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Collisions are an important dissipation mechanism in plasmas. When approximating
collision operators numerically, it is important to preserve their mathematical structure
in order to retain the laws of thermodynamics at the discrete level. This is
particularly challenging when considering particle methods. A simple but commonly
used collision operator is the Lenard–Bernstein operator, or its modified energy-
and momentum-conserving counterpart. In this work, we present a macro-particle
discretisation of this operator that is provably energy and momentum preserving.
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1. Introduction

Structure-preserving numerical methods aim at preserving certain properties of a
system of equations exactly at the discrete level. Some examples for properties of
interest are symmetries and conservation laws, Lagrangian or Hamiltonian structure, or
compatibility with the laws of thermodynamics. Preserving such structures is typically
found to be advantageous for accuracy and robustness of numerical schemes, especially
for strongly nonlinear problems and long-time simulations (Hairer & Wanner 2006).
This has also been recognised in plasma physics, and the last decade has seen striking
efforts towards the development of structure-preserving algorithms for problems such as
magnetohydrodynamics, the Vlasov–Poisson and the Vlasov–Maxwell system (see e.g.
Morrison (2017) and references therein). So far, most work has focused on dissipationless
systems, with dissipative systems, such as collisional kinetic systems, being considered
only more recently. However, dissipative effects, although often weak, are important for
the correct simulation of physical behaviour over long simulation times. Sometimes, the
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neglect of dissipative effects can cause numerical problems, e.g. when small structures
emerge that cannot be resolved by the computational mesh. In many cases, these structures
are unphysical because dissipation would prevent their emergence in the first place. Thus,
the inclusion of dissipation is important not only for physical correctness but also because
it can aid numerical robustness.

Work on the structure-preserving discretisation of Vlasov-like equations has mainly
focused on particle-based methods. In recent years, many authors have worked on the
ideal (non-dissipative) part of the problem, including Chen, Chacón & Barnes (2011),
Markidis & Lapenta (2011), Squire, Qin & Tang (2012), Evstatiev & Shadwick (2013),
Qin et al. (2016), Burby (2017), Kraus et al. (2017), Zhang & Gamba (2017), Campos
Pinto, Kormann & Sonnendrücker (2022).

After the discretisation of the ideal problem was well understood, focus shifted
towards the structure-preserving discretisation of the collisional (dissipative) part. While
early work focused on grid-based methods (see e.g. Yoon & Chang 2014; Taitano
et al. 2015; Hirvijoki & Adams 2017; Kraus & Hirvijoki 2017; Shiroto & Sentoku
2019), structure-preserving discretisations for collision operators with particles have been
considered more recently. Hirvijoki, Kraus & Burby (2018) considered an approach
where the weights of the marker particles are varied, instead of their velocities. Carrillo
et al. (2020) and Hirvijoki (2021) used finite-sized marker particles to discretise the
Landau operator. Mollén et al. (2021) and Pusztay, Knepley & Adams (2022) focused
on projection/interpolation techniques for computing collision operators for particles. An
alternative approach is that of Tyranowski (2021), which treats the collisions as a stochastic
process, effectively modelling their underlying microscopic behaviour rather than the
resultant macroscopic effects modelled by various collision operators.

The aim of this work is to provide a proof-of-concept for an alternative approach to
structure-preserving particle methods for collisions, specifically for a conservative version
of the operator of Lenard & Bernstein (1958). We employ the deterministic particle method
(Degond & Mustieles 1990; Chertock 2017) to obtain dynamical equations for the particle
velocities. These are then regularised by evaluating the collisional flux on a smoothened
representation of the distribution function that is obtained from a projection of the particles
onto a spline basis. We show that this semi-discretisation maintains momentum and energy
conservation exactly. A midpoint discretisation in time is employed in order to retain these
conservation properties also at the fully discrete level.

The structure of the paper is as follows. In § 2, we detail the derivation of the
conservative Lenard–Bernstein operator. In § 3, the semi-discretisation of the operator
is presented and its conservation properties are verified. Section 4 describes a possible
time discretisation by the midpoint rule and proves that it retains the desired conservation
properties. Section 5 shows several numerical tests and examples for the one-dimensional
case, including some convergence results and verification of momentum and energy
conservation. Finally, the paper is concluded with a discussion of current and future work.

2. The conservative Lenard–Bernstein operator

The Lenard–Bernstein collision operator (Lenard & Bernstein 1958) is a scalar operator
of the form

C[ f ] = ν
∂

∂v
·
(

∂f
∂v

+ vf
)

, (2.1)

where f : R
d × [0,∞) → R is the single-particle distribution function, v ∈ R

d is the
velocity and ν is the collision frequency, which is assumed to be constant in time.
In most applications, such a collision operator is coupled to the Vlasov–Poisson or
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Vlasov–Maxwell equations, and so the distribution function would also depend on the
position variables. Here, however, we will ignore this dependency as we study the collision
operator independently of the ideal dynamics and this operator acts purely in velocity
space. Specifically, we solve the following differential equation:

∂tf = C[ f ]. (2.2)

The Lenard–Bernstein operator is applicable in velocity dimensions d = 1, 2, 3, though
collision operators which describe more physics effects, such as the Landau operator,
may be preferred in two and three dimensions in order to allow, for example, interchange
of momentum between different components. The steady-state solution to (2.2) for this
operator is a d-dimensional Gaussian distribution.

2.1. Construction of the conservative operator
The Lenard–Bernstein operator (2.1) preserves mass density, the zeroth moment of the
distribution function. However, it does not preserve momentum density or energy density,
which are the first and second moments, respectively, and whose conservation is crucial
for obtaining physically correct results in numerical simulations. In order to enforce
conservation of these quantities, we follow Kraus (2013) (see also Filbet & Sonnendrücker
2003) and modify the operator through an expansion, as follows:

C[ f ] = ν
∂

∂v
·
(

∂f
∂v

+ A1f + A2vf
)

. (2.3)

In the following, we will see that the coefficients Am are functions of the moments of the
distribution function f . In general, preserving k moments of the distribution function will
require an expansion including k terms in the operator. The coefficients are then computed
by requiring (2.2) to obey the respective conservation laws, which here are for momentum
and energy. Specifically, conservation of the kth moment requires the following condition
to hold: ∫

vkC[ f ] dv = ν

∫
vk

[
∂

∂v
·
(

∂f
∂v

+ A1f + A2vf
)]

dv = 0. (2.4)

Integrating this by parts, we obtain the following condition:

ν

[
vk

(
∂f
∂v

+ A1f + A2vf
)]+∞

−∞
− kν

∫
vk−1

(
∂f
∂v

+ A1f + A2vf
)

dv = 0. (2.5)

Without loss of generality, we assume that f and ∂f /∂v approach zero as |v| → ∞, so that
the first term in (2.5) is zero and we obtain the following condition:∫

vk−1

(
∂f
∂v

+ A1f + A2vf
)

dv = 0, (2.6)

for k = 1, 2. Integrating the first term by parts once again, this equation becomes∫ [
(k − 1)vk−2 − A1v

k−1 − A2v
k
]

f dv = 0, (2.7)

where the assumption that f approaches zero as |v| tends to infinity has been utilised once
more. Writing the moments as Mm[ f ] = ∫

vmf dv, we obtain the following conditions:

(k − 1)Mk−2 = A1Mk−1 + A2Mk, k = 1, 2. (2.8)
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These conditions provide a linear system of equations that can be solved for the coefficients
A1, A2:

A1M0 + A2M1 = 0,

A1M1 + A2M2 = M0.

}
(2.9)

The solution to the system of equations in (2.9) is

A1 = M0M1

M0M2 − M2
1

= −u
ε − u2

, (2.10)

A2 = −M2
0

M0M2 − M2
1

= 1
ε − u2

, (2.11)

where nu and nε are the momentum and energy density, respectively, and are related to the
moments as follows:

n = M0 =
∫

f dv, nu = M1 =
∫

vf dv, nε = M2 =
∫

v2f dv. (2.12a–c)

Let us note that here, n, u and ε are just constants. However, in the general Vlasov case,
these quantities have a spatial dependency. Upon inserting the expressions for A1, A2 into
(2.3), we obtain the following operator:

C[ f ] = ν
∂

∂v
·
(

∂f
∂v

+ v − u
ε − u2

f
)

, (2.13)

which can be seen as a conservative version of the Lenard–Bernstein operator (2.1). This
is the same operator as the one obtained by Filbet & Sonnendrücker (2003) and is closely
related to the operator studied in Hakim et al. (2020).

2.2. The H-theorem
We follow a similar strategy to Hakim et al. (2020) to demonstrate that the continuous
operator satisfies the H-theorem. Let us denote the collisional flux by

F[ f ] = ∂f
∂v

+ A1f + A2vf , (2.14)

so that
∂f
∂t

= C[ f ] = ν
∂

∂v
· F[ f ]. (2.15)

The change in entropy is then

dS
dt

= d
dt

∫
f log f dv =

∫
(1 + log f )

∂f
∂t

dv = ν

∫
(1 + log f )

∂

∂v
· F dv

= −ν

∫
1
f

∂f
∂v

· F dv = −ν

∫
1
f
|F|2 dv +

∫
(A1 + A2v)F dv, (2.16)

where integration by parts, the assumption that F goes to zero as |v| → ∞ and the
substitution ∂f /∂v = F − A1f − A2vf were used. By (2.6), the second term in the last
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expression is designed to vanish, namely∫
(A1 + A2v)F dv = 0. (2.17)

Hence, the entropy is monotonically dissipated (provided that f is non-negative):

dS
dt

= −
∫

1
f

F2 dv ≤ 0. (2.18)

The entropy is stationary when F[ feq] = 0, that is when feq solves the partial differential
equation (PDE)

∂feq

∂v
= − v − u

ε − u2
feq. (2.19)

The (unique) solution with conditions f
|v|→∞−→ 0 and

∫
f dv = n is a d-dimensional shifted

Gaussian distribution with mean u and variance ε − u2,

feq(v) = n
(2π(ε − u2))d/2

e−(1/2)(v−u)2/(ε−u2). (2.20)

Thus, the continuous operator of (2.13) satisfies the H-theorem.

3. Semi-discrete operator

In order to discretise the conservative Lenard–Bernstein operator in velocity space,
we need to introduce a second representation of the distribution function. The particle
representation with Dirac delta distributions, which is usually used to solve the ideal part,
is not differentiable and thus cannot be used to evaluate the collisional part. Previous
works regularised the collision operator by using finite sized particles (Carrillo et al. 2020;
Hirvijoki 2021). Here, we explore a different approach based on finite element or spline
spaces of sufficient regularity.

The particle distribution function is given by

fp(v, t) =
∑

α

wαδ(v − vα(t)), (3.1)

where {vα(t)}N
α=1 are the particle velocities which evolve over time, and N is the number

of particles. As the particle distribution function fp is non-differentiable, we use an L2

projection of fp onto a set of differentiable basis functions {ϕj}M
j=1 for M � N as follows:

fs(v, t) =
∑

i

ϕi(v)fi(t) =
∑

i,j

ϕi(v) M
−1
ij

∑
α

wαϕj(vα(t)), (3.2)

where {fi(t)} are the coefficients of the projected distribution function, fs, expressed in the
basis {ϕi}, and Mij = ∫

ϕiϕj dv are the elements of the corresponding mass matrix M.
The projected representation of the distribution function, fs(v), will be used as an
auxiliary representation for the evaluation of the collision operator where differentiability
is required. This type of projection also offers the benefits of smoothing the solution
for appropriately chosen basis functions {ϕj}. We note that (3.1) remains the primary
representation of the distribution function in our method, and that (3.2) is only used in
order to satisfy the differentiability requirements of the collision operator.
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To construct the semi-discretisation of the conservative Lenard–Bernstein operator, we
return to its form in (2.3). We will discretise this equation first, and then derive the discrete
coefficients A1 and A2 in terms of the discrete momentum and energy densities.

To discretise the conservative collisional dynamics,

∂f
∂t

= ν
∂

∂v
·
(

∂f
∂v

+ A1f + A2vf
)

, (3.3)

we apply a deterministic particle method (see Chertock (2017) for a review). Typically,
deterministic particle methods are formulated for first-order transport-type problems. They
can, however, be adapted to the context of diffusion problems as shown by Degond &
Mustieles (1990). Following this approach, we rewrite Equation (3.3):

∂f
∂t

= ∂

∂v
(a(v, f )f ), a(v, f ) = ν

(
1
f

∂f
∂v

+ A1 + A2v

)
. (3.4a,b)

This equation is approximately solved in terms of the particle distribution function
(3.1), where the particle velocities {vα} satisfy the following ordinary differential
equations (ODEs):

v̇α = a(vα, f ) = ν

(
1

f (vα)

∂f
∂v

(vα) + A1 + A2vα

)
. (3.5)

Let us note that the first term on the right-hand side is not well defined if the distribution
function f is replaced by its particle representation fp. Therefore, we will use the projection
shown in (3.2) instead and replace both instances of the distribution function f with the
projected distribution function fs to arrive at the following equation:

v̇α = a(vα, fs) = ν

(
1

fs(vα)

∂fs

∂v
(vα) + A1 + A2vα

)
. (3.6)

The final step in obtaining the semi-discrete system of equations is to compute the
coefficients A1 and A2. In analogy to the continuous case of § 2, A1 and A2 are determined
by requiring conservation of the discrete momentum and energy1:

d
dt

∑
α

wαvα = ν
∑

α

wα

[
1

fs(vα)

∂fs

∂v
(vα) + A1 + A2vα

]
= 0, (3.7)

1
2

d
dt

∑
α

wαv
2
α = ν

∑
α

wα

[
vα

fs(vα)

∂fs

∂v
(vα) + A1vα + A2v

2
α

]
= 0. (3.8)

Upon introduction of the discrete mass, momentum and energy densities,

nh(vα) =
∑

α

wα, nhuh(vα) =
∑

α

wαvα, nhεh(vα) =
∑

α

wαv
2
α, (3.9a–c)

we obtain a linear system of equations which can be solved to find the discrete A1, A2:

A1nh + A2nhuh = −
∑

α

wα

f ′
s (vα)

fs(vα)
,

A1nhuh + A2nhεh = −
∑

α

wαvα

f ′
s (vα)

fs(vα)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.10)

1Here, we have chosen to preserve the discrete moments in the particle basis but it is also possible to derive a
different scheme by imposing the conservation conditions on the projected moments.
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The solution to this linear system is as follows:

A1 = 1
nhεh − nhu2

h

∑
α

wα(uhvα − εh)
f ′
s (vα)

fs(vα)
,

A2 = 1
nhεh − nhu2

h

∑
α

wα(uh − vα)
f ′
s (vα)

fs(vα)
.

(3.11)

We note that these quantities implicitly depend on time through their dependence on the
particle velocities {vα(t)}, and so must be recomputed at every time step.

We also note that in order for the projection to preserve the moments of the distribution
function, it is sufficient that the functions {1, v, v2} are contained in span{ϕj}. This can be
demonstrated by considering the example of conservation of mass, which requires∫

1fp dv =
∫

1fs dv. (3.12)

To show that this holds, we begin from the condition used to construct the projection,∫
ϕjfp dv =

∫
ϕjfs dv, ∀ j ∈ 1, . . . , M. (3.13)

Let 1 ∈ span{ϕj}. Then, there exists a set of coefficients {cj} such that 1 = ∑
j cjϕj.

Multiplying both sides of (3.13) with the corresponding cj and summing over j, we have

∑
j

cj

∫
ϕjfp dv =

∑
j

cj

∫
ϕjfs dv, (3.14)

which by linearity of the integral becomes∫ ∑
j

cjϕjfp dv =
∫ ∑

j

cjϕjfs dv. (3.15)

Since we have that 1 = ∑
j cjϕj, we then have that∫

1fp dv =
∫

1fs dv, (3.16)

which is the required condition for mass conservation. Momentum and energy
conservation follow similarly from requiring the functions v and v2 to be in the span
of basis {ϕj}. We note that the spline basis chosen in the numerical implementation, as
detailed in § 5, satisfies this property since it is a cubic basis.

We remark that at this time, a proof of monotonic entropy dissipation for the
semi-discrete Lenard–Bernstein operator remains elusive. We have, however, numerically
demonstrated that our discretisation maintains this property in § 5.

4. Time discretisation

In this chapter, we describe the temporal discretisation of the system of ODEs (3.6) by
the implicit midpoint scheme, which is a possible choice for a method that maintains the
discrete conservation laws exactly (up to machine precision). Let us start by introducing
some notation. Denote by h a single time step, by tn = t0 + nh the time after the nth time
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step, and by vn
α ≈ vα(tn) the corresponding particle velocity. Further, let vn+1/2

α = (vn
α +

vn+1
α )/2 be the particle velocity at the midpoint and, following (3.2), denote the spline

representation of the distribution function at the midpoint by

f n+1/2
s (v) =

∑
i,j

ϕi(v)M−1
ij

∑
α

wαϕj(v
n+1/2
α ). (4.1)

With this, the implicit midpoint scheme for the system (3.6) can be written as follows:

vn+1
α = vn

α + ha(vn+1/2
α , f n+1/2

s ). (4.2)

In order to verify conservation of the total momentum, let us consider the particle
momentum at the (n + 1)th time step,∑

α

wαv
n+1
α =

∑
α

wα[vn
α + ha(vn+1/2

α , f n+1/2
s )]

=
∑

α

wαv
n
α + h

∑
α

wαa(vn+1/2
α , f n+1/2

s )

=
∑

α

wαv
n
α + h

∑
α

wα

[
1

f n+1/2
s

∂f n+1/2
s

∂v
(vn+1/2

α ) + A1 + A2v
n+1/2
α

]
. (4.3)

We observe that the sum in the second term of this equation is exactly given by the
left-hand side of (3.7), evaluated at vn+1/2

α , and so is equal to zero as (3.7) is satisfied
for all times in the scheme by construction. Thus, the particle momentum is conserved
exactly by the implicit midpoint scheme.

A similar result can be demonstrated for the total particle energy. At the (n + 1)th time
step, we have ∑

α

wα(v
n+1
α )2 =

∑
α

wα[vn
α + ha(vn+1/2

α , f n+1/2
s )]2

=
∑

α

wα(v
n
α)

2 + h2
∑

α

wαa(vn+1/2
α , f n+1/2

s )2

+ 2h
∑

α

wαv
n
αa(vn+1/2

α , f n+1/2
s ). (4.4)

Now, we split the last term and replace one vn
α by using the implicit midpoint rule, i.e.

vn
α = vn+1

α − ha(vn+1/2
α , f n+1/2

s ) to obtain the following:

2h
∑

α

wαv
n
αa(vn+1/2

α , f n+1/2
s )

= h
∑

α

wαv
n
αa(vn+1/2

α , f n+1/2
s ) + h

∑
α

wαv
n
αa(vn+1/2

α , f n+1/2
s )

= h
∑

α

wαv
n
αa(vn+1/2

α , f n+1/2
s )

+ h
∑

α

wα[vn+1
α − ha(vn+1/2

α , f n+1/2
s )]a(vn+1/2

α , f n+1/2
s )

= h
∑

α

wα(v
n
α + vn+1

α )a(vn+1/2
α , f n+1/2

s ) − h2
∑

α

wαa(vn+1/2
α , f n+1/2

s )2. (4.5)
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The last term in this equation cancels the second term on the right-hand side of (4.4), and
we are left with∑

α

wα(v
n+1
α )2 =

∑
α

wα(v
n
α)

2 + 2h
∑

α

wαv
n+1/2
α a(vn+1/2

α , f n+1/2
s ). (4.6)

The second term on the right-hand side of (4.6) equals the expression in (3.8) evaluated at
the midpoint vn+1/2

α , and therefore is zero. Thus, the particle energy is preserved exactly in
time.

5. Numerical results

In this chapter, we present numerical experiments for the one-dimensional conservative
Lenard–Bernstein operator using B-spline basis functions of arbitrary order for projecting
the particle distribution function. The implementation is based on the Julia programming
language (Bezanson et al. 2017), and the package is available publicly (Kraus, Blickhan &
Jeyakumar 2023).

5.1. Convergence of the semi-discrete operator
We demonstrate convergence properties of the semi-discretisation under projection onto a
B-spline basis and particle sampling. First, we verify that the semi-discretisation indeed
preserves the Maxwellian as an equilibrium solution under projection. To this end, we
compute the projection of an exact Maxwellian onto the spline basis as follows:∫ ∑

j

fjϕj(v)ϕi(v) dv =
∫

fM(v)ϕi(v) dv, (5.1)

where fj are the coefficients of the spline for which we are solving, and fM(v) =
1/

√
2π exp(−v2/2) is the Maxwellian of mean μ = 0 and variance σ 2 = 1. Rearranging

this expression, we obtain the following spline coefficients for the projected Maxwellian:

fj = M
−1
ij

∫
fM(v)ϕi(v) dv, (5.2)

where Mij = ∫
ϕiϕj dv are the elements of the mass matrix M as before. The

spline-projected representation of the Maxwellian distribution fM(v) is then given by
fs,M(v) = ∑

j fjϕj(v) with the coefficients fj from (5.2). We use this projected Maxwellian
to compute the right-hand side of (3.6), as follows:

v̇α = ν

(
1

fs,M(vα)

∂fs,M

∂v
(vα) + A1 + A2vα

)
, (5.3)

where the coefficients A1 and A2 are computed using the projected Maxwellian distribution
fs,M in (3.11). The L2 norm of the time derivative of the particle velocities, ‖v̇α‖2, can then
be used to check if the Maxwellian is an equilibrium solution under projection, as this
norm should approach zero with increasing spline resolution in such case. We compute this
quantity for a range of spline resolutions, using a sample of N = 100 000 particles from a
normal distribution where the sample is strictly used for evaluation of (5.3) and never for
projection. Figure 1 shows the convergence of ‖v̇α‖2 with an increasing number of splines,
computed using cubic spline basis functions. As expected, the norm of the time derivative
approaches zero with an increasing number of splines at a rate which corresponds to the
order of the splines used (cubic splines have order k = 4).
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FIGURE 1. Convergence of the L2 norm of the particle velocity gradient, ‖v̇α‖2, when computed
using a true Maxwellian f , against the number of splines. The dashed line shows the reference
curve y = x−4.

Secondly, we demonstrate convergence of the semi-discretisation under particle
sampling. Here, we instead compute the sample variance of the particle velocity time
derivatives, i.e.

∑
v̇2

α/N, keeping the spline resolution fixed and varying the number
of particles in the sample. Here, we directly project the particles to compute the spline
representation of f , as per (3.2) and (3.6). The results of this are shown in figure 2, and
we observe that the sample variance converges at a rate slightly above 1/N, which is
the expected convergence rate for the sample variance generated by statistical sampling
methods.

These two results demonstrate that the Maxwellian distribution remains an equilibrium
solution under semi-discretisation, and the method demonstrates the expected convergence
properties with both number of splines and particles.

5.2. Relaxation of a shifted normal distribution
In the first example, we initialise the distribution function with a standard normal
distribution shifted to the right by μ = 2, obtaining a distribution with mean μ = 2 and
variance σ 2 = 1 as shown in the following equation:

f (v, t = 0) = 1√
2π

e−(1/2)(v−2)2
. (5.4)

The particles are then initialised by independently and identically sampling from this
distribution, for N = 1000 particles. The spline distribution is initialised by L2 projecting
the initial particle distribution onto the spline basis, with the spline coefficients computed
as per (3.2). A cubic-spline basis of 41 elements was used, with equally spaced knots on
the velocity domain v ∈ [−10, 10]. The time integration is performed using the implicit
midpoint scheme, which is of second order. A time step of h = 8 × 10−4 and a collision
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FIGURE 2. Convergence of the sample variance of the particle velocity time derivative,∑
v̇2
α/N, with the number of particles, shown on a logarithmic scale. The dashed line represents

the reference curve y = 1/N.

frequency of ν = 1 was used. The simulation was run until a final normalised time of
t = 1, corresponding to 1250 time steps.

In the initial condition, shown in figure 3(a), we observe slight variations in the
spline-projected distribution function due to the sampling error of the particles. In the final
distribution, we observe the expected behaviour of the projected distribution approaching
an exact normal with the initial variations smoothed out, and due to the momentum
conservation, the mean of the distribution stays at the same value (v = 2). Here, the
particle momentum and the energy are conserved up to machine precision. The evolution
of the energy and momentum error are shown in figure 4. The evolution of the entropy,
S = ∫

fs log fs dv, is shown in figure 5 (normalised by the magnitude of its initial value),
and we observe the monotonic dissipation of the entropy over the course of the simulation
as expected.

We also observe that the method works well even for small numbers of particles. Results
for the same simulation using a sample of N = 200 particles instead are shown in figure 6.
The particle energy and momentum are again conserved up to machine precision in relative
error, with similar behaviour as shown in figure 4.

5.3. Relaxation of a bi-Maxwellian distribution
Next, we consider a double Maxwellian distribution as the initial condition. Each peak is
a standard normal distribution which has been shifted from the origin by v = ±2 as per
the following equation:

f (v, t = 0) = 1√
2π

(e−(1/2)(v−2)2 + e−(1/2)(v+2)2
), (5.5)

and the sampled distribution is shown in figure 7(a). The sample for the particle
distribution function is again of size N = 1000 particles. We use the identical numerical
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(a) (b)

FIGURE 3. The (a) initial and (b) final distributions when the initial condition is chosen to be a
normal distribution of mean μ = 2 and variance σ 2 = 1, for a sample of N = 1000 particles.

set-up as the previous example, in particular the same time step of h = 8 × 10−4 and the
same collision frequency of ν = 1. The final distribution obtained after time integration
until t = 5 is shown in figure 7(b). Again, the equilibrated distribution is a Gaussian with
equal mean and variance to the initial condition. The particle energy is conserved up to
machine precision in relative error. The particle momentum is conserved up to a relative
error of the order of 10−14. The behaviour of the two quantities over time is oscillatory and
similar to figure 4. The normalised entropy also decreases monotonically in time, and this
is illustrated in figure 8.

5.4. Relaxation of a uniform distribution
In the last example, we initialise the distribution function with a uniform distribution
shifted and scaled to the interval v ∈ [−2, 2], i.e.

f (v, t = 0) =
{

1
4 , if v ∈ [−2, 2],
0, else.

(5.6)

A sample of N = 200 particles is taken from this distribution. A time step of h = 1 × 10−4

is used and the final integration time is t = 1. All other parameters are kept the same.
Figure 9 shows the initial and final distributions obtained in the simulation, demonstrating
again the expected result that the initial distribution relaxes to a normal distribution. The
resultant particle distribution function retains the same mean up to a relative error of the
order of 10−14 (which is equivalent to momentum being preserved at this level). The energy
is preserved to a relative error of the order of 10−15. The entropy decreases monotonically
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FIGURE 4. Energy and momentum conservation during the simulation, for the initial condition
of a shifted normal distribution.

FIGURE 5. Evolution of the normalised entropy, i.e. S/|S(t = 0)| where S = ∫
fs log fs dv,

during the simulation.

as expected and is illustrated in figure 10. We note that the method performs as well
here as it does in the other examples despite this being a more challenging case, as the
uniform distribution is discontinuous and therefore not amenable to being represented
using B-spline basis functions.

5.5. Remarks
It is important to ensure that the chosen velocity domain for a simulation is sufficiently
large such that no particle leaves this domain at any time. There is no sensible method
for returning a particle to the simulation domain, as the true velocity space domain for
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(a) (b)

FIGURE 6. The (a) initial and (b) final distributions when the initial condition is chosen to be a
normal distribution of mean μ = 2 and variance σ 2 = 1, for a sample of N = 200 particles.

(a) (b)

FIGURE 7. The (a) initial and (b) final distribution functions when the initial condition is
chosen to be a bi-Maxwellian, in both particle and spline bases, for N = 1000 particles.
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FIGURE 8. Evolution of the normalised entropy over the simulation, where the initial
condition is a bi-Maxwellian.

(a) (b)

FIGURE 9. The (a) initial and (a) final distribution functions for the case of a uniform initial
condition. A sample of N = 200 particles is used.
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FIGURE 10. Evolution of the normalised entropy over the simulation, where the initial
condition is a uniform distribution.

this problem is infinite. Practically, a particle leaving the domain will return zero when
the spline projected distribution is evaluated on the particle’s velocity, which leads to the
evaluation of (3.6) becoming undefined due to division by zero.

6. Conclusion

In this work, we have outlined the development of structure-preserving particle-based
algorithms for the simulation of collision operators. While the approach itself is general, it
has been specifically applied to a conservative version of the Lenard–Bernstein operator.
We have derived an energy- and momentum-preserving particle discretisation for this
operator, and the implicit midpoint method is shown to exactly preserve these quantities in
time as well. We have demonstrated the convergence properties of the semi-discretisation
under the projection used, as well as under particle sampling. Numerical examples
for the one-dimensional case demonstrated the viability of the method and verified its
conservation properties. The method is implemented in the Julia programming language
with the respective repository available (Kraus et al. 2023). The proposed method can be
coupled to any Vlasov–Poisson or Vlasov–Maxwell particle solver, and future research
will detail such a coupling and its benefits.

Currently, we are adapting the approach presented here for the Landau collision operator
using the metriplectic formulation, and the results will be reported in a follow-up paper.
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Appendix A. Time-evolution of cumulants

One useful fact about the steady-state solution of the Lenard–Bernstein operator being
a normal distribution is the fact that its cumulants of order three and above are all
zero. The cumulant is a closely related quantity to a moment, being defined through a
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cumulant-generating function which is obtained by taking the natural logarithm of the
moment generating function of the distribution. The cumulant-generating function for a
normally distributed random variable X ∼ N(μ, σ 2) is given by

K(s) = log E[exp sX] = μs + 1
2σ

2s2, (A1)

where the cumulants are the coefficients of the Taylor expansion in s, κn = K(n)(0). In this
instance, the cumulant-generating function has no terms at order three and above, implying
that the corresponding cumulants of the normal distribution are zero. We can also see that
the first and second cumulants are simply the mean and variance, respectively.2 For ease
of computation, the third and fourth cumulants can be related to central moments of the
random variable (those centred around the mean) through the following relations:

κ3(X) = E[(X − E(X))3],

κ4(X) = E[(X − E(X))4] − 3(E[(X − E(X))2])2,

}
(A2)

where κ3(X) and κ4(X) are the third and fourth cumulants, respectively. In the discrete
setting, the behaviour of the discretised cumulants can act as a quantitative check of how
close the solution is to the known solution.

In fact, the time-evolution of the cumulants can be solved analytically in the case
where the coefficients Ak of the Lenard–Bernstein collision operator are held fixed. Let
the moment-generating function be the Wick-rotation of the Fourier transform of the
distribution,

M(s; t) =
∫

esvf (v, t) dv = E(esXt) = eK(s;t). (A3)

With this, moments of the distribution function are the Taylor coefficients
of the moment-generating function Mk(t) = ∂(k)

s M(0; t) = E(Xk
t ). If we write the

Lenard–Bernstein collision operator as

C[ f ] = ν∂v

(
∂vf +

p∑
k=0

Akv
kf

)
, (A4)

then, after integrating (and neglecting boundary terms originating from integration by
parts), the relaxation equation ∂tf = C[ f ] becomes a PDE for M(s; t), namely

ν−1∂tM = s2M − s
p∑

k=0

Ak∂
(k)
s M, (A5)

where the substitution
∫

esvvkf dv = ∂(k)
s M was exploited. By setting s = 0 we see that the

zeroth-moment is conserved,

d
dt

M0 = 0 ⇐⇒ M0(t) = m0, (A6)

which can be attributed to the collision operator being a divergence.
The construction above is fairly general in the sense that the number of terms in the

collision operator is capped by an arbitrary p. There are two distinct questions to address
analytically.

2This is true in general for all probability distributions which have well-defined first and second moments, not only
for the normal distribution.
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(i) For arbitrary p, the steady-state moment-generating function M∞(s) = limt→∞
M(s; t) can be inferred from the ODE

p∑
k=0

AkM(k)
∞ = sM∞. (A7)

In particular if p = 1, we have a first-order ODE

M′
∞ = s − A0

A1
M∞ ⇐⇒ K ′

∞ = s − A0

A1
, (A8)

together with the requirement that K∞(0) = ln 1 = 0. The solution is the
cumulant-generating function of a Gaussian with mean μ = −A0/A1 and variance
σ 2 = 1/A1:

K∞(s) = μs + 1
2σ

2s2. (A9)

(ii) In the case where p = 1, normalising time to the collision frequency
multiplied by the variance t �→ t/(σ 2ν), the relaxation equation in terms of the
cumulant-generating function is

∂tK + s∂sK = μs + σ 2s2, (A10)

which is a linear non-homogeneous first-order PDE. We apply the method of
characteristics. Let the curve s(τ ) and t(τ ) and κ(τ) = K(s(τ ), t(τ )) be such that

dt
dτ

= 1,

ds
dτ

= s(τ ),

dκ

dτ
= d

dτ
K(s(τ ), t(τ )) = ∂sK

ds
dτ

+ ∂tK
dt
dτ

= μs(τ ) + σ 2s(τ )2,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A11)

with initial conditions s(0) = s0, t(0) = 0 and κ(0) = K(s0, 0) = μs0 + 1
2σ

2s2
0 +

R(s0). The solutions are

t(τ ) = τ,
s(τ ; s0) = s0 eτ ,

κ(τ ; s0) = μs0 eτ + 1
2σ

2s2
0 e2τ + R(s0).

⎫⎬
⎭ (A12)

Inverting s(τ ; s0) and t(τ ; s0), we obtain the time-evolution of the cumulant-genera-
ting function as

τ = t,
s0(s, t) = s e−t,

K(s, t) = μs + 1
2σ

2s2 + R(s e−t) = K∞(s) + R(s e−t).

⎫⎪⎬
⎪⎭ (A13)
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FIGURE 11. Decay of the fourth- and fifth-order cumulants, κ4 and κ5, over the course of a
simulation where the initial distribution is taken as a sample of N = 1000 particles from a double
Maxwellian distribution. The cumulants are normalised to their initial value and analytic scaling
laws are shown as dashed lines.

As time tends to infinity the initial ‘excess’ cumulants are lost,

lim
t→∞

R(s e−t) = R(0) = 0. (A14)

We are now in a position to determine the time-evolution of the individual cumulants
by differentiating with respect to s,

∂sK(s, t) = μ + σ 2s + R′(s e−t) e−t,

∂2
s K(s, t) = σ 2 + R′′(s e−t) e−2t,

∂(k)
s K(s, t) = R(k)(s e−t) e−kt, k > 2.

⎫⎪⎬
⎪⎭ (A15)

By evaluating at s = 0, we have

K1(t) = μ + R1 e−t,

K2(t) = σ 2 + R2 e−2t,

Kk(t) = Rk e−kt, k > 2,

⎫⎪⎬
⎪⎭ (A16)

where R1 = ∂sK(0, 0) − μ, R2 = ∂2
s K(0, 0) − σ 2 and Rk = ∂(k)

s K(0, 0) = R(k)(0) for
k > 2 are the initial residual cumulants. This shows that the decay rate of the kth
cumulant is proportional to k, namely that the decay rate scales linearly with the
order of the cumulant.

We check this scaling numerically in our method by fixing the A1 and A2 coefficients
in (3.6), instead of solving the system of equations shown in (3.10). Initialising the
simulation with a double Maxwellian distribution, as shown in the second example, for
N = 1000 particles, M = 41 splines of order 4 and a time step of �t = 5 × 10−3, we fix
the coefficients to be A0 = 0 and A1 = 1. The evolution of the higher-order cumulants is
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shown in figure 11. We observe that the cumulants scale at the predicted rate, until they
reach the level of accuracy supported by the chosen resolution (approximately 10−2 for a
particle resolution of N = 1000. The saturation point of the cumulants corresponds to the
solution reaching equilibrium.
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