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Abstract

We generalize a theorem due to Keilson on the approximate exponentiality of waiting
times for rare events in regenerative processes. We use the result to investigate the limit
distribution for a family of first entrance times in a sequence of Ehrenfest urn models.
As a second application, we consider approximate pattern matching, a problem arising
in molecular biology and other areas.
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1. Introduction

Suppose that we are interested in the first entrance time

ρB = inf{t ∈ T : Xt ∈ B}
of a stochastic process X = (Xt )t∈T , T ⊂ R+, into some subset B of its state space. If X can
be decomposed into regenerative cycles then ρB is the random sum of the length of the cycles
that missed B, plus the part of the last cycle up to the first hit. If the probability of hitting B
in a single cycle is small and if cycle lengths are not too heavy tailed, then we might expect
that the distribution of ρB/E ρB is close to Exp(1), the exponential distribution with mean 1.
A result of this type was proved by Keilson (1966); see also his monograph Keilson (1979) and
the discussion in Section B.24 of Aldous (1989). In a typical application, X is a Markov chain
starting at x and the cycles correspond to the excursions from this point.

We generalize this result to a sequence of stochastic processes. Section 2 gives the basic limit
theorem and, in Section 3, we apply this to the Ehrenfest urn model. In Section 4, we consider
a question arising in molecular biology and other areas: we obtain asymptotic exponentiality
for the time until a given pattern first occurs approximately, with respect to the Levenshtein
distance, in a random string. This second application also shows that our generalization of
Keilson’s theorem can be applied to more general stopping times than the above entry times,
which depend on the value of a single variable of the process.
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394 R. GRÜBEL AND M. REICH

2. A limit theorem

Our extension of Keilson’s result is somewhat similar to the transition from the central
limit theorem for a fixed sequence of random variables to the Lindeberg theorem; see, e.g.
Theorem 27.1 and Theorem 27.2 of Billingsley (1986). In its abstract formulation, the result
does not even mention entrance times and we consider the following formal framework.
For each n ∈ N, we have probability measures µn, µ1,n, and µ2,n, concentrated on the positive
half-line, and real numbers pn and qn with 0 < pn < 1, pn + qn = 1, such that

µn = pnµ1,n + qnµ2,n for all n ∈ N, with lim
n→∞ qn = 0. (1)

We further assume that each µn has finite mean mn, and that

lim
η→∞ sup

n∈N

∫
x>ηmn

x

mn
µn(dx) = 0. (2)

We can now state our first result; its proof combines Keilson’s ideas with techniques from the
proof of Lindeberg’s theorem as given in Billingsley (1986).

Theorem 1. Suppose that, for eachn ∈ N, Yn,k, Zn,k , and In,k, k ∈ N, are independent random
variables with Yn,k ∼ µ1,n, Zn,k ∼ µ2,n and P(In,k = 0) = pn, P(In,k = 1) = qn for all
k ∈ N. Let

S′
n :=

Nn−1∑
k=1

Yn,k and S′′
n := S′

n + Zn,Nn, with Nn := inf{k ∈ N : In,k = 1}.

Then, for every sequence (Sn)n∈N of random variables satisfying

S′
n ≤ Sn ≤ S′′

n for all n ∈ N,

we have

lim
n→∞

qn E Sn
mn

= 1 and lim
n→∞ P

(
Sn

E Sn
≤ x

)
= 1 − e−x for all x ≥ 0.

Proof. The representation (1) implies that qn
∫
f dµ2,n ≤ ∫

f dµn for all nonnegative
measurable functions f . Hence, for every η > 0,

qn EZn,1
mn

= qn

mn

∫
x≤ηmn

xµ2,n(dx)+ qn

mn

∫
x>ηmn

xµ2,n(dx)

≤ qnη +
∫
x>ηmn

x

mn
µn(dx).

By choosing η sufficiently large and using (2), and then choosing n sufficiently large and using
the second part of (1), we obtain

lim
n→∞

qn EZn,1
mn

= 0. (3)

From (1) it follows that mn = pn E Yn,1 + qn EZn,1, so that (3) implies

lim
n→∞

pn E Yn,1
mn

= 1. (4)
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Obviously, P(Nn = i) = pi−1
n qn for all i ∈ N. Also, Nn and (Yn,k)k∈N are independent,

meaning that the characteristic function φn(θ) = E exp(iθS′
n) of the sum S′

n can be written as

φn(θ) = qn

1 − pnφYn (θ)
with φYn (θ) := E eiθYn,1 .

Using the fact that
|eiy − 1 − iy| ≤ min

{
2|y|, y2} for all y ∈ R

(see, e.g. Billingsley (1986, Equation (26.4))), we obtain

pn

qn

∣∣∣∣φYn
(
qnθ

mn

)
−

(
1 + iθ

qn E Yn,1
mn

)∣∣∣∣
≤ pn

qn
E min

{
2

∣∣∣∣θqnYn,1mn

∣∣∣∣,
(
θqnYn,1

mn

)2}

≤ pnqn

m2
n

θ2
∫
x≤ηmn

x2µ1,n(dx)+ 2pn|θ |
∫
x>ηmn

x

mn
µ1,n(dx)

≤ pnqnη
2θ2 + 2|θ |

∫
x>ηmn

x

mn
µn(dx).

For the second term in the upper bound we can use (2), so that, by taking η and then n sufficiently
large, and using the second part of (1) again, we obtain

lim
n→∞

pn

qn

∣∣∣∣φYn
(
qnθ

mn

)
−

(
1 + iθ

qn E Yn,1
mn

)∣∣∣∣ = 0.

Together with (4), this gives

lim
n→∞φn

(
qnθ

mn

)−1

= lim
n→∞

(
1 − iθ

pn E Yn,1
mn

− pn

qn

(
φYn

(
qnθ

mn

)
−

(
1 + iθ

qn E Yn,1
mn

)))
= 1 − iθ

for all θ ∈ R. Together with the continuity theorem for characteristic functions, this implies the
convergence in distribution of qnS′

n/mn to Exp(1). Since Nn is independent of (Zn,k)k∈N, it
follows from (3) that limn→∞ E(qnZn,Nn/mn) = 0, which gives the convergence in probability
of qnZn,Nn/mn to 0. Therefore, by Slutsky’s theorem, qnSn/mn also has limit distribution
Exp(1).

Finally, Wald’s equation yields

E S′
n =

(
1

qn
− 1

)
E Yn,1, E S′′

n =
(

1

qn
− 1

)
E Yn,1 + EZn,1.

Together with (3) and (4), this gives limn→∞ qn E Sn/mn = 1, which completes the proof of
the theorem.

Condition (2) can be rephrased as the uniform integrability of the standardized variables
Vn/EVn, where Vn := In,1Yn,1 + (1 − In,1)Zn,1 has distribution µn. This is implied, for
example, by

sup
n∈N

∫ (
x

mn

)1+δ
µn(dx) < ∞ for some δ > 0.
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For another sufficient condition that works well with our later applications, let Sa(µ), a > 0,
be the measure defined by

Sa(µ)([0, x]) = µ([0, ax]) for all x ≥ 0.

Clearly, if X has distribution µ then Sa(µ) is the distribution of X/a. We write ‘
w−→’ for the

weak convergence of probability measures.

Condition 1. There exist a sequence (an)n∈N of positive real numbers and a probability
measure µ∞ on [0,∞), with positive, finite first moment m∞, such that

mn

an
→ m∞ and San(µn)

w−→ µ∞ as n → ∞.

Suppose that Vn has distribution µn. If Condition 1 is satisfied then the family Vn/an is
uniformly integrable, by Theorem 5.4 of Billingsley (1968). Multiplying these by an/mn does
not destroy the uniform integrability, since the sequence converges to a finite limit. Hence,
Condition 1 implies (2).

3. An application to the Ehrenfest urn model

We now return to the problem outlined in Section 1, assuming that T = N0 := N ∪ {0}
for convenience. For each n ∈ N, let (Xn,m)m∈N0 be a stochastic process with an associated
sequence (τn,k)k∈N0 of regeneration times. By this we mean that, for each n ∈ N, (τn,k)k∈N0 is
a sequence of stopping times with respect to the natural filtration of (Xn,m)m∈N0 , and that the
segments (Xn,m)m=τn,k,τn,k+1,...,τn,k+1−1, k ∈ N0, are independent and identically distributed
for each n ∈ N. In particular, the lengths (Ln,k)k∈N, Ln,k := τn,k − τn,k−1, of the segments are
independent and identically distributed. We additionally assume that τn,0 = 0 for all n ∈ N.

Let Bn be a measurable subset of the state space of the process (Xn,m)m∈N0 and let ρn :=
inf{m ∈ N0 : Xn,m ∈ Bn} be the corresponding entrance time. We assume that Bn will be
visited in a segment of the process with positive probability since, otherwise, ρn = ∞ with
probability 1. The following dictionary provides the connection to the framework introduced
in Section 2:

µn ↔ the distribution of Ln,1,

qn ↔ the probability that Xn,m ∈ Bn for some m ∈ {0, . . . , τn,1 − 1},
µ1,n ↔ the conditional distribution of Ln,1,

given that Xn,m /∈ Bn for all m ∈ {0, . . . , τn,1 − 1},
µ2,n ↔ the conditional distribution of Ln,1,

given that Xn,m ∈ Bn for some m ∈ {0, . . . , τn,1 − 1}.
The process starts with a random number of cycles that avoid Bn and then has a cycle in which
Bn is visited; clearly S′

n ≤ ρn ≤ S′′
n , in the notation of Theorem 1. The theorem therefore

shows that entrance times are asymptotically exponential if the following two conditions are
met: first, the probability of a hit in a single cycle converges to 0; and second, the cycle lengths
for the sequence of processes, normed to have expectation 1, are uniformly integrable.

As mentioned above, for the case in which we have one process only (and a fixed cycle-length
distribution) this asymptotic exponentiality has been obtained by Keilson (1966). We now give
a first example that shows that our generalization can be useful.
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We consider the following variant of the Ehrenfest urn model. There are two urns, each
containing n balls at timem = 0. At timem ∈ N, one of the 2n balls is selected uniformly and
at random, and moved to the other urn. Let Xn,m be the absolute value of the difference, times
one-half, in ball-count of the two urns after m such steps. Clearly, (Xn,m)m∈N0 is a Markov
chain with state space Sn := {0, 1, . . . , n}, origin 0 and transition probabilities

p
(n)
ij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for i = 0, j = 1,

(n− i)/(2n) for j = i + 1, i = 1, . . . , n− 1,

(n+ i)/(2n) for j = i − 1, i = 1, . . . , n,

0 otherwise.

Kac (1959) and Kemperman (1961) are canonical references for such models and their impact
on understanding the transition from the time-reversible laws of classical mechanics to the
irreversible laws of thermodynamics. In this context, the very short time needed to go from a
state with one empty urn to a state in which the two urns contain roughly the same number of
balls – short in comparison to the time taken for the opposite transition – plays a fundamental
role. Here we are interested in the onset of asymptotic exponentiality for the time needed to go
from a balanced state, i.e. Xn,0 = 0, to a state in which the difference in contents first reaches
a certain value. As a consequence, we discuss the above variant; the symmetry of the original
model obviously implies that the modification does not destroy the Markov property.

We consider the first entrance into

Bn := {bn, bn + 1, . . . , n},
where the sequence (bn)n∈N increases to infinity. The following result shows that asymptotic
exponentiality holds whenever bn grows faster than n1/2.

Theorem 2. With (Xn,m)m∈N0 , (bn)n∈N, and (ρn)n∈N as above, we have

lim
n→∞ P

(
ρn

E ρn
≤ x

)
= 1 − e−x for all x ≥ 0,

provided that limn→∞ n/b2
n = 0.

For the proof we need some auxiliary results. Let Y = (Ym)m∈N0 be an irreducible
and aperiodic Markov chain with finite state space E and transition probabilities (pij )i,j∈E .
For i ∈ E, let

Ti := min{m ∈ N0 : Ym = i} and T +
i := min{m ∈ N : Ym = i}

be the first entrance and the first return time to i, respectively; π = (πi )i∈E denotes the
stationary distribution of the process. Our first lemma follows from Section I.11, Corollary 1
of Chung (1967); see also Chapter 2, Corollary 8 of Aldous and Fill (2004). As usual, we write
Pi (·) and Ei (·) for probability and expectation with respect to having started at i ∈ E.

Lemma 1. For all i, j ∈ E with i �= j ,

Ei Tj + Ej Ti = 1

πi Pi (Tj < T +
i )
.
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We now further specify Y to have state space E = {0, 1, . . . , n} and transition probabilities
pij = 0 for |i − j | �= 1 and pij > 0 for |i − j | = 1; note that the urn model described
above satisfies these conditions. Such a process is an irreducible birth–death process and can
be regarded as a random walk on a weighted graph with verticesE and edge set {(i, i+1) : i =
0, 1, . . . , n−1}. The following lemma is Chapter 5, Proposition 3(a) of Aldous and Fill (2004).

Lemma 2. For all i and j with 0 < i < j ≤ n,

Pi (Tj < T0) =
∑i−1
l=0(πlpl,l+1)

−1∑j−1
l=0 (πlpl,l+1)−1

.

For the last of our auxiliary results, we recall that U = (Ut )t≥0 is an Ornstein–Uhlenbeck
process (with standard parameters) if U is a (strong) Markov process with state space R,
continuous paths, and infinitesimal generator

Af (x) = 1
2f

′′(x)− xf ′(x)

for functions f : R → R that are twice continuously differentiable. As in the Markov chain
case, we write Px(·) and Ex(·) for probability and expectation with respect to having started at
x ∈ R.

Lemma 3. Let τc := inf{t > 0 : Ut = c} be the first hitting time of c ∈ R, and let

ψ(x) := √
π

∫ x

0
ey

2
dy + 2

∫ x

0
ey

2
∫ y

0
e−z2

dz dy.

Then, for all a, b ∈ R with a < b,

Ea τb = ψ(b)− ψ(a). (5)

This result is taken from Nobile et al. (1985), who do not give a proof but refer to the physics
literature. As there are different conventions with regard to standard parameters and also with
respect to the definition of the error function, we sketch an argument that leads to (5). Suppose
that f is twice continuously differentiable and satisfies Af ≡ 1. Itô’s formula then implies
that (Yt )t≥0, with Yt := f (Ut ) − t , is a local martingale with respect to the natural filtration
associated with (Ut )t≥0. The differential equation

1
2h

′(x)− xh(x) = 1, for all x ∈ R,

has the general solution

h(x) = ηex
2 + 2ex

2
∫ x

0
e−y2

dy, η ∈ R.

Withη = π1/2, we can find a suitable upper bound in (−∞, b] for |f |, withf (x) := ∫ x
0 h(y) dy,

x ∈ R, so that Y , stopped at τb, is a martingale and the optional stopping theorem applies. This
yields

f (a) = Ea Y0 = Ea Yτb = f (b)− Ea τb,

and (5) follows on noting that f = ψ .

https://doi.org/10.1239/jap/1118777178 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1118777178


Rarity and exponentiality 399

Proof of Theorem 2. We want to use Theorem 1 with Condition 1 as a sufficient condition
for (2). As in our other application (to be given in the next section) the construction of a
suitable family of regeneration times is a crucial step. Here, we let Ln,1 be the time of the first
visit of the process (Xn,m)m∈N0 to 0 after its first visit to an := �n1/2�, where �·� denotes the
smallest integer greater than or equal to its argument. We have to show that the probability of
an interesting event, i.e. a visit to Bn, occurring within a regenerative cycle tends to 0, and that
the distribution of the suitably rescaled length of the regenerative cycles converges in mean and
in distribution. In order to be able to use Lemmas 1 and 2 for this purpose, we first investigate
the asymptotics of the stationary probabilities and some associated quantities.

The stationary distribution associated with the nth model (Xn,m)m∈N0 is given by π (n) =
(π

(n)
0 , . . . ,π

(n)
n ), where

π
(n)
0 = 1

22n

(
2n
n

)
, π

(n)
i = 1

22n−1

(
2n
n+ i

)
for i = 1, . . . , n;

see, e.g. Brémaud (1999, pp. 76f.) (the minor modification needed for our variant should be
obvious). Hence, for fixed C > 0 and with cn := �Cn1/2�,

π
(n)
0 p

(n)
0,1 =

(
2n
n

)
1

22n ∼ 1√
πn

,

π
(n)
l p

(n)
l,l+1 = 1

22n

(
2n
n+ l

) (
1 − l

n

)
∼ 1

22n

(
2n
n+ l

)
,

the latter uniformly in l = 1, . . . , cn. The local form of the normal approximation for the
binomial distribution leads to

lim
n→∞ sup

1≤l≤cn

∣∣∣∣
(

2n
n+l

)
2−2n

(πn)−1/2 exp(−l2/n) − 1

∣∣∣∣ = 0.

Together with the elementary fact that

lim
n→∞ sup

1≤l≤cn

∣∣∣∣anlbnl − 1

∣∣∣∣ = 0 ⇒ lim
n→∞ sup

1≤l≤cn

∣∣∣∣bnlanl − 1

∣∣∣∣ = 0

for arbitrary anl, bnl ∈ R, this implies that

lim
n→∞ sup

1≤l≤cn

∣∣∣∣ (π
(n)
l p

(n)
l,l+1)

−1

√
πn exp(l2/n)

− 1

∣∣∣∣ = 0.

Hence, we have shown that

lim
n→∞

1

n

cn∑
l=0

(π
(n)
l p

(n)
l,l+1)

−1 = lim
n→∞

√
π

cn∑
l=0

1√
n

exp

((
l√
n

)2)

= √
π

∫ C

0
ex

2
dx for all C > 0. (6)

Now let qn be the probability that a visit to bn occurs between two regenerative times. Given
that we start at 0, this necessarily happens after the first visit to an. Hence, we have

qn = Pan(T
(n)
bn

< T
(n)

0 ),
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provided that n is large enough, and the assumption on the rate of growth of (bn)n∈N, (6), and
Lemma 2 together imply that

lim sup
n→∞

qn ≤
∫ 1

0 ex
2

dx∫ C
0 ex2 dx

for all C > 1.

By letting C → ∞, we see that (1) is satisfied.
For the second part of the argument, i.e. the verification of Condition 1 for the distribution

of the length of the regenerative cycles, we first note that the behaviour of the first moment can
also be obtained from the above calculations: we have

E0 Ln,1 = E0 T
(n)
an

+ Ean T
(n)
0 , P0(T

(n)
an

< T
(n)+

0 ) = P1(T
(n)
an

< T
(n)

0 ),

so that

E0 Ln,1 =
an−1∑
l=0

(π
(n)
l p

(n)
l,l+1)

−1 ∼ n
√
π

∫ 1

0
ex

2
dx (7)

by Lemma 1, Lemma 2, and (6).
For the convergence in distribution of the rescaled regeneration times, we invoke a functional

limit theorem. Our process can be regarded as a simple function of another chain that converges
to an Ornstein–Uhlenbeck process. To make this precise, let (X̃n,m)m∈N0 be a Markov chain
with state space {−n,−n+ 1, . . . , n− 1, n} and transition probabilities

pi,i+1 = n− i

2n
for i < n, pi,i−1 = n+ i

2n
for i > −n.

Then, (Xn,m)m∈N0 is equal in distribution to (|X̃n,m|)m∈N0 . In addition, let (Nt )t≥0 be a Poisson
process with unit intensity, independent of (X̃n,m)m∈N0 , and let (Z̃n,t )t≥0 be defined by

Z̃n,t = X̃n,Nt , t ≥ 0.

This results in a continuous-time Markov chain to which the results of Rosenkrantz and Dorea
(1980) can be applied: the process (Zn,t )t≥0 with

Zn,t := 1√
n
Z̃n,nt , t ≥ 0,

converges in distribution, as n → ∞, in the space of càdlàg functions on [0,∞) to a standard-
parameter Ornstein–Uhlenbeck process U = (Ut )t≥0 with origin at 0.

Let τ and τn, n ∈ N, be the times of the first visit to 0 after the first exit from (−1, 1)
of (Ut )t≥0 and (Zn,t )t≥0, respectively. The process convergence implies the convergence in
distribution of τn to τ as n → ∞. From the construction, it follows that Ln,1 = Nnτn , so that

1

n
Ln,1 = τn

Nnτn

nτn
.

Furthermore, Nt/t → 1 almost surely as t → ∞ and, hence, Ln,1/n converges in distribution
to τ . In order to be able to use Condition 1, and in view of (7), it therefore remains to show
that E0 τ = π1/2

∫ 1
0 ex

2
dx.
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Let ρ be the time of the first exit of U from the interval (−1, 1): in particular, ρ =
min{τ−1, τ1} in the notation of Lemma 3. Let (Ft )t≥0 be the natural filtration associated
with U . Using the strong Markov property of U , we obtain

E0 τ1 = E0(ρ + (τ1 − ρ))

= E0 ρ + E0(E(τ1 − ρ | Fρ))

= E0 ρ + 1
2 (E1 τ1 + E−1 τ1)

= E0 ρ + 1
2 (0 + E−1 τ0 + E0 τ1),

so that E0 ρ = 1
2 (E0 τ1 − E−1 τ0) and, therefore,

E0 τ = E0 ρ + E−1 τ0 = 1
2 (E0 τ1 + E−1 τ0).

Using the symmetry properties of ψ , we see that Lemma 3 provides the required formula
for E0 τ . This completes the proof of Theorem 2.

Nobile et al. (1985) obtained asymptotic exponentiality for the hitting times of c of an
Ornstein–Uhlenbeck process in the case that c → ∞. Note that this result, together with
the weak convergence of the Ehrenfest models to an Ornstein–Uhlenbeck process, which we
also used in the proof, does not imply the statement in Theorem 2 unless we are prepared to
interchange limits uncritically. Urn models of the above type also appear as models of biological
populations. Our result may be considered as dealing with these in a somewhat more direct
manner, i.e. not via limiting properties of the limit process.

Certain aspects of asymptotic exponentiality in a sequence of Markov chains become trans-
parent in our approach. For example, let qn(Bn) be the probability that Bn is visited during
an Ln-segment, where we use the general framework summarized in the above dictionary.
We regard the regeneration sequence as fixed and assume that (2) is satisfied. If (Bn)n∈N is
rare (with respect to (Ln)n∈N) in the sense that qn(Bn) > 0 with limn→∞ qn(Bn) = 0, then the
entrance times into Bn are asymptotically exponential. Now, if there are two such sequences
(An)n∈N and (Bn)n∈N then, since

0 < qn(An) ∧ qn(Bn) ≤ qn(An ∪ Bn) ≤ qn(An)+ qn(Bn) → 0 as n → ∞,

we also have asymptotic exponentiality for the entrance times associated with the unions
(An ∪ Bn)n∈N. Similarly, we may consider subsets, potentially changing the rate mn in the
process.

Together with the formula for the Laplace transform of the first exit time given in Borodin
and Salminen (1996), the weak convergence to an Ornstein–Uhlenbeck process shows that we
do not have asymptotic exponentiality if bn ∼ Cn1/2 with 0 < C < ∞ fixed. The condition on
the rate of growth of (bn)n∈N in Theorem 2 is therefore sharp. This example also throws some
light on condition (2): the ‘raw’, i.e. unrescaled, Ehrenfest models converge in distribution to a
simple symmetric random walk. Hence, if we take the lengths (Ln,k)k∈N of the excursions from
0 as our basic regeneration intervals, we find that Ln,1 converges in distribution to the time it
takes a simple symmetric random walk to return to 0 (which is finite with probability 1, but has
infinite first moment). With respect to these excursions, the sets Bn := {j ∈ N : j ≥ n1/2} are
asymptotically rare, in the sense explained in the previous paragraph. The main limit theorem
for Markov chains implies that E0 Ln,1 ∼ (πn)1/2 and it is easy to see that Ln,1/n1/2 is not
uniformly integrable: as Ln,1 itself converges in distribution, Ln,1/n1/2 would converge to 0 in
probability, and uniform integrability would give E0 Ln,1 → 0, in contradiction to the above.
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4. An application to approximate pattern matching

Suppose that we have a finite alphabet 	 = {σ1, . . . , σd} and a sequence X = (Xi)i∈N of
independent and identically distributed, 	-valued random variables with P(X1 = σi) > 0 for
i = 1, . . . , d. Suppose further that we are given a pattern s = (s1, . . . , sn) ∈ 	n of length
|s| = n from this alphabet; let

τ(s) := inf{m ≥ n : (Xm−n+1, . . . , Xm) = s}
be the time of the first occurrence of the pattern in the random string X. The analysis of this
situation is one of the classical topics of applied probability (under the heading ‘monkey typing
Shakespeare’ it even appears in some undergraduate probability courses). The expectation or,
more generally, the distribution of τ(s) is treated in Feller (1968, Chapter XIII.7), Li (1980),
Gerber and Li (1981), Guibas and Odlyzko (1981), and elsewhere. These results, especially the
expressions obtained for the generating functions associated with pattern waiting times, can be
used to show that, for any sequence (s(n))n∈N of patterns with length |s(n)| growing to infinity,
τ(s(n)) is asymptotically exponential in the sense that the distribution of τ(s(n))/E τ(s(n))
converges weakly to Exp(1); see Rudander (1996).

Interest in this problem and its ramifications has increased over recent years due to its
relevance to molecular biology, where X might be the model for some genome sequence and s
corresponds to a particular gene; see, e.g. Waterman (1995). However, the results concerning
exact occurrence seem to be of limited relevance in this area; instead, interest is in the statistical
significance of observations of approximate occurrences of the given pattern. In this subsection,
we show that our approach can be used, under certain conditions, to ‘bootstrap’ the result on
asymptotic exponentiality of exact occurrence to asymptotic exponentiality of approximate
occurrence.

The approach is quite flexible with respect to the distance concept involved. For definiteness,
we consider the minimum suffix edit distance

dS(s, (X1, . . . , Xm)) := min
1≤k≤m dL(s, (Xk, . . . , Xm)),

where dL(s, x) is the string edit or Levenshtein distance between s and x, defined to be the
minimum number of insert, delete, or replace operations needed to transform s into x; see,
e.g. Gusfield (1997). Note that while dL is a metric, dS is not, as we may have dS(a, b) = 0 for
a �= b; also, dS is not symmetric. The dS values can be computed recursively. Starting with
dS(∅, a) = 0 and dS(a,∅) = |a|, we use

dS((a1, . . . , ak), (x1, . . . , xn)) = min{m1 + 1,m2 + 1,m3 + δ},
where

m1 = dS((a1, . . . , ak−1), (x1, . . . , xn)),

m2 = dS((a1, . . . , ak), (x1, . . . , xn−1)),

m3 = dS((a1, . . . , ak−1), (x1, . . . , xn−1)),

δ =
{

0 if ak = xn,

1 if ak �= xn.

See Table 1 for an example with x = (c,c,g,g,a,t,a,t,a,t,g,g,g,a,c,c,g, . . . )
and s = (t,a,c,c,g). Inspection of Table 1 shows that the first match up to distance 1
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Table 1.

i : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
xi : ∅ c c g g a t a t a t g g g a c c g

τ1 τ2 ρ

∅ : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t : 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1
a : 2 2 2 2 2 1 1 0 1 0 1 1 2 2 1 2 2 2
c : 3 2 2 3 3 2 2 1 1 1 1 2 2 3 2 1 2 3
c : 4 3 2 3 4 3 3 2 2 2 2 2 3 4 3 2 1 2
g : 5 4 3 2 3 4 4 3 3 3 3 2 2 3 4 3 2 1

between an x suffix and s occurs at ρ = 17 (the τ variables will be explained below). It is
interesting to note that the successive columns below the central horizontal line can be regarded
as a Markov chain, as is obvious from the recursion given above and the assumptions on the
random string X. In this chain, ρ would be the entry time into the set of all states that have
component value 1 at the bottom of the column. For the numerical treatment of such problems,
this is indeed a convenient construction; see Reich (2004). However, we will work with the
original sequence (Xi)i∈N and we will choose the regeneration times appropriately.

We write a ⊂ b for strings a and b if a appears as a contiguous substring of b; also,
a ◦ b denotes the concatenation (a1, . . . , am, b1, . . . , bn) of a = (a1, . . . , am) ∈ 	m and
b = (b1, . . . , bn) ∈ 	n. For later use, we note the following properties of the Levenshtein
distance:

dL(a, b) ≥ ||a| − |b||, (8)

a = a′ ◦ a′′ ⇒ for all b, there exist b′ and b′′ such that

b = b′ ◦ b′′ and dL(a, b) = dL(a
′, b′)+ dL(a

′′, b′′). (9)

Obviously, (9) can be extended by induction to concatenations of more than two strings.
Now let s = (s1, s2, . . . ) ∈ 	∞ be an infinitely long pattern and let s(n) = (s1, . . . , sn) be

its prefix of order n. In addition, let (k(n))n∈N be a nondecreasing sequence of nonnegative
integers and let

ρn := inf{m ∈ N : dS(s(n), (X1, . . . , Xm)) ≤ k(n)}
be the first time that s(n) appears inX up to an approximation distance k(n). Our condition for
asymptotic exponentiality involves the notion of a splitting pattern for (s(n), k(n)), by which
we mean a string y with the property that

y ⊂ x ⇒ dL(s(n), x) > k(n),

i.e. the edit distance between s(n) and every finite sequence x with contiguous substring y is
greater than k(n). For example, using (9) we see that y = (g,g,a) splits s = (t,a,c,c,g)
at distance level 1. The nonoverlapping occurrences of y partition X into regenerative cycles;
in Table 1, τ1 and τ2 indicate the first two completed occurrences of (g,g,a). The following
result roughly says that, if the size of the regenerative cycles becomes negligible with respect
to the length n of the pattern, taking into account the desired distance k(n) and the length of
the splitting pattern, then asymptotic exponentiality holds.
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Theorem 3. Suppose that there exists a sequence (y(n))n∈N of splitting patterns y(n) for
(s(n), k(n)) with nondecreasing length |y(n)| and the property that

lim
n→∞ P(τ (y(n)) ≥ n− k(n)− |y(n)|) = 0.

Then,

lim
n→∞ P

(
ρn

E ρn
≤ x

)
= 1 − e−x for all x ≥ 0.

Proof. Let τn,l be the time of the lth completed nonoverlapping occurrence of y(n) in X,
with τn,0 ≡ 0. With

En,l := (Xτn,l−1+1, . . . , Xτn,l ),

we obtain a decomposition ofX into independent and identically distributed regenerative cycles
En,1, En,2, . . . , for any fixed n ∈ N. In addition, let 	� := ⋃∞

j=0	
j be the set of all finite

strings with letters from 	 and let

Bn := {x ∈ 	� : dS(s(n), y(n) ◦ (x1, . . . , xi)) ≤ k(n) for some i ∈ {1, . . . , |x|}}.
With L(X) and L(X | A) denoting the distribution of X and the conditional distribution of X
given A, respectively, our dictionary for the present situation is given by

qn = P(En,1 ∈ Bn), µn = L(|En,1|),
µn,1 = L(|En,1| | En,1 /∈ Bn), µn,2 = L(|En,1| | En,1 ∈ Bn).

In order to have En,1 ∈ Bn, it is necessary that

dS(s(n), y(n) ◦ (X1, . . . , Xi)) ≤ k(n) for some i ≤ τn,1.

The length of a suffix of the second string is bounded from above by |y(n)| + τn,1. By (8), the
inequality therefore implies that

|y(n)| + τn,1 ≥ n− k(n),

so that limn→∞ qn = 0 follows from τn,1 = τ(y(n)), the condition in the theorem, and (8).
For the uniform integrability condition, we distinguish between the two cases supn∈N |y(n)|

< ∞ and |y(n)| ↑ ∞. In the first case, we only have a finite number of possibilities for y(n);
since E τ(y) < ∞ for every finite string y, uniform integrability follows. For an unbounded
sequence of patterns, we have asymptotic exponentiality by Rudander’s (1996) result mentioned
above, and this implies uniform integrability as explained at the end of Section 2.

Theorem 1 now implies that

ρ̃n = inf{m ∈ N : dS(s(n), y(n) ◦ (X1, . . . , Xm)) ≤ k(n)}
is asymptotically exponential. It is here that we use the splitting condition: the first approximate
occurrence of s(n) with suffix edit distance not exceeding k(n) takes place entirely within
y(n) ◦ En,l , for some l ∈ N.

The variable ρ̃n differs from ρn because of the concatenation from the left with y(n) used
for the first regenerative cycle. (Indeed, we chose our example above in such a manner that we
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would have ρ̃ = 3 with y = (g,g,a); with y = (g,g,g), which also satisfies the splitting
condition, we have ρ̃ = ρ = 17.) However, we have

P(ρ̃n �= ρn) = P(En,1 ∈ Bn) = qn → 0 as n → ∞.

Furthermore,
E ρ̃n ≤ E ρn ≤ E τn,1 + E ρ̃n,

where the second inequality can be obtained by considering the post-τn,1 process (Xτn,1+i )i∈N,
which has the same distribution as the original (Xi)i∈N. Theorem 1 also gives

qn E ρ̃n
E τn,1

→ 1 as n → ∞,

so that, since qn = o(1), we also have E τn,1 = o(E ρ̃n). Finally,∣∣∣∣ ρnE ρn
− ρ̃n

E ρ̃n
· E ρ̃n

E ρn

∣∣∣∣ ≤ 1{ρ̃n �=ρn}
|ρn − ρ̃n|

E ρn
,

where 1{·} is an indicator function. The right-hand side converges to 0 in probability, because
limn→∞ P(ρ̃n = ρn) = 1. Using the familiar properties of convergence in distribution, together
with limn→∞ E ρ̃n/E ρn = 1, we now see that the asymptotic exponentiality of ρ̃n implies the
asymptotic exponentiality of ρn.

If	 contains a letter σ0 that does not appear in s, then we can take y(n) to be a run of σ0s of
length k(n)+ 1; the results on runs and exact pattern matching mentioned at the beginning of
this section imply that the condition in the theorem will be satisfied if k(n) = o(log n). Runs of
specific letters can also be used as splitting patterns if the number of occurrences of particular
letters in substrings of s of length l grows sufficiently slowly as l → ∞.
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