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Small sets with large power sets

G.P. Monro

One problem in set theory without the axiom of choice is to find
a reasonable way of estimating the size of a non-well-ordersable
set; 1in this paper we present evidence which suggests that this
may be very hard. Given an arbitrary fixed aleph K we
construct a model of set theory which contains a set X such
that if Y € X then either Y or X -~ Y is finite, but such
that K can be mapped into S(S{S(X))) . So in one sense X

is large and in another X is one of the smallest possible

infinite sets. (Here S(X) 1is the power set of X .)

1. Preliminaries

We work in Zermelo-Fraenkel (2F) set theory, without the axiom of

choice but with the axiom of foundation.
Notations. If f : X+ Y and A< X then:
f'a={y : (3x € A)(fl=) = y)} 5
X *> Y means that X can be mapped onto Y ;
AasaB=AUB - (4MB) .
We write |X| for the cardinal of X , S(X) for the power set of

X, 5.x) for {¥cx: l¥] < «}, x["] for {Y¥cx: |¥] =n}. 4p

is the set of functions from 4 into B ; BA = IABl . 'X is finite'
meens that X has 7 elements for some n < w .

Relative constructibility. We write L for Godel's constructible

universe. If X is a transitive set, L(X) is the smallest transitive
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proper class which contains X and satisfies ZF. It can be shown that,
inside L(X) , any element of L(X) can be defined from X , an element of

L and a finite number of elements of X .
If X is not transitive, by L(X) we mean L(TC(X)) , where
TC(x) = {X} uXx u (Ux) u (ULUX) u ... .

TC(X) (the transitive closure of X ) is the smallest transitive set with

X as a member.

Forcing. We follow Shoenfield [3], but adopt a different convention
for names in the forcing language: for &« € M we take x as a name for
x , and ve take G as a name for G . We adopt from [3] the notation
HK(A, B) for

{r : dom(F) ¢ SK(A), ran(f) < B}

We note the following symmetry lemma.

LEMMA. Let M be a countable transitive model of ZF, P €M a
notion of forecing, M € M an automorphism of P and w(vo, vl) a

ZF-formula. Then

p I ¢(G, z) « ﬂ_lp = o{(1"G, x)

where x € M and p € P .

2. Dedekind-finite sets

In this section all proofs asre carried out in ZF; no use is made of

the axiom of choice.

A Dedekind-finite (DF) set is defined to be a set not equinumerous
with any of its proper subsets; a DF cardinal is the cardinal of a DF set.

In the sbsence of the axiom of choice infinite DF sets may exist.
LEMMA 2.1. The following are equivalent;
(i) X s DF;
(it) x| # |x| -1

(iii) w % x| .
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LEMMA 2.2. For an arbitrary set X, w=*X 1iff w= X

Proof. This is due to Kuratowski ([4], p. 94-95). We say a set X
is quasi-minimal (QM) if X is infinite but has only finité and cofinite
subsets (Y € X is cofinite if X - Y is finite). Clearly a QM set is
DF; in fact it is obvious that X @M > X *} w .

The name 'quasi-minimal' (due to Hickman) arises as follows. By Lemma
2.1 (Z71) the only cardinal minimal among the infinite cardinals is w .
However we put an eguivalence relation on infinite cardinals thus: m = m'
'

if there is 7 < w such that either m+ n=m' or m' +n=m . Write

[m] for the equivalence class of m , and set [m] =N (m'] if m=m'
Then [m] is minimal under the partial order = iff m=w or m is
QM.

LEMMA 2.3. If X *# w and n <uw then ] 3w,

Proof. It is straightforward to prove that if Y * w and Z *# w
then Y xZ * w. So X' * w, and trivially x* *= x")

THEOREM 2.4. Let X be @M, « an aleph.

(1) ks |X| «x<w.
(it) x = |S(x)] ~ k< w.
(iii) k= |S(S(0)]| »k=2¥.

Proof. Since X *} w it follows from Lemma 2.2 that X and S(X)
are both DF, which establishes (%) and (ZZ).

We note that |S(X)]| = 2.|Sm(X)| (this may be seen by associating
each infinite subset of X with its complement), and so

Is(5(0) | = |s(5,())|% . To esteblish (ii%) it then suffices to show
k=[S 0] »x =2,

For if A is an aleph, m any infinite cardinal and A = m2 , then
A=<m (see [2], Lema 6.13, p. 55).

Suppose then that f : k -+ S(Sw(X)) is one-to-one. Set
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(7]

fla) = fla) nx Now {fn(a) : a € x} ES(X[n]) , and by Lemma 2.3,

"] &4 & | so by Lemma 2.2, s(x["]) , and thus {f (a) : « €x} , is DF.

X
However {fn(a) : o € K} has a canonical well-order and so is finite, and

can be canonically mapped into ® . Combining these canonical maps for

each n Yyields a one-to-one map of 4 = {f‘n(a) : 0 €Kk and n < w} into
wXxw. Now f(a) is determined by (fn(a)]n<w , which is an w-sequence

of elements of A , and so f(a) can be associated with an element of

w(wa) . It follows that K can be mapped one-to-one into 9 woxw) , and

w
so K =2

3. A large QM set

In this section we construct the model promised in the abstract.
Theorem 2.4 shows why we have to look at S(${S(X))) rather than some

smaller power of X .
Let M be a countable transitive model of ZF + V=L , K a

(successor a.leph)M . Then MF 2>‘ = K for some aleph A of M . We take

M
{HK((AQ) XK, 2)) as our notion of forcing, with the partial order defined

by p=<q iff p>q . Let ( be generic over M with respect to this

notion.

LEMMA 3.1. (i) M and M[G] have the same cofinality (cf) function

and the same alephs.

(ii) For o <k and x €M, (ax]M= (a:c)M[G] .
Proof. We note that Kk is (regula.r)M . We assume the terms

'u-closed' and 'p-chain condition' from [3], §10. Our notion of forcing

+
satisfies the K -chain condition (by [3], Lemma 10.3) and is K-closed, so

our results follow from [3], Lemma 10.2, and Lemme 10.6 and Corollary.

We now work in M[G] unless otherwise stated. For f € ’\2 set

G(f) = Wp(f) : p € G} . Note that by p(f) we mean
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{{a, BY : ({Ff, a), BY € p} . Set G*={G(f) : f ¢ AQ} . It can be shown

by standard arguments that each G(f) is a member of K> and that if
f #g then .

i <x o @)@ # (G(@) D} =« -

For r € K2 set

K

[r] = {o €2+ (i <« : 8(d) # v(0)}]

A
A
——

Set X = {[r] : r € G*} . Define for o < A ,

¥, = {6, (6401 = £, £ €72, £'(a) = 1-fla)

. and f'(B) = f(B) for B # a}.

Then Yu is a partition of X into disjoint two-element subsets, and

a#B > Ya n YS =@ . Set

Y = {K : K is a partition of X into two-element subsets

and K_Ya is finite for some o < A} ,

\S]
(]

{¢K, @>: K €Y and K-Y is finite}

The model which is to contain the large QM set is ¥ = (L(Z))M[G]

The motivation of the construction is as follows. If we set

N' = (L(X)JM[G]

constructing N we add enough sets to N' to meke X large in the

it can be readily shown that N'kE X is @M. 1In

desired sense, but not enough to destroy the quasi-minimality of X .

LEMMA 3.2. (Z) M, N and M[G] have the same cf function and
alephs.

(i1) For a<x and z e, ()%= (%) = (“x)M[G] .

(i) nE2t =« .
Proof. (%) and (Z7) are immediate from Lemma 3.1, since

Mc Nc MGl ; (iii) is essentially just a special case of (i%).

THEOREM 3.3. Flk« = [s(5(s(x)))] .
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,and also 2 : Y+ X 1is onto.

Proof. Clearly in ¥ , YES(X[Q]]

So NES(S(X)) *= A . It follows that

ni2t < [s(s(5(x))) |
and the result follows by Lemma 3.2 (Z1%).

We now lock at TC(Z) . If x € TC(Z) +then either x =2 or
x =(K,B) forsome XK €Y and B<X or x €Y or ... or x€M.
It can easily be seen that in all cases either x =2 or x 1is codable by

(at worst) some Yor. , & finite number of elements of G* and an element of
M . We recall from §1 that inside W every element of N 1is definable

from TC(Z) , an element of M (= (L)M{G]) and & finite number of
elements of TC(Z) . By using the coding just mentioned we have that
inside N any element of N is definable from Z , a finite number of

Yoc'S » & finite number of elements of G* , and an element of M (as
TC(Z) 1is definable from Z ).

We proceed to a continuity lemma, but first introduce some notation.
Suppose A is aset, s cCA4 and f : A2 . We define _7“9 t A +2
thus:

Fla)=fla) if ats; fla)=1-fla) if acs

LEMMA 3.4. Suppose that

NE=olz, Ya

’ ---a-Y s G(fl)’ LA ] G(fm)s &Ly [G(f)]] H
1 n

where x € M and f;éfj: for 1 =% =m and any sg{al, ...,an}.

Let gexzvbeanyfunctionsuch that g#ff: for 1 =4 =m and

s c {al, cens an} . Then

LT R P AR 'S B LI RS tetg)1)

Proof. Let ¢ %be a formula such that

Q

MIGT = WG, y) <—>1v|=<p[z, Yo, ¥ 5 6(f), - G(F) 2, [G(f)]] .
1 n
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P 'describes' the construction of 2, Yu , and so on, from G and also
1

relativizes ¢ to the class N . Here Yy € M . Take p € & such that

p I~ WG, y) . Set, for sc_Z_{al, cees un} s

A

i

o=t camp () : plF, 4) # (6°)) D)},
B, ={¢ € aomp(g®)) : plg°, 1) # (6(F)) (@)} .

Then A, B, €S (x) and so by Lemma 3.2 (72), A , B €M .

For 4 € SK(K) we define an automorphism 0, of HK(K, 2) thus:

1~ #Z) if 7 € dom(z) n 4

(o4(8)) (%)
for t € HK(K, 2)
(0,(8))(2) = ¢(<) if 7 € dom(t) - 4

and dom(oA(t)) = dom(t) .

We define an automorphism w of HK((AQJXK, 2) thus:

(np) (#°) UAS(P(QS)J

for sE{cxl, cees an} ,

(1p) (¢°) = OBs(p[fs)J

(mp)(n) = p(h) for h # fs, gs for any § C {al, ey an} .

Then T € M , and

0) () = oy (p(6°)) <6(7) .

8

o) (b)) <)

(") (¢°)

(T ip) () = p(n) ca(h) (tor h#f°, 4°) .

It follows that n_lp €G. Now p | WG, y) , so by the symmetry lemma

of §1, n-lp - ¥n"G y) , whence
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MGl E vin"e, y) .

Now

(m"6) (°)

n

::>Q
—
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—~—
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—
~—

(m6)(g°)

i
Q
sy}

—

«©
Sy
—
~—

(1"¢)(h) = G(h) , h#f,g" forany s<{a, ..., a}.

so [(16) ()] = [6l6°)] » [("®)(g°)] = [6(°)] , ena
("G} ()] = [6(h)] for h # f°, 4° .

Thus the change from G to ™'G leaves X , and thence Y and 2 ,

wchanged, leaves G(fl), vees G(fm) unchanged and carries [G(f)] to

[G(g)) . Take a € {al, cens an} ; for s C {al, cees an} set

s' =58 fal. men {[6(f)], [6(f)]} €7, ena

{[e(g®)]- [G(gs']]} €Y . The change from G to 7"G carries each of

these pairs to the other, so Yu is carried into itself.

In conclusion

e Xy s GlA)s e G[fm), z, [G(g)]] .

MGl = yla"e, y) — W= w[Z, Y
1 n

[0}

Since M[G]F Y(7"G, y) , the proof is complete.
THEQREM 3.5. NE X is QM.
Proof. We work in N . Suppose that
N A is an infinite subset of X .

By the remarks after Theorem 3.3 we may assume that A 1is defined in terms
of Z,Y , ..., Y ,G(f), ..., G(f.) say, and x € M . Take
al an 1 m

aGA—{[G(f?]] :1<1i=m and sg{o.l, ...,u}}. Now a = [G(f)]

7z n

for some f , so the sentence 'a € A' may be written in the form
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vk cp[Z, yal, cees yan, G(fy)s --5 G£)s =, [G(f)]]

Application of Lemma 3.4 shows that

NEADX- {[G[fs]] t1sism and 8¢, ..., an}} ,

i
so NF A is cofinite.

In conclusion we have shown that for K an arbitrary aleph it is
possible to have a QM set X such that k < |S{s(S(x)))| . This result is
one of a series: Hickman [1] and the author (PhD thesis, University of
Bristol, 1971) have independently shown that it is possible to have a DF
set X such that k < [S(X)| (egain for «k an arbitrary aleph); indeed

Hickman obtains Kk < |x[2]| . Also the author (unpublished) has shown that
it is possible to have a set X such that X *i w [whence by Lemma 2.2,
5(X) is DF) but such that « < |§(S(X))| . It should be emphasised that
none of these results have anything to do with the possibility that 2w

can be large; in all the models concerned if K, A are alephs then
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