %. For the remainder of the simulations, mesh M2 is selected.
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Grid �x/L ūpitching (L s−1) �ūpitching (%) ūheaving (L s−1) �ūheaving (%)

M1 0.008 2.089 5.225 2.557 7.211
M2 0.005 2.188 0.712 2.721 1.270
M3 0.002 2.204 — 2.756 —

Table 1. Grid convergence study with �t × fp = 0.001.

Time step size �t × fp ūpitching (L s−1) �ūpitching (%) ūheaving (L s−1) �ūheaving (%)

�t1 0.01 1.536 30.502 2.059 25.039
�t2 0.001 2.188 0.970 2.721 0.945
�t3 0.0005 2.210 — 2.747 —

Table 2. Time-step size convergence study with �x/L = �y/L = 0.005.

Using M2, the time step size convergence study is performed by selecting three values
of �t × fp: �t × fp = 0.01 (�t1), 0.001 (�t2) and 0.0005 (�t3). The difference between
the time-dependent swimming speed using �t2 and �t3 is negligible (figure 2b,d), where
�ūpitching and �ūheaving is less than 1.0 % (table 2). Grid M2 and time step size �t2
are selected based on accuracy and computational resources for the remainder of the
simulations. More convergence studies related to the numerical method can be found in
our previous study (Chao et al. 2023).

3. Results

3.1. Self-propelled pitching mode

Figures 3(a) and 3(b) illustrate the dependence of ũ and P̃ on the f̃ and Ã when the
foil undergoes the self-propelled pitching motion, respectively. Both ũ and P̃ increase as
f̃ and/or Ã increase. This indicates that stronger perturbations lead to increased energy
consumption and faster swimming speeds. Furthermore, all non-dimensionalised ũ values
are greater than one (figure 3a), suggesting that perturbations consistently enhance the
swimming speed of a self-propelled pitching foil. The non-dimensionalised swimming
efficiency parameter, C̃E, also exhibits a positive correlation with f̃ and Ã (figure 3c).
Notably, C̃E > 1 indicates lower swimming efficiency for the self-propelled pitching foil,
signifying that superimposed rhythmic perturbations reduce swimming efficiency.

We conducted further investigations to examine the impact of perturbations on the
instantaneous swimming speed of the self-propelled pitching foil as it approaches a
time-averaged steady swimming state in four representative scenarios: BM, ( f̃ , Ã) =
(5, 0.05), ( f̃ , Ã) = (5, 0.10) and ( f̃ , Ã) = (10, 0.10). As shown in figure 3(d,e), it becomes
evident that stronger perturbations lead to more pronounced fluctuations in upitching. We
introduced

�u∗
pitching = upitching_max_a − upitching_min_a

upitching_max_b − upitching_min_b
, (3.1)

to quantify these fluctuations and compare the fluctuations generated by the BM and
AM, where upitching_max_a is the maximal instantaneous swimming speed generated in
AM, upitching_min_a is the minimal instantaneous swimming speed generated in AM,
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Figure 3. Dependence of (a) ũ, (b) P̃ and (c) C̃E on f̃ and Ã; (d) varying of upitching at four specific cases;
(e) zoomed-in figure of panel (d) at 17 ≤ t∗ ≤ 19; ( f ) non-dimensionalised fluctuations of the instantaneous
swimming speed �u∗

pitching in the f̃ − Ã domain. Self-propelled pitching mode.

upitching_max_b is the maximal instantaneous swimming speed generated in BM and
upitching_min_b is the minimal instantaneous swimming speed generated in BM. As
figure 3( f ) illustrates, an increase in f̃ and/or Ã results in higher values of �u∗

pitching.
However, it is noted that there is no direct relationship between the �u∗

pitching, represented
by the non-dimensionalised fluctuations of the upitching, and the ũ, described by the
non-dimensionalised mean value of the upitching, as both �u∗

pitching and ũ positively
increase with increasing f̃ and/or Ã (figure 3a, f ).

3.2. Self-propelled heaving mode
In a manner similar to the self-propelled pitching mode, the introduction of perturbations
enhances the swimming speed of the self-propelled heaving foil with an increase in f̃
and/or Ã (figure 4a). Comparison between figures 3(a) and 4(a) reveals that the maximal
difference in ũ between the self-propelled pitching and heaving modes is only 3 %
(ũ = 154 % and 157 % for self-propelled pitching and heaving modes, respectively). This
suggests that perturbations play a similar role in affecting the steady swimming speed
of the self-propelled flapping foil in both modes. Figure 4(b) demonstrates a positive
correlation between P̃ and f̃ as well as Ã. Particularly, P̃ < 1.0 when f̃ Ã < 0.47 (as
indicated by the red dashed line in the figure), implying that the foil undergoing AM
with f̃ Ã < 0.47 consumes less energy compared with the BM. As the power exchange
between the heaving foil and fluid in our study is analogous to that between a cylinder
undergoing prescribed or flow-induced oscillations transversely to the free stream (Han
et al. 2023), we argue that the reduction in energy cost arises from a decrease in
the phase lag φ between the body motion and the resulting fluid dynamics response.
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Figure 4. Dependence of (a) ũ, (b) P̃ and (c) C̃E on f̃ and Ã; (d) varying of uheaving at four specific cases;
(e) zoomed-in figure of panel (d) at 17 ≤ t∗ ≤ 19; ( f ) non-dimensionalised fluctuations of the instantaneous
swimming speed�u∗

heaving in the f̃ − Ã domain. The black solid lines in panels (b) and (c) denote P̃ = 1.0 and

C̃E = 1.0, respectively. The red dashed lines in panels (b, f ) and (c) refer to the fitting lines of P̃ = 1.0 ( f̃ Ã =
0.47) and C̃E = 1.0 ( f̃ 2Ã = 1.53), with R2 = 0.953 for P̃ fitting and R2 = 0.839 for C̃E fitting, respectively.
Self-propelled heaving mode.

Further discussions are provided in the subsequent section. Given the emergence of energy
savings, it is worthwhile to investigate whether the addition of perturbations improves
the swimming efficiency of the self-propelled heaving foil. As illustrated in figure 4(c),
C̃E < 1.0 is observed when f̃ 2Ã < 1.53, located at the bottom-left side of the f̃ − Ã map.
This result demonstrates that superimposed rhythmic perturbations of high-frequency and
low-amplitude can enhance both the swimming speed and efficiency of a self-propelled
heaving foil, consistent with the findings in Lehn et al. (2017)’s study on the tethered
heaving foil.

Figure 4(d) displays the instantaneous swimming speed uheaving. It becomes evident
that perturbations enhance both uheaving_max_a and uheaving_min_a in the self-propelled
heaving mode (figure 4e), whereas they do not significantly affect upitching_min_a in the
self-propelled pitching mode when f̃ is smaller (figure 3e). Interestingly, figure 4( f )
reveals that the impact of perturbations on the fluctuation of�u∗

heaving (defined similarly to
�u∗

pitching) is not substantial, with �u∗
heaving < 2.0 in all cases. This observation suggests

that the self-propelled heaving mode with perturbations results in a more stable swimming
performance compared with the self-propelled pitching mode. It is also noted that the
�u∗

heaving approaches to 1.0 when f̃ Ã < 0.47, suggesting the foil would not generate a more
fluctuated swimming speed compared with BM at P̃ < 1.0 even though the perturbations
have been superimposed into the base flapping motion. Furthermore, we shown more
numerical results corresponding to the two-freedom self-propelled motion (foil can freely
move in both x- and y-directions) in Appendix A.
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4. Scaling laws

4.1. Scaling for swimming speeds

To better understand how perturbations ( f̃ and Ã) affect the non-dimensionalised
swimming speed (ũ) of a self-propelled pitching/heaving foil, we derived scaling laws
by balancing time-averaged inertial forces F̄I = (1/nt∗)

∫ α+nt∗
α

FI dt∗ and viscous drag

F̄D = (1/nt∗)
∫ α+nt∗
α

FD dt∗ when the time-averaged swimming speed is steady, where α
denotes arbitrary normalised time. For the per unit depth scales, we have FI ∼ ρV2

lateralL
and FD ∼ μ(u/δ)L, where μ = ρν is the fluid viscosity, δ ∼ L/

√
Re is the boundary layer

thickness (Gazzola et al. 2014), Re = uL/ν is the Reynolds number, and Vlateral denotes
the foil’s lateral velocity and can be derived from the foil’s kinematic equations:

Vlateral = 2πfbAb_max cos(2πfbt)× cos[θb(t)] BM, Pitching mode,
Vlateral = 2π[ fbAb_max cos(2πfbt)+ fpAp_max cos(2πfpt)]

× cos[θa(t)] AM, Pitching mode,
Vlateral = 2πfbAb_max cos(2πfbt) BM, Heaving mode,
Vlateral = 2π[ fbAb_max cos(2πfbt)+ fpAp_max cos(2πfpt)] AM, Heaving mode.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(4.1)

Considering a small θb_max and even smaller θp_max in pitching mode, we get cos[θb(t)] ≈
cos[θa(t)] ≈ 1. Equation (4.1) further suggests

1
nt∗

∫ α+nt∗

α

V2
lateral dt∗ ∼ f 2

b A2
b_max BM,

1
nt∗

∫ α+nt∗

α

V2
lateral dt∗ ∼ f 2

b A2
b_max + f 2

p A2
p_max AM.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.2)

By balancing F̄I and F̄D, we obtain

ρ( fbAb_max)
2L ∼ ρνūb

(
ūbL
ν

)1/2

ν BM,

ρ[( fbAb_max)
2 + ( fpAp_max)

2]L ∼ ρνūa

(
ūaL
ν

)1/2

ν AM,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.3)

resulting in

ūb ∼ ( fbAb_max)
4/3L1/3ν−1/3 ∼ ( fbAb_max)

4/3L4/3

ν4/3 L−1ν BM,

ūa ∼ [( fbAb_max)
2 + ( fpAp_max)

2]2/3L1/3ν−1/3

∼
[
( fbAb_max)

2L2

ν2 + ( fpAp_max)
2L2

ν2

]2/3

L−1ν AM.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(4.4)

Recalling Swp = 2πLfpAp_max/ν and Swb = 2πLfbAb_max/ν (2.4), we naturally have

ūb ∼ Sw4/3
b L−1ν BM,

ūa ∼ (Sw2
b + Sw2

p)
2/3L−1ν AM.

}
(4.5)
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Figure 5. (a) Normalised foil pitching acceleration θ̈ (t) and flow-induced torque Mf (t) in BM and AM,
where ( f̃ , Ã) = (5, 0.05). (b) The sin(φa)/ sin(φb) contour in self-propelled pitching mode. (c) Fitting for
sin(φa)/ sin(φb) in self-propelled pitching mode, where sin(φa)/ sin(φb) ∼ e−2f̃ 2Ã/3. (d) Normalised foil
heaving acceleration ḧ(t) and flow-induced lift Lf (t) in BM and AM, where ( f̃ , Ã) = (5, 0.05). (e) The
sin(φa)/ sin(φb) contour in self-propelled heaving mode, where the dashed line refers to the P̃ = 1 line in
figure 4(b) and the green symbol denotes the location of the minimal sin(φa)/ sin(φb) at the specific f̃ .
( f ) Fitting for sin(φa)/ sin(φb) in self-propelled heaving mode, where sin(φa)/ sin(φb) ∼ e−f̃ 2Ã.

Equation (4.5) further reveals Reb ∼ Sw4/3
b for BM, conforming with the works of Gazzola

et al. (2014), while Rea ∼ (Sw2
b + Sw2

p)
2/3 for AM in the viscous flow.

Based on (2.5) and (4.5), we naturally obtain

ũ ∼ (1 + S̃w2
)2/3, (4.6)

where ũ is always larger than 1 (4.6, figures 3a and 4a), suggesting that perturbations can
constantly improve the time-averaged swimming speeds of the self-propelled foil.

4.2. Scaling for power costs
As mentioned in § 3.2, the phase lag between the foil motion and the resulting fluid
dynamics response plays an important role in affecting the power cost of a self-propelled
flapping foil. Therefore, we first introduce the definitions of the phase lag in the
self-propelled pitching and heaving mode before the derivation of the power cost scaling.
Figure 5(a) reveals that the flow-induced torque Mf (t) provided by BM remains at the same
frequency with foil pitching acceleration θ̈ (t), while the perturbation dominates the Mf (t)
profile in AM. Particularly, a phase lag φ exists between Mf (t) and θ̈ (t). Similarly, we can
also observe a phase lag between flow-induced lift Lf (t) and foil heaving acceleration ḧ(t)
in the self-propelled heaving mode (figure 5d). As the state of a vibrating curve can be
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modelled as a point in a Hilbert space, we use the Hilbert transform to calculate φb and
φa (Williamson & Govardhan 2004) referred to as the BM-based and AM-based phase
lag, respectively. Figure 5(b,e) reveals that sin(φa)/ sin(φb) decreases with an increase
of f̃ and/or Ã. This tendency is attributed to the high-frequency components introduced
by superimposed perturbations, which induce rapid transitions in flapping velocity and
thus accelerate the response of the fluid dynamics to the flapping motion. Particularly, the
minimal sin(φa)/ sin(φb) values at the specific f̃ agree well with the data-driven P̃ = 1 line
in self-propelled heaving mode (figure 5e), suggesting this phase lag is a critical parameter
in affecting the power cost. Naturally, sin(φa)/ sin(φb) is a function of f̃ and Ã, and these
functions corresponding to self-propelled pitching and heaving mode are fitted as

sin(φa)

sin(φb)
∼ e−2f̃ 2Ã/3 Pitching mode,

sin(φa)

sin(φb)
∼ e−f̃ 2Ã Heaving mode.

⎫⎪⎪⎬⎪⎪⎭ (4.7)

Figure 5(c, f ) demonstrates a good match between the numerical results and the fitted
equation. However, the fitted equations also indicate that the relationship between phase
difference and superimposed perturbation is highly complex.

We now go back to the power cost scaling. For the pitching foil, the time-averaged power
cost is considered as the product of the net torque M(t∗) = Mi(t∗)− Mf (t∗) and θ̇ (t∗), i.e.

P̄ = 1
nt∗

∫ α+nt∗

α

M(t∗)θ̇(t∗) dt∗ = 1
nt∗

∫ α+nt∗

α

[Mi(t∗)− Mf (t∗)]θ̇ (t∗) dt∗, (4.8)

where inertial torque Mi(t∗) = Jθ̈ (t∗) with the mass moment of inertia of the foil J and
flow-induced torque Mf (t∗) = −c1ε̈(t∗)− c2uε̇(t∗) with two positive coefficients c1 ∼ L4

and c2 ∼ L3. Here, ε̈(t∗) = θ̈ (t∗ + φ) and uε̇(t∗) = uθ̇ (t∗ + φ) are sourced from the Euler
angular acceleration and Coriolis acceleration of the fluid around the foil (Alam &
Muhammad 2020), respectively. This phase lag φ, driven by diffusion-convection of the
vorticity layer generated on the foil surface, corresponding to the flow retardation effect
(Granger & Païdoussis 1996; Chao et al. 2024), is crucial in transferring power between
the body and fluid (Han et al. 2023).

Note
∫ α+nt∗
α

Mi(t∗)θ̇(t∗) dt∗ = ∫ α+nt∗
α

Jθ̈ (t∗)θ̇(t∗) dt∗ = 0, and the power cost is
actually the integral of the product of Mf (t∗) and θ̇ (t∗). We first calculate the flow-induced
torque, as

Mb(t∗) = −(4π2)Jf 2
b θb_max sin(2πfbt∗)

− (4π2)c1f 2
b θb_max sin(2πfbt∗ + φb)

+ (2π)c2ubfbθb_max cos(2πfbt∗ + φb) BM,

Ma(t∗) = −(4π2)J[ f 2
b θb_max sin(2πfbt∗)+ f 2

p θb_max sin(2πfpt∗)]

− (4π2)c1[ f 2
b θb_max sin(2πfbt∗ + φa)+ f 2

p θp_max sin(2πfpt∗ + φa)]

+ (2π)c2ua[ fbθb_max cos(2πfbt∗ + φa)+ fpθp_max cos(2πfpt∗+ φa)], AM,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.9)
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where φb and φa refer to the phase lag in BM and AM, respectively. The θ̇ (t) can be
directly obtained from the kinematics, as

θ̇b(t) = 2πfbθb_max cos(2πfbt) BM,

θ̇a(t) = 2π[ fbθb_max cos(2πfbt)+ fpθp_max cos(2πfpt)] AM.

}
(4.10)

Therefore, time-averaged power costs read as

P̄b(t) ∼ −c3Lf 3
b θ

2
b_max sin(φb)+ ūbf 2

b θ
2
b_max cos(φb)

∼
[
−c3

L3f 3
b θ

3
b_max

ν3 θ−1
b_maxν sin(φb)+ ūb

L2f 2
b θ

2
b_max

ν2 cos(φb)

]
L−2ν2

∼ [−c3Sw3
bθ

−1
b_maxν sin(φb)+ ūbSw2

b cos(φb)]L−2ν2 BM,

P̄a(t) ∼ −c3L( f 3
b θ

2
b_max+ f 3

p θ
2
p_max) sin(φa)+ ūa( f 2

b θ
2
b_max+ f 2

p θ
2
p_max) cos(φa)

∼
[
−c3

(
L3f 3

b θ
3
b_max

ν3 θ−1
b_max + L3f 3

p θ
3
p_max

ν3 θ−1
p_max

)
ν sin(φa)

]
L−2ν2

+ ūa

[(
L2f 2

b θ
2
b_max

ν2 + L2f 2
p θ

2
p_max

ν2

)
cos(φa)

]
L−2ν2

∼ [−c3(Sw3
bθ

−1
b_max + Sw3

pθ
−1
p_max)ν sin(φa)]L−2ν2

+ ūa[(Sw2
b + Sw2

p) cos(φa)]L−2ν2 AM,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.11)

with the positive coefficient c3. Then, we have the P̃ scaling for the pitching foil as

P̃ ∼ −c3(Sw3
bθ

−1
b_max + Sw3

pθ
−1
p_max)ν sin(φa)+ ūa(Sw2

b + Sw2
p) cos(φa)

−c3Sw3
bθ

−1
b_maxν sin(φb)+ ūbSw2

b cos(φb)

∼ −c3(Swbθ
−1
b_max + S̃w2Swpθ

−1
p_max)ν sin(φa)+ ūa(1 + S̃w2

) cos(φa)

−c3Swbθ
−1
b_maxν sin(φb)+ ūb cos(φb)

∼ −c3Swb(θ̃ + S̃w3
)ν sin(φa)+ θp_maxūa(1 + S̃w2

) cos(φa)

−c3Swbθ̃ν sin(φb)+ θp_maxūb cos(φb)

∼ −c3Swb(θ̃ + S̃w3
)ν sin(φa)+ c4θp_maxūb(1 + S̃w2

)5/3 cos(φa)

−c3Swbθ̃ν sin(φb)+ θp_maxūb cos(φb)
, (4.12)

where c4 is a positive coefficient. For the low-amplitude pitching, we have θ̃ =
θp_max/θb_max = Ap_max/Ab_max = Ã and θp_max ≈ 0, and therefore

P̃ ∼ −c3Swb(θ̃ + S̃w3
)ν sin(φa)

−c3Swbθ̃ν sin(φb)
∼ (1 + Ã−1S̃w3

) · sin(φa)

sin(φb)
. (4.13)

Similar to the pitching motion, we have the time-averaged power cost of the heaving foil
as

P̄ = 1
nt∗

∫ α+nt∗

α

[Li(t∗)− Lf (t∗)]ḣ(t∗) dt∗, (4.14)
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where Li(t∗) and Lf (t∗) refer to the inertial and flow-induced lift, respectively, and
Li(t∗) ∼ ḧ(t∗). Different from the condition in self-propelled pitching mode, we have
Lf (t∗) = −c5ε̈(t∗) with a coefficient c5. Therefore, we have

P̃ ∼ Swb(h̃ + S̃w3
)ν sin(φa)

Swbh̃ν sin(φb)
∼ (1 + Ã−1S̃w3

) · sin(φa)

sin(φb)
, (4.15)

where Ã = h̃ = hp_max/hb_max.
Overall, the scaling for power costs is

P̃ ∼ (1 + Ã−1S̃w3
) · sin(φa)

sin(φb)
. (4.16)

Equation (4.16) suggests that the power costs increase in AM is not only dependent on
the input perturbations ( f̃ and Ã), but also affected by the phase lag between the foil
motion and the resulting fluid dynamic response. Even with the same input perturbations,
the different flapping kinematics may generate different phase lags (figure 5b,e), therefore
resulting in different power costs (figures 3b,4b).

4.3. Scaling for swimming efficiencies

Based on (4.6) and (4.16), the non-dimensionalised swimming efficiency C̃E can be scaled
as

C̃E = P̃ · ũ−1 ∼ 1 + Ã−1S̃w3

(1 + S̃w2
)2/3

· sin (φa)

sin (φb)
. (4.17)

Equation (4.17) suggests that the efficiency improvement sourced from adding
perturbations is affected by the non-dimensionalised amplitude, non-dimensionalised
swimming number and phase lag. Referring to the research conducted by Floryan, Van
Buren & Smits (2018), the authors noted that the efficiency of a flapping foil is governed
by both the flapping amplitude and the Strouhal number, a pattern akin to our (4.17). In
particular, we demonstrated that the efficiency of a self-propelled foil can be enhanced by
reducing the phase lag between the foil motion and the resulting fluid dynamics response.

To assess the compatibility of the scaling laws mentioned above with the simulated
data of the self-propelled flapping foil, we created plots of ũ, P̃ and C̃E against

the parameters associated with perturbations: (1 + S̃w2
)2/3, 1 + Ã−1Sw3 and (1 +

Ã−1Sw3)/(1 + S̃w2
)2/3. These are presented in figure 6(a–c) for the self-propelled pitching

mode and in figure 6(d–f ) for the self-propelled heaving mode. The numerical data
align remarkably well on a single linear curve, suggesting that the current scaling laws
can accurately predict the hydrodynamic performance of self-propelled foils undergoing
flapping with superimposed perturbations.

5. Wake structures

Several distinguished wake structures generated by the self-propelled pitching foil are
identified: reverse Kármán vortex (RKV) wake, symmetric wake (SW) I, symmetric wake
(SW) II-A, symmetric wake (SW) II-B, asymmetric wake (AsW) I, asymmetric wake
(AsW) II and 2P wake (Williamson & Roshko 1988). The representative flow structures
and their presence in the f̃ − Ã domain are shown in figure 7. The classical RKV wake is
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Figure 6. Scaling for the (a) ũ, (b) P̃ and (c) C̃E in the self-propelled pitching mode and (d) ũ, (e) P̃ and

( f ) C̃E in the self-propelled heaving mode, respectively.

observed when the pitching foil employs BM, where the vortices from a side of the foil
take the opposite side of the wake (figure 7b). When f̃ is an odd number ( f̃ = 5, 7, 9),
the symmetric wake, including SW I, SW II-A and SW II-B, emerges behind the foil
depending on both f̃ and Ã. The SW I forming as the RKV wake is observed at f̃ = 5 and
( f̃ , Ã) = (7, 0.01) (figure 7c). The emergence of the SW I is found at ( f̃ , Ã) = (7, 0.02)
and ( f̃ = 9, Ã ≤ 0.05), where the wake involves the primary vortex (PV) and secondary
vortex (SV) (figure 7d). The PV consists of a stronger main vortex pair occupied the
position behind the foil’s symmetric line, and weaker negative/positive vorticity located
at the upper and bottom sides of the main vortex pair, respectively, while the SV forms
the RKV wake. With a little increase in f̃ and /or Ã, the SW II-A transmutes to SW II-B
(figure 7e), where the SV transits from the reverse Kármán vortex wake to the Kármán
vortex (KV) wake. The asymmetric wake (AsW I and II) and 2P wake are observed
when f̃ is an even number ( f̃ = 4, 6, 8, 10). The AsW I dominates the majority of the
f̃ − Ã domain, manifesting as a downward deflection of the RKV wake (figure 7f ). When
( f̃ , Ã) = (8, 0.10), the vortices close to the foil’s trailing edge fail to rapidly coalesce into a
stronger vortex core, giving rise to the PV resembling 2P wake. Conversely, vortices farther
from the foil’s trailing edge evolve and experience viscous effects, forming a deflected
RKV wake (figure 7g). The 2P wake is observed at ( f̃ , Ã) = (10, 0.10). It is noted that the
deflection of wake structure is influenced by whether f̃ is an odd or even number. When
f̃ is an odd number, PM and BM are in phase, meaning that perturbations amplify the
maximum flapping amplitude at t/Tb = 0.25. However, the flapping amplitude under AM
is equal to that under BM when f̃ is an even number and t/Tb = 0.25, while the emergency
of the maximum flapping amplitude is advanced (figure 8).
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Figure 7. (a) Wake structure map in the self-propelled pitching mode. Typical instantaneous vorticity
structures: (b) reverse Kármán vortex (BM); (c) symmetric wake (SW) I ( f̃ = 5, Ã = 0.05); (d) symmetric
wake (SW) II-A ( f̃ = 9, Ã = 0.04); (e) symmetric wake (SW) II-B ( f̃ = 7, Ã = 0.08); ( f ) asymmetric wake
(AsW) I ( f̃ = 4, Ã = 0.05); (g) asymmetric wake (AsW) II ( f̃ = 8, Ã = 0.10); (h) 2P wake ( f̃ = 10, Ã = 0.10).
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Figure 8. (a) Varying of foil’s pitching amplitude of BM and PM; (b) varying of foil’s pitching amplitude of
BM and AM.
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( f̃ , Ã) = (9, 0.10)
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Figure 9. (a) Wake structure map in the self-heaving pitching mode. Typical instantaneous vorticity structures:
(b) symmetric wake (BM); (c) symmetric wake (SW) I ( f̃ = 8, Ã = 0.01); (d) symmetric wake (SW) II ( f̃ = 7,
Ã = 0.01); (e) symmetric wake (SW) III ( f̃ = 9, Ã = 0.06); ( f ) asymmetric wake (AsW) ( f̃ = 5, Ã = 0.04);
(g) chaotic wake (CW) II ( f̃ = 9, Ã = 0.10).

Compared with the wake structures generated by the self-propelled pitching foil,
the relationship between flow patterns provided by the self-propelled heaving foil and
superimposed perturbations ( f̃ , Ã) is intricate (figure 9a). When the heaving foil undergoes
the BM, it generates a symmetric wake composed of the PV, SV and tertiary vortex
(TV): the PV takes shape as a 2P wake, the SV incorporates a main KV wake positioned
behind the foil’s symmetry line, with weaker positive/negative vorticity located on the
upper and lower sides of the main KV wake, respectively, and the TV manifests as the
RKV wake (figure 9b). As the flow patterns generated by the self-propelled heaving foil
are complicated, we considered the symmetry of wake structures only from the PV. Only
PV and SV are considered when the wake structures produced by the AM are identified.
When the self-propelled heaving foil generates the symmetric wake (SW I, II and III),
the PV constantly forms as the 2P wake, while the SV can be the deflected RKV wake
(SW I, figure 9c), the main RKV wake positioned behind the foil’s symmetry line (SW II,
figure 9d), and the chaotic wake (SW III, figure 9e). The AsW describes the bifurcation
flow deflected upwards or downwards (figure 9f ). The CW (chaotic wake) is obscure, and
we cannot identify meaningful mP+nS vortex structures (Williamson & Roshko 1988)
from this flow field. Furthermore, The influence of the odd or even nature of f̃ on the flow
structures is only significant when Ã = 0.01.

984 A46-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

26
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.262


Tailbeat perturbations improve swimming efficiency

In previous studies, researchers reported a smooth increase in propulsive force with
an increase in flapping frequency and/or amplitude, accompanied by a smooth transition
of the flow structures provided by the tethered flapping foil (KV → RKV → deflected
RKV wake) (Godoy-Diana, Aider & Wesfreid 2008; Andersen et al. 2017; Chao, Alam &
Ji 2021). However, we found that the swimming speed produced by the self-propelled
pitching/heaving foil with perturbations smoothly increases with the increment of f̃
and Ã, while the transition of the wake structures is not smooth. This observation
raises a question: Could swimmers’ wake structures be reliable for predicting swimming
performance? In the studies on the tethered flapping foil, some researchers suggested that
the wake structures can be the footprints of a flapping foil and be used to predict the force
generation (Zhang 2017), while others suggested that the swimmers’ wake structures are
not reliable indicators of swimming performance (Floryan, Van Buren & Smits 2020). Due
to our results indicating that the speed generation of self-propelled flapping foil largely
aligns with the predictions of linear theory (Garrick 1936), we argue that the mode of the
vortex wakes behind a self-propelled flapping foil with perturbations seems to be a remnant
of speed generation, rather than a driver (Mackowski & Williamson 2015). Wake structures
generated by the self-propelled flapping foil are shown in Appendix B (figures 12 and 13)
and supplementary movie 1 available at https://doi.org/10.1017/jfm.2024.262.

6. Conclusions

In this study, we conducted a systematic investigation into the influence of superimposed
rhythmic perturbations characterised by high-frequency and low-amplitude on the
performance of a self-propelled flapping foil. Our results showed a notable enhancement
in time-averaged swimming speeds with the introduction of these perturbations. Stronger
perturbations lead to faster swimming speeds. Particularly, we also observed that
appropriate perturbation inputs can significantly improve the swimming efficiency
of the self-propelled heaving foil. To explain these phenomena, we established
scaling laws to elucidate how these perturbations influence swimming speed and
efficiency in self-propelled bodies, focusing particularly on the importance of phase
lag between the foil motion and the resulting fluid dynamics response in modulating
power exchange. Overall, our results upend the standard belief that categorises
high-frequency and low-amplitude perturbations as insignificant ‘noise.’ Our data suggest
that these perturbations may actually be ‘auspiciousness’, positively affecting swimming
performance.

The effect of low-amplitude and high-frequency flapping on the flyer’s performance
has also been studied in previous works (Cleaver 2011; Cleaver et al. 2011). For instance,
Bomphrey et al. (2017) revealed that mosquitoes can capture the power of shedding vortex
through low-amplitude and high-frequency flapping motion. For swimming organisms,
the coupling between perturbations and fundamental pitching/heaving movements can
be considered as the passive/active response of the organisms’ muscles. On the one
hand, perturbations may be regarded as passive vibrations of muscles in response to
the coupling between fish motion and the surrounding flow field (Fish & Lauder 2006),
essentially representing the dynamic response of organisms to their environment. On the
other hand, organisms may actively generate these perturbations to alter the flow field
around them, adapting to different motion requirements or environmental conditions.
However, it is difficult to observe significant muscle motions sourced from perturbations.
We speculate that these perturbations may exist at the microscopic level, and they may be
more pronounced during the early stages of fish development since the larval fish exhibit
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more random body waves while adults exhibit clearer stereotypical sinusoidal tailbeat
kinematics (Muller & Van Leeuwen 2004).

Examining the effects of high-frequency, low-amplitude superimposed perturbations
provides a promising path for future research (such as the flapping motion combined
with both pitching and heaving motions, Appendix C). These perturbations more closely
mimic the complex environmental challenges faced by organisms in their natural habitats,
such as the turbulent eddies accompanying aquatic locomotion. Our findings lay the
groundwork for practical applications, suggesting that careful use of these perturbations
can bring substantial benefits. Specifically, we foresee potential improvements in thrust and
efficiency across a wide range of underwater robotic technologies and propulsion systems.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2024.262.
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Appendix A. Two-freedom self-propelled motion

We have also simulated the self-propulsion of the flapping foil where the foil can freely
move in both the horizontal (x) and lateral (y) directions simultaneously (two-freedom
self-propelled motion). The f̃ ranges from 5 to 10 with an interval of 1, and Ã =
0.02 − 0.10 with an interval of 0.02. Figure 10(a–c) illustrates the dependence of the
ũ, P̃ and C̃E on the f̃ and Ã when the foil undergoes two-freedom self-propelled
pitching motion. Similar to the results of one-freedom motion, ũ, P̃ and C̃E increase
with an increase in f̃ and/or Ã, suggesting the superimposed perturbations can improve
the swimming speed but cannot improve the swimming efficiency in the self-propelled
pitching mode. Particularly, we found that the two-freedom motion with perturbations
needs more power to generate the forward swimming since the P̃ in figure 10(b) is
larger than that in figure 3(b) with the specific ( f̃ , Ã). We further considered the
feasibility of our scaling laws when the foil undergoes two-freedom self-propelled
motion. As shown in figures 10(d)–10( f ), the ũ, P̃ and C̃E linearly relate to the (1 +
S̃w2

)2/3, 1 + Ã−1S̃w3 and (1 + Ã−1S̃w3
)/(1 + S̃w2

)2/3, respectively, where the slope
of P̃ and C̃E scaling lines in two-freedom self-propelled motion is larger than that
in one-freedom self-propelled motion. However, we found that the fitting performance
at ( f̃ , Ã) = (10, 0.10) is unsatisfactory, suggesting that our scaling law has some
limitations in describing two-freedom self-propelled motion with greater superimposed
perturbations.

However, the self-propelled heaving foil cannot generate effective swimming speed
when it moves freely in both x- and y-directions. As shown in figure 11, both BM and
AM provide the time-mean horizontal and lateral swimming speeds approaching zero
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Ã

C̃E

(b)(a) (c)

1.0

1.5

1.0

3.0

2.0

1.0

5.0

3.0

1.0

1.0 1.5 3.0 5.0 0 1.0 2.0
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Figure 11. (a) Time-mean horizontal speed; (b) time-mean lateral speed. Two-freedom self-propelled
heaving motion.

after long-term simulations (t∗ = t/Tb = 100). Considering that the self-propulsion arises
from the balance between the inertia and viscous forces, we argue the present symmetric
heaving motion with a smaller amplitude and zero angle of attack cannot generate effective
thrust. Furthermore, we also noted that the previous works on the self-propelled heaving
body were mainly conducted on the one-freedom motion (Zhang et al. 2009; Becker et al.
2015; Marquet et al. 2021).
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Appendix B. Wake structures generated by the self-propelled foil

See figures 12 and 13.
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Figure 12. Wake structures generated by the self-propelled pitching foil with perturbations.
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Figure 13. For caption see next page.
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Figure 13 (cntd). For caption see next page.
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Figure 13 (cntd). Wake structures generated by the self-propelled heaving foil with perturbations.

Appendix C. Self-propelled pitching + heaving motion

We further simulated the swimming performance of the self-propelled foil undergoing the
combined pitching and heaving motion (figure 14a). The kinematics of the BM is defined
as

θb(t) = θb_max sin(2πfbt + ψ), Pitching motion,
h(t) = hb_max sin(2πfbt), Heaving motion,

}
(C1)

where ψ is the phase angle by which pitching motion leads to heaving motion. For BM,
we considered sin(θb_max) = 0.15/0.9, hb_max/L = 0.15, ψ = 0 and fb = 1 Hz.

Since the perturbations can be superimposed into pitching motion:

θb(t) = θb_max sin(2πfbt)+ θp_max sin(2πfpt), Pitching motion with perturbations,
h(t) = hb_max sin(2πfbt), Heaving motion,

}
(C2)

heaving motion:

θb(t) = θb_max sin(2πfbt), Pitching motion,
h(t) = hb_max sin(2πfbt)+ hp_max sin(2πfpt), Heaving motion with perturbations,

}
(C3)

or both pitching and heaving motion:

θb(t) = θb_max sin(2πfbt)+ θp_max sin(2πfpt), Pitching motion with perturbations,
h(t) = hb_max sin(2πfbt)+ hp_max sin(2πfpt), Heaving motion with perturbations,

}
(C4)
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Figure 14. (a) Trajectory of pitching + heaving motion; dependence of (b) ũ, (c) P̃ and (d) C̃E on f̃ at
Ã = 0.06; dependence of (e) ũ, ( f ) P̃ and (g) C̃E on Ã at f̃ = 7.

three scenarios, including pitching with perturbations + heaving motion, pitching +
heaving with perturbations motion, and pitching with perturbations + heaving with
perturbations motion, are considered. In each scenario, we considered Ã = 0.06 and varied
f̃ = 5 − 10 with an interval of �f̃ = 1 to study how different perturbations frequencies
affect the swimming performance, and we fixed f̃ = 7 and varied Ã = 0.02 − 0.10 with
an interval of �Ã = 0.02 to study the effects of perturbations amplitude.

As shown in figure 14(b–d), ũ increases with an increase in f̃ , while P̃ and C̃E first
increase and then decrease when f̃ increases, with the minimal P̃ and C̃E obtained
at f̃ = 6. Figure 14(e–g) reveals that ũ, P̃ and C̃E increase with an increase in Ã.
Particularly, figure 14(b–g) suggests that the kinematics combined pitching motion with
perturbations and heaving motion with perturbations consume larger power and generate
faster swimming speed, while the kinematics combined pitching motion with perturbations
and heaving motion consume less power and generate slower swimming speed compared
with other scenarios. Although we have not found energy saving in the present cases,
we cannot reject the hypothesis that the self-propelled pitching + heaving motion would
improve both swimming speed and efficiency generation since the interactions between
pitching + heaving motion and relative perturbations are complicated. In future work, we
will consider more conditions, such as refining the effect of the perturbation in the f̃ − Ã
domain, superimposing the same/different perturbations into the pitching and heaving
motion, and studying the effects of ψ values (or the maximal angle of attack).
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