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1. The problem. It has been shown [1] that if Xi, + X2, . . . are independ-
- 1 -x-ent random variables each of density (2TT) *e 2 , and if sk = À'i + X2 + . . . + Xk 

then 

(1.1) hm Prob { max \sk\< a\/n\ = - L exp < — ^ >. 
n-00 *<«* v j=o 2/ + 1 ( 8a2 / 

This result, which can be generalized to random variables which need not be 
normally distributed [2], is closely connected with the theory of diffusion and 
Brownian motion. In fact the above limiting distribution is equal to 

j a _ a P(x, t)dx, where P(x, t) is the fundamental solution of Pt = \ Pzx 

which becomes singular at x = 0 as t —> 0 and which is subject to the condition 
P(— a, t) = P(ay t) = 0, corresponding to absorbing barriers. 

The connection between this problem and the theory of diffusion hinges on 
the fact that the second moments of the Xj are finite. It is therefore of interest 
to investigate analogous problems for random variables with an infinite second 
moment. For this purpose we have chosen the case in which the Xj have the 
same Cauchy density [ic{\ + x2)]~l. Our principal goal is the computation 
(§6) of the limiting distribution 

(1.2) p{a,t) = Hm Prob {max \sk\ < an], 
w-»oo k<nt 

where the sk retain their preceding significance as the partial sums X\ + X2 + 
...+Xk. 

The computation will be effected by a series of reductions which culminate 
in an integral equation of the Hilbert-Schmidt type. It unfortunately does 
not seem soluble in terms of known functions. 

We are, nevertheless, able to compute the mean time of absorbtion for a 
Cauchy process x(t). Define the random variable T(a) as the greatest lower 
bound of those J's for which 

l.u.b. \x(v)\ < a. 

T(a) is thus the time during which x(t) remains in the strip between — a 
and + a before it leaves that strip for the first time. It turns out that 
BIT (a)} = a, and 
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(1.3) £{P(a)}-ia»{j + ^ - ^ + ^ . . . } . 

2. Existence of the distribution p(a, t). Suppose then that the Xj are 
independent and Cauchy distributed with density [7r(l + a:2)]-1. Consider the 
space of all functions x(t), t^ 0, x(0) = 0, and for 0 < h < h < . . . < tn 

assign to the set of x(t) for which 

ai < x{h) < bu . . . , an < x(tn) < bn 

the measure 

6i 

where 

bn 

Q(*l, h) Q(X2 — Xi, U — h) . . . Q(X„—Xn-1, tn — tn-l) dxX . . . dxni 

e ( x , o - i ' 
7T X2 + t2 

It has been shown ([3], [4]) that when this measure is extended it has the 
property that almost every x(t) has at most a denumerable number of dis­
continuities, all of the first kind (jump discontinuities). Also if a is fixed, 
almost all x{y) are continuous at v = a. Consequently almost every x(v) 
has the property 

l.u.b. \x(v)\ = lim max |x(fe/«)| , 
0<>-<* n-+co k<nt 

and thus l.u.b. \x(v)\ is a measurable function. Moreover, 

(2.1) Prob {l.u.b. \x(v)\ < a} = lim Prob {max \x(k/n)\ < a}. 

Since 

(2.2) Prob {max \x(k/n)\ < a} = Prob {max |$*| < an} 
k<nt k<ni 

the existence of p(a, t), as defined by (1.2) is established. To see that (2.2) 
is satisfied we write 

•©-sK-*-1)-^} 
and note that from the definition of the Cauchy measure it follows that the 

increments x I J — x ( - 1 are independent and all have the density 

/ i\ \ n ' W 
Qlx, - I . Thus, expressing both sides of (2.2) as multiple integrals we see 

that they are identical. 
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3. First reduction of the problem. We have 

Prob { max \sk\ < an} 

= ( ) Q(xu r)Q(x2 - Xi, T) . . . Q(xm - Xm-i, r)dxi . . . dxm, 

where T = 1/n . Now let 

(3.1) <pm(x) = M J Q(xh r)Q(x2 - xu T) . . . ()(* - *«-i , r)dxi... dxm-i 

and 

<Po(x) = Ç(x, r) = 
7T X2 + T2 7T »2X2 + 1 

note that 

<Pm(x) = I <pm-i(y)<p(x - y;r)dy. 

Furthermore let 
00 

We shall show that 

r poo 

(3.2) lim ^T(*) dx = e~8t Prob { l.u.b. \x(v)\ < a} dt. 
T-*co J—a JO 0<?<f 

Letting 

/ r (0 = *>«(*) ^X WT < / ^ (m + 1) T, 

we see that 0 <fr(t) ^ 1, and by (2.1), (2.2) that 

lim Prob { max \sk\ < an} = lim fT(t) = Prob { l.u.b. \x(v)\ < a}, 

where m satisfies, of course, the inequality nt — 1 ^ m < nt. 

Thus 
rco roo 

lim e'atfT(t) dt = e~8t Prob { l.u.b. |*MI < a) dt. 
T-»0 Jo Jo 0< ,< / 

On the other hand 
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\[/T(x)dx = 
ST 

1 - e-
e~8tfr(t) dt 

m(m+l)r 

e~8t dt 
1 — e 8T m=0 J m 

and (3.2) follows. 
Note also that the definitions of (pm{k) and \pT(x) imply that 

<pm(pc)dx, 

(3.3) 1 
tfv(*) - eSrQt x, r) - I [| tr(y)Q(x - y, r)dy - *r(*) J. 

4. Passage to the limit. It follows from (3.1) that 

/ r ® w - i 
0 < <pm(x) < M J Q(XU T) . . . <2(X — Xm-i, TJdXi, • • • , ^m~l 

1 (w + l ) r 

and hence that 

= Q(x,(m + 1) r) = 
7T X2 + (W + 1)2T2 

7T m=o x2 + (m + l)2r2 

For p > 1 define 

ii/ii 
= G - j / w | p & ) 1 / p 

Then 

HlM*)|| < - £ <TmsT(w + 1)T ||[X2 + (m + l ) V r | 
^ m = 0 

< A r1^ £ 
m=0 (m + l ) 1 _ l / p 

Since 

m=o (m + l ) 1 " 1 ^ 

it follows by an Abelian argument that 

Bn1^ 

CT-W f 

Hence 

(4.1) 

m-0 (m + 1)1-1/P 

(J° o l^(x)|" dx\" $ ||*T(*)|| < C(p, s), 

n —* oo 

• 0 . 
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where C is independent of r. By a theorem of Banach and Saks [5] a subse­
quence {̂ TfcOxO} can be chosen so that r& —> 0 and 

(4.2) 
(p) i k 

l.i.m. - £ ÏTÀX) = iA(x) 
fc-oo k 1 

in the sense of mean convergence in Lp(— a, a). Strong convergence will be 
necessary to derive formula (5.2). From (3.2) we infer that 

e~st Prob { l.u.b. \x(v)\ < a} dt, \[/(x) dx = 
a 

and consequently we may concentrate on calculating \p(x) dx. 

5. Introduction of the infinitesimal generator. We shall use the following 
lemma [6, 386]: 

LEMMA 5.1. If g(x) and g'(x) belong to L2(— a, a) and g(— a) = g{a) = 0, 
then 

(5.1) l.Lm. ! {- |"° — ^ dy - g(x)\ = - P.V. I 
T-+O T W J-a T2+(x—y)2 ) T J 

g'(y) 

-a y — x 
dy. 

Now let g{x) be any function satisfying the conditions of the lemma. Multiply 
both sides of (3.3) by g(x) and integrate from — a to a to obtain 

eST - 1 ipT(x)g(x)dx - es Q(x, r)g{x)dx 

My) K(y)dy, 

where ^-HC^fe-^} 
Letting T —» 0, through the sequence r^, we infer from (4.2) with p = 2 and. 
our lemma that 

(5.2) 

where 

\P(x) g(x)dx - g(0) = 
J —a 

f(y) Hy) dy, 

h(x) = - P.v. | - ^ - dy. 
7T J - a y — X 

It is on the equation (5.2) that we shall base our determination of p(a, t). 
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6. Solution of the problem. For the sake of simplicity we assume that 
a = 1. Let m be odd and set 

(6.1) g(x) = sin m(arc cos x) — w V l — x2. 

It is easy to verify that g(x) satisfies the conditions of Lemma 5.1. Moreover 
it is known [7, 8] that 

(6.2) 

and 

(6.3) 

P.V. 
1 cos m (arc cos y) dy __ ir sin m (arc cos x) 
-1 (1-3,2)1/2 y - X ~ ^ ' (l-X2)l/2 

P.V. 
1 y dy 
- 1 ( 1 -3/2)1/2 y - x 

Substituting (6.1) in (5.2), and using (6.2) and (6.3), we get after a rearrange­
ment 

(6.4) S 

m J 
\l/(x) sin m (arc cos x) dx + 

\p(x) sin m (arc cos x) 

(1-x 2 ) 1 ' 2 
dx 

\ttx){l + s(l - x2)1/2} dx - 1 + 
sin mir/2 

m 

The functions 

( ! ) 

1/2 sin m (arc cos x) 

(1-x 2) 1 / 4 

form an orthonormal set on (— 1,1) and since \p € Lv (— 1, 1) for every £ > 1 
we see that 

*(*) 
(1-x2)1 /4 a 2 

and, in particular 

Also 

lim 
m-+0 

1 . , N sin m (arc cos x) , ~ 
Mx) dx = 0. 

-1 (1-x2)1 /2 

Iimo ~~ ^(*) s*n m (arc c o s x) dx = 0, 

and consequently it follows from (6.4) that 

lK*){l + 5 ( 1 -x 2 ) 1 / 2} dx = 1. 
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Thus for odd m 

(6.5) -
m 

\p(x) sin m (arc cos x) dx + 
1 . , v sin m (arc cos x) , 

\p{x) —- dx 
- i ( 1 - x 2 ) 1 / 2 

sin tmr/2 

and since ^(x) is even we have also 

(6.6) -
m 

\p(x) sin m (arc cos x) dx + 

m 

1 , / v sin m (arc cos x) . 
\p{x) dx 

- i ( 1 - x 2 ) 1 / 2 

= 0 = 
sin mir/2 

m 

for even m. It follows from (6.5) and (6.6) that 

f1 # / \ ^ sin m (arc cos x) sin m (arc cos y) 
s f(x) L — 

J - l m=l m 

dx 

(6.7) + S sin m (arc cos y) 
., v sin m (arc cos x) \p(x) 

-i ( l - x 2 ) 1 ' 2 
dx 

__ Jl sin m (arc cos 0) sin m (arc cos y) 

m=l m 

Now, for fixed x, 

, .(2) * sin w(arc cos x) sin m (arc cos y) T-, N l.i.m. JL — = K(x, y) 
n->oo m = l m 

__ ^ sin m (arc cos x) sin w(arc cos y) 

i 1 1 ~ xy + [(1 - x2) (1 - y2)]1/2 * 
4 1 - xy - [(1 - x2) (1 - y2)]1/2 ' 

, .(2) " sin m (arc cos 0) sin m (arc cos y) T-//x . 
l.i.m. X) = K(P, y)t 
n->oo m = l m 

and since ^(x) (1 — x2) *Ç L2 

(2) n 

l.i.m. S s m m ( a r c c o s y) 
n-*oo m—\ 

1 , , N sin m (arc cos x) , ir,, N 

- / ( X ) (1 - * ' ) • / * i X = 2 ^ ( y ) -

Thus letting w—»oo in (6.7) we obtain 

This kernel is known to aerodynamicists under the name of the "Betz Kernel". See 
e.g. Sôhngen [11]. 
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(6.8) K(x,y)Hx)dx + ^(y) =K(Q,y). 
-1 l 

Consider the kernel 

K(x,y) = £ 
sin m (arc cos x) sin m (arc cos y) 

m 

I t is symmetr ic and 

i 

—i J 
K2(x, y) dx dy < °o. 

I t is clearly positive definite, and hence its eigenfunctions gj(x) form a com­
plete set. I t also follows almost a t once t h a t the eigenfunctions gjix) are 
continuous. Mult iplying (6.8) by gj(y) and integrat ing we obtain 

Hx) gj(x) dx = gj{°) 
- i s + v/2\j 

where Xy is the eigenvalue of K(x, y) which corresponds to the normalized 
eigenf unction gj{y). T h u s 

iK*) ' y(0) 

and consequently 

.7=1 s + ir/2\j 

gj(0) 

gj(x) 

\p(x) dx — £ 
- i i = i s + ir/2\jj 

For the general values of a the result is 

1 
\[/(x) dx = - £ 

0 i = i s+7r/2a\j 
S;(0) 

g ;(x) d«. 

gj(x/a) dx, 

where the gy and Xy retain their previous meanings. T h e last series is a Stielt-
jes transform, and consequently an iterated Laplace transform [10, 334]. 
Hence we can invert the series te rm by te rm to obtain 

(6.9) P(a, t) = I Z e-l/2aXJ gi(0) gj(x/a) dx. 

This is the Cauchy analogue of formula (1.1). Although we are unable to 
reduce (6.9) to a more explicit form we can draw significant conclusions about 
the mean t ime before absorption in a Cauchy process. If we define T(a) as 
the greatest lower bound of those t's for which 

l .u.b. \x(v)\ < a 
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we see that 

p(t,a) = Prob { l.u.b. \x(v)\ < a} = Prob [T(a) > /} = 1 - *(*). 

Consequently, 

roo roo 
tkp(t, a)dt = ** Prob {T(a) > /} * 

= P t\\ - <r(t)) dt = — L - f°° /*+i da(t) = - J - £{r*+*(a)}. 
Jo * + 1 J o k + 1 

In particular, 

£{r (a )} = 
Jo 

and 

From (6.9) we get 

E{T2(a)} = 2 

£(^, a) d/ 

/ p(t, a) dt. 

I On °° 
p(t,a)dt = - £ Xigi(0) 

o ^ i = l 
£;(X) & = — 

J - l 7T 
i£(0, x) dx = a. 

Likewise, formula (1.3) for E{T2(a)} can be obtained in terms of the iterated 
kernel i£(2)(0, x). Calculation of higher moments of T(a) involves, of course, 
higher iterates of the kernel K. 

Only slight modifications of the theory are needed in order to calculate 

p(a, b, t) = Prob { - b < g.l.b. x(y) ^ l.u.b. x(v) < a}. 

Defining T(a, b, f) in a way analogous to T(a, t) it is then easy to show that 

E{T(a,b,t)} =Vab. 

In the Gaussian case y/ab is to be replaced by ab. 
Finally, let us mention that from (6.8) we can determine the behaviour of 

4*(y) f° r y n e a r 0. In fact, since \p £ D, s\ K(x, y) \p(x) dx is bounded for 
J - i 

all y and it follows that 

2 1 1 
t(y) ~ - K(0, y) ~ - log j-r + const. 

IT 7T \y\ 
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