THE DISTRIBUTION OF THE MAXIMUM OF PARTIAL
SUMS OF INDEPENDENT RANDOM VARIABLES

MARK KAC ano HARRY POLLARD

1. The problem. It has been shown [1] that if X3, + X, . .. are independ-

ent random variables each of density (21)"*6‘;_ ,andif s =20+ X+ ... + X4
then

15 {_ <2j+1>21r2t}_

(1.1) lim Prob{ max [sy| < av/n} =
E<nt 8a?

n—Q
This result, which can be generalized to random variables which need not be
normally distributed [2], is closely connected with the theory of diffusion and
Brownian motion. In fact the above limiting distribution is equal to

fa_a P(x, t)dx, where P(x, t) is the fundamental solution of P, = } P,

which becomes singular at x = 0 as t — 0 and which is subject to the condition
P(— a,t) = P(a,t) = 0, corresponding to absorbing barriers.

The connection between this problem and the theory of diffusion hinges on
the fact that the second moments of the X ; are finite. It is therefore of interest
to investigate analogous problems for random variables with an infinite second
moment. For this purpose we have chosen the case in which the X; have the
same Cauchy density [7(1 4+ x?)]™%. Our principal goal is the computation
(§6) of the limiting distribution

(1.2) p(a,t) = lim Prob {max |si| < an},
7 —0 k<nt

where the s, retain their preceding significance as the partial sums X, + X, +
oo + X

The computation will be effected by a series of reductions which culminate
in an integral equation of the Hilbert-Schmidt type. It unfortunately does
not seem soluble in terms of known functions.

We are, nevertheless, able to compute the mean time of absorbtion for a
Cauchy process x(¢). Define the random variable T(a) as the greatest lower
bound of those ¢'s for which

Lub. |x()| < a.

o<rv<t
T'(a) is thus the time during which x(¢) remains in the strip between — a
and + a before it leaves that strip for the first time. It turns out that
E{T (@)} = a, and
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(1.3) E{Tz(a)}=%a2{%+}—2—%—2+—;—2...}.

2. Existence of the distribution p(a,?). Suppose then that the X; are
independent and Cauchy distributed with density [#(1 4+ x?)]™'. Consider the
space of all functions x(f), t2 0, x(0) = 0, and for 0 <#;, <t < ... <tn
assign to the set of x(¢) for which

a <x(t) <byy.o.yn <x(ty) < by

the measure

by b
J e J-a Q(xly tl) Q(xz — X, b2 — tl) e Q(xn—x,,._l, tn — tn—l) dxy...dx,,

ay

where

1 ¢
1) = = .
Qx, 1) T

It has been shown (|3], [4]) that when this measure is extended it has the
property that almost every x(tf) has at most a denumerable number of dis-
continuities, all of the first kind (jump discontinuities). Also if e is fixed,
almost all x(v) are continuous at » = @. Consequently almost every x(v)
has the property

Lub. |x()| = lim max |x(k/n)|,
orKt n-—-0 k<n

and thus lub. |x(»)]is a measurable function. Moreover,
[\F 41 4]
2.1) Prob {Lub. |x(»)] <a} = lim Prob {max |x(k/n)| < a}.
ogr<t % — 00 k <nt
Since
(2.2) Prob {max |x(k/n)| < a} = Prob {max |si| < an}
k<nt k<nt

the existence of p(a, t), as defined by (1.2) is established. To see that (2.2)
is satisfied we write

k i I+1 l
x(;)— zz=:o {x( n ~\n
and note that from the definition of the Cauchy measure it follows that the

increments x(l _: 1) -x (ﬁ) are independent and all have the density
Q(x, ;) Thus, expressing both sides of (2.2) as multiple integrals we see

that they are identical.

https://doi.org/10.4153/CJM-1950-034-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1950-034-9

PARTIAL SUMS OF RANDOM VARIABLES 377

3. First reduction of the problem. We have

Prob { max |si| < an}
1<k<m

= Gi )m Qx1, )Qxe — %1, 7) « . . Q(Xm — Xmey, 7)1 . . . dXm,

where 7 = 1/n. Now let

3.1) on(x) = (J “_a)m_l 01, 1)Q0es — %1, 7) - - . O — Xmes, 7)1 +v. dmy

and

1 T 1
S T T

n .
]
nix? + 1

note that

on®) = [ omadets = 3y

Furthermore let

(o]

Y.(x) = 7 2 €™ on(x), s> 0,
m=0
We shall show that
a [s 2]
(3.2) lim ¥,(x) dx =J e~* Prob { Lu.b. |x(»)| < a} dt.
o J-—a 0 0<r<t

Letting

£.0) = J oml) d mr <1< (m+ 1)1,

we see that 0 < f,(t) £ 1, and by (2.1), (2.2) that

lim Prob { max |5 < an} =lim f£,(t) = Prob { Lub. |x(»)| < a},
70 0

n—0 1<kSm <rv<

where m satisfies, of course, the inequality nt — 1 < m < nt.

Thus

(o] [o]
lim J et f,(t) dt =J e~*t Prob { Lu.b. |x(»)| < a} dt.
=0 0 0 <

Syt

On the other hand
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[e2)

" T J et £, (1) dt

(x)dx =
LY (x)dx e
© (m+1)r a
a J' et dtj em(x)dx,

1—e* m=0

mr —a

and (3.2) follows.
Note also that the definitions of ¢,(k) and ¥, (x) imply that

Tl - 0w = H[* vmot - 0t - v

T

(3.3)

4, Passage to the limit. It follows from (3.1) that

0 < onlx) < (ro >m—l Qlx1, 7). .. Q(x — Xm—1, T)dX1, + « oy AXm—1

_ S_1l_(m+Dr
= Qwm + ) = -

and hence that

r 2 et (m+ Dr
0 <) < x n?;oe x2 4+ (m + 1)22°

For p > 1 define
i = ([ weoreas)”

Then
W@l < - Z e 0m + Dr ||t + (m + DY)
< Vo © e—msr
Sdr m};o -——-(m e
Since
Zn: R S Bnt/? n—o
m=0 (m 4+ 1)1~V»
it follows by an Abelian argument that
(o] e—ms-r
—_—_—~ ~1/
mza:o O Crve, T —0.
Hence
4.1 a 1/
0 (J° i as)” < 1ot < cto, 9,
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where C is independent of 7. By a theorem of Banach and Saks [5] a subse-
quence {1[«,k(x)} can be chosen so that 7, — 0 and

(») 1

k
(4.2) Lim 2 2 () = ¥(x)

k- k

in the sense of mean convergence in L?(— a, a). Strong convergence will be
necessary to derive formula (5.2). From (3.2) we infer that

‘ Y(x) dx = on e~** Prob { Lub. [x()| <} dt,

0 o<re

a
and consequently we may concentrate on calculating J- Y(x) dx.
—a

5. Introduction of the infinitesimal generator. We shall use the following
lemma [6, 386]:

LemMMA 5.1. If g(x) and g'(x) belong to L*(— a, a) and g(— a) = g(a) = 0,
then

Gy rim ME[C O gy gl Ty £0)g,

=0 7 \r)—a?4(x—y)? —ay —x

Now let g(x) be any function satisfying the conditions of the lemma. Multiply
both sides of (3.3) by g(x) and integrate from — a to a to obtain

e": ! J'ia Yo (x)g(x)dx — " Jia Q(x, 1)g(x)dx
= J’; ¥-(9) k. (y)dy,
BT

Letting 7 — 0, through the sequence 74, we infer from (4.2) with p = 2 and.
our lemma that

(52 [ v g =50 = [* v 400 0
where

h(x) = 1 P.V. Ja £0) dy.

—ay — X

It is on the equation (5.2) that we shall base our determination of p(a, t).
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6. Solution of the problem. For the sake of simplicity we assume that
a = 1. Let m be odd and set

(6.1) g(x) = sin m(arc cos x) — mV1— x.

It is easy to verify that g(x) satisfies the conditions of Lemma 5.1. Moreover
it is known [7, 8] that

(6.2) PV Jl cos m(arc cos y) dy _ w sin m (arc cos x)
. .V. - (1 _y2)1/2 y—x m (1_x2)1/2
and
1
63) P.V. J oy Ay
“1(1=pH)"2 y —x
Substituting (6.1) in (5.2), and using (6.2) and (6.3), we get after a rearrange-
ment
1 . :
64) = J ¥(x) sin m (arc cos x) dx + Jl ¥(x) sinm (arc cos x) .
mJ-1 1 (1—x2)1/2
= J'l Y1 + s(1 — 12} dx — 1 4 sin m1r/2.

The functions

(2)1/ 2 sin m (arc cos x)

- (1—x?)1/4

form an orthonormal set on (— 1,1) andsincey € L? (— 1, 1) foreveryp > 1
we see that

¥(x) 2

and, in particular

. 1 sin m (arc cos x) _
’lnlinm J_ Y(x )*ﬁ)T/;—dx—O-

Also

m—0

lim 1 J ¥(x) sin m (arc cos x) dx = 0,

and consequently it follows from (6.4) that

J’_l V{1 + sQ — V2 dx = 1.
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Thus for odd m

sin m (arc cos x)

(6.5) ;i Jil ¥(x) sin m (arc cos x) dx + Jil Y(x) a7

_ sinmwr/2
m

and since y(x) is even we have also

sin m (arc cos x)

(6.6) %s J:l ¥(x) sin m (arc cos x) dx + Jil Y(x) —2)72

sin mwr/2
m

=0 =

for even m. It follows from (6.5) and (6.6) that

sin m (arc cos x) sin m (arc cos ) dae

s|' vw ©
1 m=1

B m
" 1 sin m (arc cos x)
6.7) + mg‘l sin m (arc cos y) . ¥(x) T -y

}5 sin m (arc cos 0) sin m (arc cos )
m=1 m )

Now, for fixed «x,

2 " sin m(arc cos x) sin m (arc cos y) - K(x, y)

n—0 m=1 m

sin m (arc cos x) sin m(arc cos y)
m=1 m

L—ay 11—t L=y *
L—ay — (=) (1 =1

@ sin m (arc cos 0) sin m (arc cos ) = K(0, y)

= Ltlog

n—00 m=1 m

and since y(x) (1 — x?)~t¢ L

2) n

Lim. Y sin m (arc cos ¥) 1_1 Y(x)

sin m (arc cos x
in 7 (A€ 05 %) e = Z(y).
n—© m=1

a- x2)1/2

Thus letting #— in (6.7) we obtain

*This kernel is known to aerodynamicists under the name of the ‘“Betz Kernel”. See
e.g. Sohngen [11].
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1
©5) |1 K v dx + 390 = KO,
Consider the kernel
X sin m (arc cos x) sin m (arc cos y)
K(x,y) =
(x, %) mZ=21 -

It is symmetric and
1 1
J J K(x,y) dx dy < =.
-1 J-1

It is clearly positive definite, and hence its eigenfunctions gj(x) form a com-
plete set. It also follows almost at once that the eigenfunctions gj(x) are
continuous. Multiplying (6.8) by g;(v) and integrating we obtain

! £;(0)
(x) dx = ,
' v e o - 2O
where A; is the eigenvalue of K(x,y) which corresponds to the normalized
eigenfunction g;(¥). Thus

- 2;(0) ,
Y(x) j; ey g;(x)

and consequently

L= 2 0 e o

For the general values of a the result is

ISR -

ol e dx,
@ j=1 s+m/2a\; &l )J_a gi(x/a) dx

where the g; and A; retain their previous meanings. The last series is a Stielt-
jes transform, and consequently an iterated Laplace transform [10, 334].
Hence we can invert the series term by term to obtain

© a
(©.9) pa) =1 = g0 [ oo i
i=1 —a
This is the Cauchy analogue of formula (1.1). Although we are unable to
reduce (6.9) to a more explicit form we can draw significant conclusions about
the mean time before absorption in a Cauchy process. If we define T(a) as

the greatest lower bound of those ¢'s for which

Lub. |x()| <ea
0<r<t
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we see that

p(t, a) = Prob { Lu.b. |x()| < a} = Prob {T(a) > t} = 1—a(2).

0<r<t

Consequently,
J t*p(t, @) dt = J t* Prob { T(a) > t} dt
0 0

(o) _ 1 [e o) . _
= L (1 — o(t)) dt = P Jo 1 do(t) =

1

Pyt E{T*"(a)}.

In particular,
E{T()} = J:o p(t, @) dt
and
E{T*a)} = 2 J:D t p(t, a) dt.
From (6.9) we get

J P, a) dt = 2a > 2gi(0) Jl gi(x) dx = % Jl K(0, x) dx = a.
0 T j=1 -1 T J-1

Likewise, formula (1.3) for E{ Tz(a)} can be obtained in terms of the iterated
kernel K@ (0, x). Calculation of higher moments of T'(a) involves, of course,
higher iterates of the kernel K.

Only slight modifications of the theory are needed in order to calculate

p(a,b,t) = Prob{ — b < glb. x(») < Lub. x() <a}.

ogrKe o0<r<e

Defining T'(a, b, t) in a way analogous to T'(a, t) it is then easy to show that

E{T(a,b,t)} =+/ab.

In the Gaussian case 4/ ab is to be replaced by ab.
Finally, let us mention that from (6.8) we can determine the behaviour of

1

¥(v) for y near 0. In fact, since y € L2, sJ[. K(x,y) ¢(x) dx is bounded for
-1

all y and it follows that

2 1 1
Y(y) ~ - K(0, y) ~ - log Bl + const.
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