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DOES THE FROBENIUS ENDOMORPHISM ALWAYS

GENERATE A DIRECT SUMMAND IN THE

ENDOMORPHISM MONOIDS OF FIELDS OF

PRIME CHARACTERISTIC?

PETER PROHLE

Let r be a given prime. Then a monoid M is the endomorphism

monoid of a field of characteristic v if and only if either M

is a finite cyclic group or M is a right cancellative monoid

and M has an element of infinite order in its centre. The

main lemma is the technical base of the present and other papers.

Introduction

J. De Groot [4] asked whether the automorphism groups of fields can

be prescribed or, at least, whether there exists a field the automorphism

group of which is isomorphic to the infinite group of integers. W. Kuyk

[5] solved the special question of J. De Groot by proving the existence of

a field in question. As a corollary of a much stronger result the original

problem of J. De Groot is solved by E. Fried and J. Roller [2]: A monoid

is isomorphic to the endomorphism monoid of a field of characteristic zero

if and only if the monoid is right cancellative. Moreover they proved that

each group occurs as the automorphism group of a field of characteristic

v , where r is a given odd prime. The mapping sending each element to

its rtn-power is called the Frobenius endomorphism. Because of the

difficulties occurring in the case of odd prime characteristic J. Kolla'r
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336 Peter Prohle

asked exactly the same question as the title above. The aim of the present

paper is to prove as an answer the theorem which can be found in the

abstract.

Review of the technique

For the basic notions and for the customary technique see the text-

books of G. Gra'tzer [3], of A. Pultr and V. TrnkovS [6] and of B. L. van

der Waerden [9].

Up to now there was no result concerning the endomorphism monoids of

fields of characteristic two, because the endomorphisms in that case can

not be handled by adding square roots. Only the case q = 2 of the third

lemma, that means the case of extensions by square roots, was known: the

first lemma in E. Fried [7] and the sixteenth, the twenty-third and the

twenty-fourth lemma in E. Fried and J. Kollar [2], It was obvious that it

should be enough to take third roots instead of square roots, but it seemed

to be hopeless to calculate the occurring technical details. The case

q = 3 of the third lemma solves these problems.

In order to make the generatum of the Frobenius endomorphism not to

be a direct summand an essential change is needed in the conventional

technique: at the process of extension,independent systems of new elements

must be added instead of adding single elements. It must be done in such

a way that the motion of the elements inside these systems must imitate

the motion of the whole field. In consequence of the existence of the

Frobenius endomorphism none of the single elements would be fixed, but

such a system of elements can be fixed. This system of elements is nothing

else but the unary algebra appearing in the main lemma.

Field theoretic investigations

ABEL'S THEOREM. A polynomial x -b of prime degree k over a

field L is reducible if, and only if, b is a k -power in L.

A simple proof can be found in the textbook of L. Redei [7].

FIRST LEMMA. Let L be a field of characteristic r. Consider the

pure algebraic extension Lit) , where xn-t is an irreducible polynomial

in the ring L[x], and n is a prime different from r. Let m be^an

integer, where r\m and 2<m. Then the m -power of an element of L(t)
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belongs to the subfield L if and only if the element is of the form

ct , where c £ L , 0 < k < n and n\km. If in addition (m,n) = 1

then an element of L has an m -root in Lit) if and only if it has one

in L.

Proof. Let K be the smallest algebraic extension of L

containing all the n -roots of unity. The degree of the extension K/L

is less than n. So the irreducibility of x -t over L implies that

t is never an n -power in K. Consequently by Abel *s theorem x - t

is irreducible over K. So any element b of Kit) can be uniquely
o n—1

written in the form: bn + b^t + b.t + + b 7t ,

where all the coefficients belong to K. Obviously Lit) < Kit) , and an

element b of Kit) belongs to Lit) if and only if each of the

coefficients of b belongs to L. Let u be a primitive n -root of

unity. The mapping t • wt induces a relative automorphism of the

extension Kit)/K , where the image of b is:

2 2 n-1 n—1
bn + bjut + b9u t + ... + b 7w t

If bm £ L, then this image of b must be V'b , where V is a

suitable mth-root of unity. The uniqueness of the coefficients of vb

gives the following equations: b.iu1 - v) = 0 for 0 < i < n. If b £ 0,
k

then there is an index k for which bfc $ 0. Consequently u - V = 0,

and b. = 0 for i ^ k. So b = b,-t'il where b £ Lit) implies b-, £ L.

Further n\km , since u = v" = 1. Hence (m,n) = 1 yields k = 0.

This completes the proof of the first lemma.

SECOND LEMMA. Let K be a transcendental extension of L such

that K is an algebraic extension of finite degree with respect to the

simple transcendental extension Liy). Let s be a prime different from

the characteristic of L. An element is called s-high in a field, if the

element has an s -root in the field for each j £ u. Then each s-high

element of K belongs to L.

Proof. Let x £ K\L. Then y is algebraic over L(x) , so K is

an algebraic extension of finite degree with respect to L(x). Suppose,

that x is s-high. Let -X be an s -th root of x. Consider the

Lix) < Li x) < Li x) < ... <L(.x) < ... infinite chain of fields. As the
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degree of K/L(x) is finite, there exists an index n such that

L( x) = L( ,.x). So the transcendental element x has an s -root in
n n+l n

L( x) , but that is impossible. So any s-high element must belong to L.

This completes the proof of the second lemma.

THIRD LEMMA. Let ps q and r be three pairwise distinct primes.

Let F be a field of characteristic r. Suppose that K is an extension

of F generated by the set { -z 3 t : i £ w, v £ V}3 where

(a) z is transcendental over F

(b) (.+1z)P = .z i € o)

(c) the elements T = (t ft are polynomials from the polynomial ring

F[ z]y where

- none of them is constant

- none of them is divisible by z

- none of them has a multiply factor

they are mutually prime.

Denote the subfield F({.z 3 t : i < 3 , v £ V}) of K by F(j,W)3 for

W < V and 1 < j < u . Then the field K has the following properties:

(1) The polynomial aP - .2 is irreducible over F(i+l,W), for W < V

and i € a).

(2) The polynomial x^ - T is irreducible over F(j,W) , for W < V,

v £ V \ W and 1 < j < u.

(3) If the q -power of an element of F(j,W) belongs to the subfield

F(k,0)1 where W < V and k < j < co, then the element can be written

in the form

where c £ F, f and g are mutually prime polynomials over F and both

of them have leading coefficients 1> i < fe , W is a suitable finite

subset of W, and 0 < n < q for w £ W .

(4) K is a transcendental extension of F.
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(5) Each s-high element of K belongs to F whenever s is a prime
different from p3 q and r.

(6) Each p-high element of K is of the form a- (.z) , where o is a

p-high element of ?, t Eu and m is an integer.

Proof. First we prove the second and the third properties in the
case of finite W and 3 = k = 1. We prove by induction on the size of
the set W.

F(1,0) i s the quotient field of the polynomial ring F[ z],

therefore the third property is true in the case of W = 0 and
3 = k = 1. If the third property is true for W and 3 = k = 1, then
t € FttjW) would imply an equality of the form

gq(Qz)-Tv = oq-fq(os)^J (TJ W , if V £V\W.
wEW

However, this contradicts one of the conditions on the polynomials T .
w

But t $. F(1,W) yields the second property by Abel's theorem, for the

case of the same W and 3=1. Now suppose that both of the second and

the third properties are true for a finite W and 3 = k = 1!

Let V £ V\W , b £ F(1,W U {v}) and bq £ F(1J). As xq - T is

irreducible over F(1}W) by the assumption, b = e*(t ) by the first

lemma. Here a € F(1,W) and o" £ F(1,0) , so the form of a is known

by the assumption. Consequently b has the desired form, too. So we get

the third property for the index-set W U {u} and 3 = k = 1.

Second, we prove the first property in the case of finite W and

i = 0 , by induction on the size of the set W.

By Abel's theorem it is enough to show that z has no p -root in

F(1,W). The existence of a pth-root of QZ in F(1,0) would imply a

polynomial equation f ( z)' z = (?-p( z) , where / and g are mutually

prime. But this equation is a contradiction. The first lemma gives the

inductive step of the proof, as we have seen the irreducibility of

xq - T over F(1,W) for finite W.
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Third, we prove the first and the second properties. If we replace

the elements z, -Z, z with .z} . -z, . oz , then the

conditions remain satisfied in the third lemma. So the polynomials

x* - T and of - .z are irreducible over F(i+l,W) for finite W < V,

V € V\ W and i £ u. The reducibility of a polynomial over a field L

needs only finitely many coefficients from L, therefore a reducible

polynomial is also reducible over a suitable finitely generated subfield

of L. So we get the first and the second properties by an indirect proof.

Fourth, we prove the third property. As the polynomial 3f - .z is

irreducible over F(i+l,Vl) for i, £ to, the first lemma shows that if the

q -power of an element of F(i+2,W) belongs to F(i+l,W), then the

element also belongs to F(i+l}W). So if an element of F(1,0) has a

q -root in F(to3W) , then this q -root lies in F(13W). On the other hand

.z can play the role of z. Consequently we get the third property for
Lr O

finite j} k and W. Finally each element of F(j,W) belongs to a field

F(i+l,W) for suitable finite W < W and i < j.

Fifth, we prove the fourth property. Let x be an algebraic element

of K over F. Let L = Fix). The element s is transcendental over

L, since X is algebraic. All the other conditions of the third lemma

are also satisfied with respect to L instead of F. Therefore the

system 1, t . t , ... , t " form a basis of the field

extension L(u,W U {v})/L(u,W) for V € V\W , such that an element

belongs to F((A3W U {V}) if and only if the coefficients of the element

with respect to this basis belong to F(uyW). Consequently

x £ F(u,W U {v}) implies x G F(di,W)3 since the coefficients of x must

belong to F(u3W) and x € L < L(u,W). So x £ F(u,0). Therefore

x £ F( .z) for a suitable i- G u. But F( .z) is a pure transcendental

extension of F, so x € F.

Sixth, we prove the fifth property. Let x be s-high in K.

Clearly x G F(i,W) for a suitable i £ u and a finite W < V. Using

the first lemma and the first and the second properties we get that x is

s-high in F(i,W) too. Now we can apply the second lemma for F(i,W) ,
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so x 6 F.

Seventh, we prove the sixth property. Let x be a p-high element

of K. Then x G F(to,W) for a suitable finite W < V. By the first lemma

and by the second property x is p-high in the subfield F(m3W), too.

So it is enough to prove the following statement by induction on the size

of the set W-. "For finite W < V the p-high elements of F(ui,W) are of

the form c- ( .z) . " .
Is

If W = 0, then x G F(i+1,0) = F( .z) for suitable i G u. So

x = (.z) •(f( .z)/g( .z)), where m is an integer, .z \ f(.z) and

.3 I g( .z). Here (f(.z)/g(.z)) must be p-high in F(u,0). Suppose that
Is Is "V t-

there exists an element y G F(u}0)\ F(i+1,0) such that y? 6 F(i+1,0)

and some p -th power of y is f(.z)/g(.z).

Let k = max{n ; y $. F(n+1,0)}. By the first lemma and by the first

property y = (T,+-IZ) • (u(,z)/x>( z)), where u and v are polynomials

over F, and 0 < b < p. Now we arrive at the equation

1—1 7 7

(y?) -(u(kz))
P -g(jZ) = f(iz)-(v(kz))

P in the polynomial ring

Ff.z], Consider the powers of the irreducible factor ,z in that equation.

As .z is irreducible in F[ .z], therefore -z ]( f( .z) implies

(.z,f(.z)) = 1 in Ff.z]. So (.z,f( .z)) = 1 in Ff^z] too.
Is 1* 7s Is Is K

Consequently vz \ f(*z), and by a similar argument ,2 \ g( .z). The
K Is K Is

exponent of ,z in (,z) P •(u(,z))P -g( .z) is congruent to b'p3'

7 P*7'
modulo p , while the exponent of ,2 in f(.z)'(v(,z))^ is divisible

by p . This is a contradiction, and so the quotient f(.z)/g(.z) must

u "2-

be p-high even in F(i+1}0). Therefore by the second lemma

(f(.z)/g(.z)) 6 F, consequently x has the form c-(.z) , which we had to

prove.

Now we suppose that there exists a w G W and the statement is true

for W \ {w}. Let L = F(w,W \ {w}) and K = F(u,W). By the second
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property the degree of the extension K/L is q. Let N(d) denote the

norm of d with respect to K/L for d £ K. Only the following property

of the norm will be used: N is a multiplicative mapping from K into L

such that N(d) = S for d E L. For the details see L. Redei [7] and

B. L. van der Waerden [9], N(x) is p-high in L as x is p-high in K.

So the element y = xq/N(x) is p-high in K. Clearly y £ F(i+l,W) for

a suitable £ £ u. Suppose that there exists an element

u € F(u3W) \ F(i+l,W) such that vP € F(i+l3W) and y is a p^-th power

of u. Let fe = max{n : u $. F(n+l3W)}. By the first lemma and by the

first property u = h- (^+1z) , where h £ F(k+l3W) and 0 < b < p .

N(u) = N(h)-(N(k+1z))
b = N(h)-(k+1z)

hq . So N(u) §L F(k+l,W), as

N(h) £ F(k+l,W) and p I bq. On the other hand, N(y) is the p^-th

power of N(u) and N(y) = N(xq/N(x)) = (N(x) )q/N(N(x)) = 1. But this is

a contradiction, because by the fourth property N(u) £ F(k+l,W) implies

that N(u) is a transcendental element, while its p -th power should be 1.

Therefore y must be p-high even in F(z+l,W). Consequently by the second

lemma y £ F, and therefore yN(x) is a p-high element of L. So by the

induction hypothesis yN(x) has the form e- (,z) . Using the third
1s

property, we get:

f(.z)
c ( .z)m = y-N(x) = x* = £

* gq(,z)

(m/q)
T h i s i m p l i e s t h a t n = 0 , g( .z) = 1 , q\m a n d f(.z) = (.z)

So x also has the desired form: x = d' (.z) q . This completes the
if

proof of the third lemma.

THE MAIN LEMMA (FIRST PART). Let p3 q and r be three

pairwise distinct primes. Let F be a field of characteristic r.

Let Y be a set disjoint to F. Let f be a unary operation over 1,

where f is injeative and none of the powers of f has a fix-point.

Let E be a subset of F x Y such that <a,y> € E if and only if
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<ax\f(y)> £ £, and finally c £ F has an r -root in F whenever

<c,f(y)> £ E for some y £ Y.

B(y/ = \13 a, a : <.a}y> £ E}. Then the following property uniquely

determines a field denoted by F(E,(Y,f),p,q) :

"F(E,(Y,f)3p,q) is the extension of F generated by the set
R = {$ > t(b,y) : i £ to , b £ B(y) , y £ Y}, where:

(a) y is transcendental over the subfield F(X), whenever the subset

X of Y and the one element subset {y} of Y generate disjoint

subalgebras in the unary algebra (Yyf)

(b)

(c) (t(b,y))q = y - b

(t(b,y)f = t(br,f(y))

i £

b € B(y)

y e Y

IMPORTANT DEFINITIONS. On the set R we define a unary algebra

(R,g) as follows: g( .y) = .(f(y)) and g(t(b,y)) = t(br,f(y)) for

i £ (0 j b £ S('j//', and z/ £ Y. We will use the following occasional

nomenclature:

F(E,(Y3f)}p,q)

F(Ej (Y,f)yp,q)\F

Y

(Y,f)

(FSE3Y)

R

special extension

the skin of the extension

the variables of the skin

the unar of the skin

the bipartite graph of the skin

the roots of the skin

the unar of the roots.(R,g)

Let F(E,(Y,f),p.q) and F"(E",(Y",f"),p,q) be two special

extensions, where both of F and F" have the same characteristic. An

injective mapping m : F U Y • F" U Y" is called a pre-morphism,
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if the restrictions m F »- F" , m

and m : (F,E,Y) y (F"}E",Y") are field, unar and graph
FUY

homomorphism respectively. An injective mapping m : FUR *• F" U R"

is called a pre-homomorphism, if the restriction m FOY »• F"U Y"
F\)Y

is a pre-morphism, the restriction m : (R,g) • (R",g") is a

unar-homomorphism, m( .y) = .(m(y)) and m(t(b,y)) = t(m(b) ,m(y) ) for

i € 0) , b 6 B(y) , and y 6 Y. A field homomorphism of F(E,(Ysf),p,q)

into F"(E",(Y"Jf")3ptq) sending the subfield F into F" and sending

the subset R into /?" , is called a speoial-homomorphism. If the two

special extensions are the same, then we use the expression "endo" instead

of "homo".

THE MAIN LEMMA (SECOND PART). Let us take two special extensions:

F(E,(Y,f),p,q) and F"(E"3(Y",f"),p,q), where each of the sets A(y) and

A(y") is algebraically independent over the primefield for y £ Y and

y" £ Y". Then the following statements hold:

(a) For each special homomorphism h of F(E>(Y,f),p,q) into

F"(E",(Y"3f")3p3q) the restriction h is a pre-morphism, and

the restriction h
FUi?

is a pre-homomorphism.

(b) Each pre-morphism has a unique extension among the special

homomorphisms.

(c) The category whose objects are the special extensions and whose

morphisms are the special homomorphisms is naturally equivalent to

the category whose objects are the special extensions and whose

morphisms are the pre-morphisms.

Proof of the first part of the main lemma. First of all we fix a

well ordering (Y,O of the variables. For y 6 Y let

K = F ({.y,t(b,y) : i 6 u , b e B(y)})3 where F = F({.u3t(b3u) : i £ u >
y y i y <-

b £ B(u)> u£Y and w<j/}J.The special extension F(E3 (Y,f),p3q) must be

the union of the ascending chain of the subfield K , so it is enough to
prove the unique existence of the subfields F and K by transfinite

*7 ij
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induction on y £ (Y}<).

If y £ Y is the least element of (Y,O , then F must be F.

If y is not the least element of (Y,<), then F must be

U{if : u £ J M < J / } , where the subfields X form an ascending chain.

Finally we show that K uniquely exists, if F does the same. Here we
is is

have three cases:

First case : the variable y belongs to the subalgebra generated by

{u : u £ Y u < y} in (Y,f). So there is a u < y and a j £ (0 such

that y is the J*-*1 image of w under the operation f. By the conditions

.y must be (.u) for i £ u , and t(b,y) must be (t(—\/b,u))

for fc £ 5fj/;. so in this case K = F .

Second case : the variable y does not belong to the subalgebra generated

by {u : u £ Y u < y) in (Y,f) , but the subalgebras generated by

{M : w £ Y u < y} and {y} are not disjoint. So there is a u < y

and a (7 / j £ 0) such that M is the j image of y under the operation

f. So F (y) must be the pure inseparable extension of F by the
-y "

polynomial (x) - u. Now .y must belong to F (y) as the element

J.u does for i £ u , and t(b,y) must belong to F fj/J as the element
,u) does for i> £ B(y). So in this case K = F (y).

Third case : the subalgebras generated by {u : u £ Y u < y) and by {y}

are disjoint subalgebras of (Y,f). So y is transcendental over

F({u : u £ Y u < y}). On the other hand F is an algebraic extension

y
of i"Y{M : M £ Y u < y}) , therefore y i s transcendental over F .

y
By the conditions (. .yr = .y for i £ u. The elements

y - b = (t(b,y)fl are polynomials from the polynomial ring F [y] for

b £ Bfj/J , where none of them is a constant, none of them is divisible by

y , none of them has a multiply factor and they are mutually prime. So

the third lemma can be used for the extension K of F . By the first

property F (•+-,y) must be the simple algebraic extension of F (.y) by
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the irreducible polynomial a? - .y for i £ u. Further F ({ .y : i £ to})

% y i

must be the union of the ascending chain

F < F (y) < F ( y) < F ( JJ) < < F f .y) < ... . Now we fix a
y ~ y ~ y 1 ~ y * ~ ^ ~ y i ~
well-ordering (B(y),O. Let F = F At(b,y)) , where

F h = F ({t(e,y) : o G B(y) c < b)) for b £ B(y). Clearly K must be

y® y s y

the union of the ascending chain of the subfields F , so it is enough

< <
to prove the unique existence of the subfields F , and F , by trans-

yb yb

finite induction on b € (B(y),<). If & € B(y) is the least element of

(B(y),O, then F . must be F . If b is not the least element of

(B(y)3<), then F\ must be V{F~ : a € B(y) o < b] , where the

< y° yc
subfields F form an ascending chain. Finally by the second property
F r~ must be the simple algebraic extension of F\ by the irreducible

q
polynomial x - (y - b). This completes the proof of the first part of

the main lemma.

To prove the second part of the main lemma we need the following

four sublemmas. The first three sublemmas have a common condition:

"Let us take a special extension F(E,(Y,f)sP^q) , where each set A(y)

is an algebraically independent system of elements over the primefield,

for y € Y." .

FIRST SUBLEMMA. Let Q(x) denote the following sentence: "There exists

a non-zero element u in F and an element w in F(E,(Y,f),p,q) \F,

where w is p-high in F(E,(Y,f),p,q), w-u is the q -power of an

element v of F(E,(Y,f)3p,q), and x = u/w ." .

Then Q(x) is equivalent to the following: "The bipartite graph

of the skin has an edge <a,y> such that x € {1/y , a/y , a /y) . " .

Proof. First of all we fix a well ordering (Y,<) of the variables.

Now we use the same notation as in the proof of the first part of the main

lemma. Suppose that x is an element satisfying

Q(x) \ Set z = min{y : W is algebraic over K }. Clearly w is

transcendental over F , consequently z is transcendental over F .
z z

Let Y = {y : the subalgebras generated by {y} and {2} in (Y}f) are
z
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not disjoint}. By the fourth property the algebraic hull of K in the
z

special extension is F ({R : y € Y }) , where
z y z

R = {-y^tib^y) : i e u . H B(y)} for y £ Y . Since w belongs to this
y •*• z

algebraic hull, there exists a y € Y such that W € F (R ) but
z z y

W $. F (R~, ,). As the algebraic hull in question is a pure inseparable
z j\y>

extension of F (R ) , W is p-high in F (R ) and (w - u) € F (R )

yields v € F (R ). So the third lemma can be used for the extension
2 y

F (R) of F , since y must be transcendental as the element z is.
z y z

k
So w = e-(.y) , where e is a non-zero p-high element of F , i £ u

i* z

and k is a non-zero integer. I t can be supposed that p|k occurs only

if i = 0. Further

where 0 ̂  a £ F , G and H are mutually prime polynomials over F
Z 3

a n d b o t h o f t h e m h a v e l e a d i n g c o e f f i c i e n t s l 1 n E u i b ^ , b 0 — b
± Cl ft

are different from each other element from B(y) , and 0 < k . < q for
3

j = 1, 2 ... n . Set t = .y. According to the sign of k we get one of

the following equations in the polynomial ring F it]:

i i
}fl(t)-(e-tK - u) = ei-CpUl-dP - b2) • . . . • (1? - bj i f k > 0

Hq(t)-(e-(t~k)'u)=oq-Gq(t)- (t~k)-(tv - b2)- • • " (tp -bn)x£ k<0 .

r\k would imply that W € F (R~. J , therefore r\k . By the assumptions
3 j (yj

none of the elements e, u, b~, b0 ... b is zero. Therefore each of the
J. Ci ft

binomials occurring in the equations is a proper binomial. So none of

them has multiply factor, as r j(k and r)(p . In both cases

divides the binomial standing at the left side, so G^(t) = 1. In the

q
first case a similar argument shows that H (t) = 1. In the second case
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we get only that H (t) =j= t . But e £ 1 yields that t \lf (t) , so

q —k

H (t) = t . Consequently q\k if k < 0. Now in both cases the degree

of the left side is |fe| , and the degree of the right side is n-p .

So n ̂  0 and i = 0 , since k ̂  0 and i ̂  0 implies pl(k. Now

n = 1 , since the quotient of any two different elements of B(y) is

never an nth-root of unity. The second case is impossible as q\k = -n =-1.
q

So the only possible case is the following: e-y - u = c (y - b).

Consequently we have that x = u/(ey) = b./y. The other direction of the

equivalence is trivial. This completes the proof.

SECOND SUBLEMMA. Let E(a,y) denote the following sentence: "The

two elements a and y are transcendental over the primefield,

Q(l/y) , Q(asy) and Q(a
U/y)." .

Then E(a,y) is equivalent to the following: "<a,y> is an edge of

the bipartite graph of the skin. " .

Proof. Let the elements a and y satisfy E(a,y)l Then by the

first sublemma there are variables y, and elements bh 6 B(yv) , such that

ak/y = bk/yk for k = 0, 1, 11. The equation (a/y)11 = (l/y)10-(aU/y)

implies that:

hll h10 .
hl h0 bll
11 10 yu

As the elements £>, are different from zero, each of these three variables

y-, is algebraically dependent from the two others over F. So by the

structure of the variables we get that yg = (y.) and y~* = (y•,) ,

where i and j are integers. Consequently lOr + rr - 11 = 0 , since

(lOr1 + rP - 11)y- 6 F and y is transcendental over F.

r" = ((11 - r°)/10) < (11/10) < 2 implies that i < 0. Suppose that

i < 0. Then r3 = (11 - lOr1') > (11 - 10) = 1 implies j > 0.

Consequently the element lOr = 11 - tr must be an integer, so i = -1

and r £ {2,5}. But the equation r" = 11 - 10/r is a contradiction if
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r £ {2^5}. So i must be zero. Therefore by 1? = (11 - 10r°) = 1 the

element j must also be zero. This means that y~=y~=y~- , and

therefore i>7 = £>„ .£>77 . Here the algebraic independence of A(y-)

implies the existence of a suitable O £ A(y^) such that

{b.^b ,b~A < {l,c,c }. On the other hand i>_ , b. and £>7 are three

pairwise distinct elements, because the three quotients 1/y, a/y and

a /y are also pairwise distinct. Consequently <£>_.,i>7j£>77> is a

permutation of <l,c,c >. So we have to solve the equation lli = 10j + k

where <•£.,</.,&> is a permutation of <0,lyll>. The only solution is:

i=l,0=0,k=ll. So we arrive at the equations l/y = l/y~ ,

a/y = c/y and a /y = c /y-. Consequently y = y7 is a variable, and

a = c € B(y~) = B(y). The other direction of the equivalence is trivially

true. This completes the proof.

THIRD SUBLEMMA. Let V(y) denote the following sentence: "y 5* 0,

and Q(l/y)} and for all a and z from F(E,(Y,f),p,q), E(a,z) implies

that both of (a/z) and (a /z) are different from (l,y)." .

Then V(y) is equivalent to the following: "y is a variable of the

skin." .

Proof. Let y be an element satisfying V(y) ! So by the first

sublemma (l/y) = (b/u) , where u is a suitable variable of the skin

and b £ B(u). If A(u) = 0, then B(u) = {1} , and therefore b = 1.

If A(u) ̂  0 , then for a £ A(u) E(a,u) and E(a ,u), and therefore

both of (a,u) and (a /u) are different from (b/u). So even in

the case of A(u) ̂  0, the only possibility is b = 1. Consequently in

both cases y = u is a variable. The other direction of the

equivalence is trivially true. This completes the proof.

FOURTH SUBLEMMA. Under the condition of the second part of the main

lemma, suppose that a given homomorphism h of F(E,(Y,f),p,q) into

F"(E",(l",f"),p,q) maps the subfield F into F" ! Then the following

implications hold:

(a) if h(x) £ F" and Q(x) , then Q"(h(x))

(b) if h(y) £ F" and E(a,y) 3 then E"(h(a),h(y))
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(c) if h(y) f F" and V(y) , then Q"(l/h(y))

(d) if none of the sets A(y) and A(y") is empty, then if

h(y) £ F" and V(y) , then V"(h(y)).

Note: in particular, each of these implications holds if h is a

special homomorphism.

Proof. (a) The validity of Q(x) is certified by suitable elements

u, V and w. The images of these elements certify the validity of

Q"(h(x)) , since h(w) £ F" by the assumption h(x) £ F".

(b) We have only to use the definition of E(a,y) and the implication

(a) of the present sublemma.

(c) We can use the implication (a), since V(y) implies Q(l/y).

(d) If none of the sets A(y) is empty, then V(y) is equivalent to the

formula 3a(E(a,y)). Using this equivalence and the implication (b)

we get the implication (d) . This completes the proof.

Proof of the second part of the main lemma. (a) Let y be an

arbitrary variable from Y. Using the first sublemma and the implication

(c) of the fourth sublemma we get h(y) = x/b, where x £ Y" and

b € B(x). But h(y) £ R" implies that b = 1. Consequently each special

homomorphism maps the set Y into Y". Clearly the restriction h

is an injective mapping into F" U Y" , and h

FVY
is a field homomorphism

F

of F into F". The implication (b) of the fourth sublemma shows that

is a homomorphism of the bipartite graph (F,E,Y) into
F UY

is a unar homomorphism of (Y,f) into (Y',f"), since

h(f(y)) = h(yr) = (h(y))v = f"(h(y)). So the restriction h is
F UY

really a pre-morphism.

The restriction h is really a unar homomorphism of (R,g) into
R

(R",g"), since h(g(.y)) =h((.y)r) = (h(.y))r = g"(h(.y)) and
It I* is u

h(g(t(b,y))) = h((t(b,y))r) = (h(t(b,y))f = g"(h(t(b,y))). For b £ B(y)

(h(t(b,y)))q = h((t(b,y)q)) = h(y - b) = h(y) - h(b) = (t(h(b),h(y)))q ,
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therefore (h(t(b,y))/t(h(b),h(y)))q = 1. But both elements of the quotient

belong to R" , so they must be equal. Now we prove that h( .y) = .(h(y))

for i 6 u. The case of i — 0 is clear, now we proceed by induction on

i. (h(i+1y))P = h((iri_1y)P)=h(jy) = ^My)) = (i+1(h(y)))
P , therefore

Ch(-.-,y)/-+1(h.(y)))V = 1. But the quotient of two different elements from

R" is never a p -root of unity. So h(. ~y) = . Ah.(y)). Summing up,

we have proven that h
F UR

is a pre-homomorphism.

(b) The uniqueness of the required extension is clear since the set R

generates the field extension F(E}(Y}f)1p,q)/F, further the restriction

to FOR of any possible extension must be a pre-homomorphism and this

pre-homomorphism is uniquely determined by the given premorphism. So the

only problem is the existence of the extension.

Let K be the subfield of F"(E"}(Y",f")}p,q) generated by the

range of the pre-homomorphism generated by the given pre-morphism. By

the first part of the main lemma there is an isomorphism of

F(E,(Y,f),p}q) onto K, which is an extension of the given pre-morphism.

On the other hand there exists the natural embedding of K into

F"(E",(Y",f"),p,q). But the composition of that isomorphism and this

natural embedding is just the special homomorphism we need.

(c) The restriction of the special homomorphisms to F U Y is an identity

and composition preserving bijection between the special homomorphisms

and the pre-morphisms. This completes the proof of the second part of

the main lemma.

Proof of the theorem which can be found in the abstract. The endo-

morphism monoid of a field is always right cancellative, since the

endomorphisms of fields are injective. The transformation sending each

element into its r^h-power is always an endomorphism, the so-called

Frobenius endomorphism. The Frobenius endomorphism always belongs to the

centre of the endomorphism monoid. If the order of the Frobenius endo-
v

morphism is finite, say k , then each element is equal to its own v -th

power. Consequently the field must be finite in this case. But the endo-

morphism monoids of finite fields are finite cyclic groups.

Conversely if M is a finite cyclic group of order k , then it is
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isomorphic to the endomorphism monoid of the finite field having Y

elements. So it remains to prove that if M is a right cancellative

monoid having an element cp of infinite order in its centre, then there

exists a field F of characteristic r having an endomorphism monoid

isomorphic to M.

The right multiplication by (p induces a unary operation f over

M such that the non-identical polynomials of the unar (M3f) are

injective and they have no fixpoints. We fix an undirected graph (M}E)

having no non-trivial endomorphism and having no loops, see P. Vopenka

and A. Pultr and Z. Hedrlin [8]. Now we define an infinite ascending

chain of fields:

F < F < F <
- 2 - 3 -

< F. <
— % —

i £ a).

Let F„ be the prime field of characteristic r. Let

= F i ( E i ' a i > f i ) > P i > q ) W h e r e r> q' V0> Pi' P2> ••• ' Pi > •••

are pairwise distinct primes, and the unarsand the bipartite graphs of

the skins are defined as follows:

= {0} x M
{0}

= {1} x M x M x -id X f

M

E = : m € M and n € M)

Y = {2} x E x M id
{2}

f

= {«l,u,m>,<2,<u3v>sm», «2JuJm>J<2J<wJu>J

«j0,m>,<2,<u,V>,m» :<u,v> £ E and m £ M]

y = {3} x M f3-id
{3}

f

https://doi.org/10.1017/S0004972700002070 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700002070


Endomorphism monoids 353

E. = {«O,rri>,<5,rri» -. m € M}

V = <U3f)

{«O,m>,rri> : m £ M}

= {5} x M x U fs= id
{5}

id
M

Ec = {«0,n>1<5,m1n» , «l1m,m-n>, <5,m,ri» , «31m-ri>J
o

«4Jn>)<S,m,n» -. m € M and n 6 M)

Let (R.g.) denote the unar of the roots of the "i -skin"

= (M,f)

E = {<n3<m1t» , <t3<m,t» : m £ M and t E R }

, <t,<nJt» -. n £ MQ and t £ R .

Let F be the union of the above defined ascending chain of the

fields F. .
i

Now we prove that M is isomorphic to the endomorphism monoid of

F. Let h be an arbitrary endomorphism of F. Each subfield F. is

mapped into itself by h for i £ u because F is the prime field and

F. 7 is the algebraic hull with respect to F of the subfield generated

by F. and the p .-high elements of F. None of the variables from Y.
Lr Is %,

is mapped into F. since the variables from Y. are p.-high and each
% 1 %
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p .-high element belongs to the i skin. So the implication (b) of the

fourth sublemtna can be used for the extension F_ . of F . , and

therefore the set R. is mapped into itself by h. Summing up: we have

proved that each endomorphism of F can be restricted to the subfield

F. - and this restriction is a special endomorphism of the special

extension F. _/F. . So the second part of the main lemma can be used

for these restrictions of the endomorphisms of F.

Let e be the unit element of the monoid M. So h(e) is again an

element of M since Y is mapped into itself by h. Therefore we have

a mapping Q •. End(F) >• M , where Q : h i >• hie). We want to show

that Q is a monoid isomorphism.

First we prove that Q is surjective. Let n 6 M be arbitrary.

We construct an ascending chain of endomorphisms

h. < h^ < hn < < h. < ... i € u , where h. is an

endomorphism of F.. Let h. be the identity of Fn. Using the second

part of the main lemma we define h. - as follows: let h. - be a

special endomorphism of F. - such that h. - is an extension of h.

v+1 i+l t

and the action of h. - on the variables of the i skin is defined

below:

(1) h— <0,m> i >• <O,m-n>

(2) h2: <l,k,m> . • <l,k,m-n>

(3) h : <2,<u,v>,m> i >• <2,<u,v>,m-n>
6

(4) h -. <2,m> i 1- <3,m-n>

(5) h- -. m i • wn

(6) h. : <L5,k.rri> • >- <L5,k,nfri>
b

(7+j) fe,,. : <m,t> i >- <ha^.im),he.it)> for j £ u.
r+3 o+j b+3

Let h be the union of the above defined ascending chain of endo-

morphisms. Clearly Qih) = n .
Secondly, we prove that Q is injective. By the second part of the
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main lemma i t is enough to prove that the restrictions h. of h to the
If

subfields F. satisfy the conditions (1) (2) (7+j) ... given

above whenever h(e) = n. Observing the bipartite graph (FOJEe.JYe>) we
Q u a

see tha t h maps the se ts {1} * M x M and {2} x {<u3v>} x M in to

i t s e l f for m £ M and <u,V> £ E. The b i p a r t i t e graph (F^^E^YJ
b O b

yields the condition (4) . Consequently the bipartite graph (F',E7,Y,,)

c o o

yields the condition (1). The remaining conditions are easy consequences

of the condition (1) and the structure of the bipartite graphs of the

skins.

Thirdly, we prove that Q preserves the monoid structure. The

condition (5) shows that each endomorphism h induces a right multiplic-

ation on the monoid M by the element hie) , so Q preserves the

multiplication. On the other hand Q(id) = e. This completes the proof

of the theorem.
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