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Small sets with large power sets

G.P. Monro

One problem in set theory without the axiom of choice is to find
a reasonable way of estimating the size of a non-well-orderable
set; in this paper we present evidence which suggests that this
may be very hard. Given an arbitrary fixed aleph K we
construct a model of set theory which contains a set X such
that if Y c X then either Y or X - Y is finite, but such
that K can be mapped into S[s[s(X))) . So in one sense X
is large and in another X is one of the smallest possible
infinite sets. (Here S(X) is the power set of X .)

1. Preliminaries

We work in Zermelo-Fraenkel (ZF) set theory, without the axiom of

choice but with the axiom of foundation.

Notations. If f : X •*• Y and A <z X then:

f'A = {y : (3x i A) {fix) = y)} ;

X *> Y means that X can be mapped onto Y ;

A A B = A u B - (ArB) .

We write \x\ for the cardinal of X , S(X) for the power set of

X , SK(X) f o r {Y <=X : \Y\ < K] , X^ f o r {Y c X : \Y\ = n ) . A B

is the set of functions from A into B ; BA = \AB\ . 'X ±s f in i te 1

means that X has n elements for some n < to .

Relative construct ibi l i ty . We write L for Godel's constructible

universe. If X i s a t ransi t ive s e t , L(X) i s the smallest t rans i t ive
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proper class which contains X and satisfies ZF. It can be shown that,

inside L(X) , any element of L{X) can be defined from X , an element of

L and a finite number of elements of X .

If X is not transitive, by L{X) we mean L[TC(X)) , where

T C U ) = {X} u X u (UX) u (UU*) u ... .

TC(X) (the transitive closure of X ) is the smallest transitive set with

X as a member.

Forcing. We follow Shoenfield [3], but adopt a different convention

for names in the forcing language: for x € M we take x as a name for

a; , and we take G as a name for G . We adopt from [3] the notation

HK(A, B) for

{/ : dom(/) e SK(A), ran(f) c B) .

We note the following symmetry lemma.

LEMMA. Let M be a countable transitive model of ZF, P € M a

notion of forcing, IT € M an automorphism of P and <p(U(-,» U-,J &

ZF-formula. Then

p | | - <p(G, x) •*->• -n'^-p ||— <P(TT"G, * )

where x 6 M and p € P .

2. Dedekind-finite sets

In this section al l proofs are carried out in ZF; no use is made of

the axiom of choice.

A Dedekind-finite (DF) set is defined to be a set not equinumerous

with any of i ts proper subsets; a DF cardinal is the cardinal of a DF set.

In the absence of the axiom of choice infinite DF sets may exist.

LEMMA 2.1. The following are equivalent;

(i) X is DF;

(ii) \X\ t \X\ - 1 ;

(Hi) w ^ |x| .
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LEMMA 2 . 2 . For an arbi-trary set X 3 u> <* X iff u 5 2X .

Proof. This is due to Kuratowski ( [ 4 ] , p . 9U-95). We say a set X

i s quasi-minimal (QM) if X is inf ini te but has only f in i te and cofinite

subsets (7 c X i s cofinite i f X - Y is f i n i t e ) . Clearly a QM set is

DF; in fact i t i s obvious that X QM •* X *% 0) .

The name 'quasi-minimal1 (due to Hickman) arises as follows. By Lemma

2.1 (ii) the only cardinal minimal among the inf in i te cardinals is u .

However we put an equivalence re la t ion on inf in i te cardinals thus: m = m'

i f there is n < (0 such that ei ther m + n = m' or m' + n = m . Write

[m] for the equivalence class of m , and set [m] 5.. [m1] i f m 5 m' .

Then [m] is minimal under the pa r t i a l order £.. i f f m = w or m is

QM.

LEMMA 2.3 . If X *i ui and « < to ifeen X t n ] *£ u .

Proof. I t i s straightforward to prove that i f 1 *^ U) and Z *^ o>

then J K Z ^ f f l . So Z2 ^ co , and t r i v i a l l y Z1 *> X^ .

THEOREM 2.4. Let I i e QM, K an aleph.

(i) K S |x | •+• K < u .

K S |5(S(AT))| •* K 5 2 U .

Proof. Since X *£ u i t follows from Lemma 2.2 that AT and

are both DF, which establishes (i) and (ii) .

We note that \S(X) \ = 2. |S (Z)| ( this may be seen by associating

each inf ini te subset of X with i t s complement), and so

|S(£U)) | = \S[SJ,X)}\2 . To establish (Hi) i t then suffices to show

< \S(SJX))

2
For if A is an aleph, m any infinite cardinal and \ £ m , then

X £ m (see [2], Lemma 6.13, p. 55).

Suppose then that f : K -*• S[SJ,X)) is one-to-one. Set
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/ n ( a ) = / ( a ) n X^n' . Now {f (a) : a € K} c 5 ( r ' ) , and by Lemma 2 .3 ,

X •• *̂  (0 , so by Lemma 2.2 , s[x ') , and thus {/ (a) : a € K} , is DF.

However {/"n(
a) : a € K} has a canonical well-order and so is f i n i t e , and

can be canoni cally mapped into (0 . Combining these canonical maps for

each n yields a one-to-one map of A = {f (a) : a € K and n < u} into

(i) x u) . Now / ( a ) i s determined by (/ (a)J < , which is an w-sequence

of elements of A , and so /(a) can be associated with an element of

(u)X(ij) . I t follows that K can be mapped one-to-one into W(wx<jj) , and

so K < 2

3. A large QM s e t

In this section we construct the model promised in the abstract.

;I!heorem 2.1* shows why we have to look at S(S(S(Af)]) rather than some

smaller power of X .

Let M be a countable transitive model of ZF + V = L , K a

(successor aleph) . Then M (=• 2 = K for some aleph X of M . We take

as our notion of forcing, with the partial order defined

by p S q iff p 2 Q • Let G be generic over M with respect to this

notion.

LEMMA 3.1. (i) M and M[G] have the same oofinality (cf) function

and the same alephs.

(ii) For a < K and x i M , ("xf = [axf[G] .

Proof. We note that K is (regular) . We assume the terms

'p-closed' and 'y-chain condition1 from [3], §10. Our notion of forcing

satisfies the K -chain condition (by [3], Lemma 10.3) and is K-closed, so

our results follow from [3], Lemma 10.2, and Lemma 10.6 and Corollary.

We now work in M[G] unless otherwise stated. For f 6 2 set

G(f) = U{p(f) : p € G} . Note that by p(f) we mean
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{<a, B> : <</, a>, B> (. p) . Set G* = {G(f) : f i X2} . It can be shown

by standard

f t g then

by standard arguments that each G(f) is a member of 2 and that if

{i < K : {G(f))(i) * [G{g))(i)}\ = K .

For r iK2 s e t

[ r ] = {s <E K2 : \{i < K : s{i) t

Set X = { [ r ] : r € G*} . Define for a < X ,

a ]} : / , / ' € X2, / ' ( a ) = l -

.. and / ' ( g ) = /(B) for B * a} .

Then Y is a par t i t ion of X into disjoint two-element subsets, and

a / B * Ya n Y& = 0 . Set

Y = {X : K i s a par t i t ion of ^ into two-element subsets

and K-Y i s f in i te for some a < X} ,

Z = {(K, a> : K d Y and K-Y is f ini te} .

The model which is to contain the large QM set is N

The motivation of the construction is as follows. If we set

N' = [L(X))M*-G* i t can be readily shown that N' (= X is QM. In

constructing N we add enough sets to N' to make X large in the

desired sense, but not enough to destroy the quasi-minimality of X .

LEMMA 3 .2 . (i) M, N and M[G] have the same cf function and

alephs.

(ii) For a<< and x iM , (axf = (axf = [ax)M[G] .

(Hi) N h 2X = K .

Proof. (i) and (ii) are immediate from Lemma 3 .1 , since

Me JVC M[G] ; (iii) i s essential ly just a special case of (ii) .

THEOREM 3.3. J h i t s \s[s{s(x)))\ .
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Proof. Clearly in N , I c s ( r ' ) , and also Z : Y ->• X is onto.

So Nb* S[S{X)) *> \ . I t follows that

and the resu l t follows by Lemma 3.2 (Hi).

We now look at TC(Z) . If x € TC(Z) then either a; = Z or

a; = <K, g> for some K € J and 3 < A. or z € Y or . . . or x Z M .

I t can easily be seen that in a l l cases ei ther x = Z or a; i s codable by

(at worst) some Y , a f in i t e number of elements of G* and an element of

M . We r e c a l l from §1 that inside N every element of N i s definable

from TC(Z) , an element of M (= (L) J) and a f in i te number of

elements of TC(Z) . By using the coding Just mentioned we have that

inside N any element of N is definable from Z , a f in i te number of

Y ' s , a f i n i t e number of elements of G* , and an element of M (as

TC(Z) i s definable from Z ) .

We proceed to a continuity lemma, but f i r s t introduce some notation.

Suppose A i s a s e t , s cA and f : A •*• 2 . We define f : A •* 2

thus:

f[a) = f(a) if a $ s ; / ( a ) = 1 - /(a) if a (. s .

LEMMA 3.4. Suppose that

I n

where x (. M and f ? fi for 1 5 •£ 5 m and any s c {a , . . . , a }

Let g € 2 2?e any function suah that g # j . / o r 1 5 t 5 m and

iVHcp^Z, Ya Sa , G[fx) G[fJ, x,

Proof. Let if/ be a formula such that
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ty 'describes' the construction of Z, Y , and so on, from G and also

relat ivizes <f> to the class N . Here y £ M . Take p € G such that

p | |- ip(G, 2/) . Set, for s c {o^, . . . , an} ,

Bs ='{i € dom(p(/)) : p(gS, i) *

Then A , B e S (K) and so by Lemma 3.2 CiiJ , il , B t M .
G S K So

For i4 € 5 (K) we define an automorphism a. of 5 (K, 2) thus:

(pA{t))(i) = 1 - t ( i ) i f t E dom(t) n "̂1

for H fl (K, 2)

[aA(t))(i) = t ( i ) i f i f dom(t) - A )

and dom(a.(t)) = dom(t) .

We define an automorphism ir of H (( 2]XK, 2] thus:

for s

Then IT € A/ , and

for h. ± f, gS for any s c {a ,

i^p) [f] = aH [p(gs))

= p(h) ceKh) (for h t f, g8) .

- 1I t follows t h a t IT p £ G . Now p ||— i|i( G, y) , so by the symmetry lemma

- 1of §1, TT p \[- I/)(TT"G, !/) , whence

https://doi.org/10.1017/S0004972700042702 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700042702


420 G.P. Monro

M[G] h <KIT"C, y) .

Now

gS(G[gS)) ,
s

s

= G(h) , h * f , gB for any s c {a±, ..., a j .

So [(V'GH/)] = tG{gS)] , [(*"G)(gS)] = [G(f]] , and

[U"G)(7i)] = [G(h)] for h * f, gS .

Thus the change from G to IT"G leaves .£ , and thence Y and Z ,

unchanged, leaves G[f ) , ..., G[f ) unchanged and carries [G(/)] to

[G(g)] . Take a € {c^, . . . , an} ; for s c {^ a^} set

s' = s A {a} . Then { [ G ^ ) ] , [ G ( / ' ) ] } € J Q and

i[G(ffS)] ' [G(?S )]1 e y
a • ^ e change from G to ir"G carries each of

these pairs to the other, so I i s carried into i t se l f .

In conclusion

MlG] 1= *(TT"G, y) ^ N\= cp[z, Ya , . . . , Ya , G ^ ) , . . . , G ( / J , x,

Since M[G] t= tp(TT"<7, y) , the proof is complete.

THEOREM 3.5. N t= X is QM.

Proof. We work in N . Suppose that

N \= A i s an inf in i te subset of X .

By the remarks after Theorem 3-3 we may assume that A is defined in terms

of Z, y , . . . , 1 , G[f), . . . , G[f) say, and x € M . Take
1 n

a € A - { [ 4 / ^ 1 ] : l S i 5 m and s c { c ^ , . . . , a U . Now a = [ G ( / ) ]

for some / , so the sentence 'a € <4' may be written in the form
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y , .... y , c(/), .... G[fJ, x,
1 n

Application of Lemma 3.** shows that

( .^]] : i s i s m and s c {o^,

so Nh A is cofinite.

In conclusion we have shown that for K an arbitrary aleph i t i s

possible to have a QM set X such that K < |s(S (£(#))) | • This resul t is

one of a ser ies : Hickman [ ) ] and the author (PhD thes i s , University of

Bris tol , 1971) have independently shown that i t is possible to have a DF

set X such that K < \S(X) | (again for K an arbitrary aleph); indeed

Hickman obtains K < \x \ . Also the author (unpublished) has shown that

i t is possible to have a set X such that X *%. 10 (whence by Lemma 2.2,

S(X) is DF) but such that K < | s ( s U ) ) | . I t should be emphasised that

none of these results have anything to do with the possibi l i ty that 2

can be large; in a l l the models concerned i f K, X are alephs then
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