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Abstract

We consider an extension of the Ramanujan series with a variable x. If we let x = x, we call the resulting
series ‘Ramanujan series with the shift xy’. Then we relate these shifted series to some g-series and solve
the case of level 4 with the shift xo = 1/2. Finally, we indicate a possible way towards proving some
patterns observed by the author corresponding to the levels £ = 1,2, 3 and the shift xo = 1/2.

2010 Mathematics subject classification: primary 33C20, 33C05; secondary 11F03, 33C75, 33E05.

Keywords and phrases: Ramanujan series for 1/, hypergeometric series, lattice sums, Dirichlet L-values,
modular forms.

1. Shift and upside-down transformations

A shift is a transformation that consists in applying the substitution n — n + xj inside
a series, and we say that x is the shift. For example, the series

o s—1
Z G )((1))( Jn "(a + bn) (1.1)
0 n

shifted by xy becomes

i Zn+x0 (% + xO)n(% + XO)n(S;Sl + xo)n

150 (a + b(n + xp))
0)n

n=0
multiplied by a factor which does not depend on n (we will ignore that factor). An
upside-down transformation consists of the substitution n — —n. That is,
1 1 -1
= _n(i)—n(s)—n(sT)—n

Z

e (D%,

(a — bn), (1.2)
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understanding the rising factorials in the way indicated below:

n n
CD" iy 2 tand (1), »
(1 - a)n (l)n

These substitutions are justified because they preserve formally the recurrence
equation I'(x + 1) = xI'(x); see the duality property [9, Ch. 7] and the application
shown in [7, Section 4], and see [8] for the analytic interpretation. If |z] > 0, we
understand the ‘divergent’ series (1.1) as its analytic continuation, and, if |z] < 0, we
interpret the ‘divergent’ series (1.2) in the same way. While in [8] we have studied
the ‘upside-down’ transformation, in this paper we consider the transformation with a
shift. In [8] we prove that the upside-down transformation modifies the value of the
modular variable g. Here we will see that a shift does not modify it.

The following kind of series for 1/x:

>z ()((1))( (+b)—— (1.3)
n=0 n

where s € {2, 3,4, 6}, can be parametrized with a modular function z = z,(¢) and two
modular forms b = by(g) and a = a,(q) of weight two. It is known that the level of
these functions is € = 1,2,3,4 for s=6,4, 3,2, respectively, and that for g = eV
with r € Q* the values of z, b, a are algebraic reals (the sign + corresponds to series
of positive terms and the sign — to alternating series). In these cases the series (1.3)
are called Ramanujan-type series, in honour of the Indian genius Srinivasa Ramanujan
who gave 17 examples of them. If we want to consider algebraic complex solutions,
then we let ¢ = €™, where 7 is a quadratic irrational with Im(r) > 0. In this paper
we are mainly interested in the evaluations of (1.5) for those special values of ¢ and
x = 1/2. We will use the following theorems.

(@)-n —

THeOREM 1.1. Let

Fe(x,2) = iZI’Hx(% x), (1 +x), ( +x) Fi(x,7)

< 1+ 03 © Fi0, M9
" (4 + 0, + 0,5+
_00 n+x§+xn§+xn%+xn
Go(x,7) = ’;z T (a+ b(n + x)), (1.4)

where 7 = z(q), b = b(q) and a = a(q) are the functions mentioned before. Then

( dg(q) )

Ge(x,q) = (1.5)

$(g) —Inlg Iq—

Proor. It is a particular case of [8, Proposition 2]. |

TueorEM 1.2. The following identity holds:

(055 ) 0= (5] = 2RO VT2 Ve
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Proor. The differential operator
R ) o)
Zdz ¢ Zdz 2 Zdz s Zdz s

annihilates F,(0, z), and in [6] we proved that DF(x,7) = x°z*. As F(0, g) is a modular
form such that DF(0, z) = 0, we can apply [11, Lemma 1], and, as

@=(1—z)(zdiz)3+--',

( 1)3Fe(x,q) DF(x,2) (q dZ)
Fe(0,q)  Fe(0,2)(1 —2)\zdg
Finally, using [6, Equation (2.34)], we complete the proof. O

2. Ramanujan series of level 4 with a shift

This is motivated by the evaluations found in [8] by observing that when s = 2, a
shift of x = 1/2 of a convergent Ramanujan-type series is equivalent to the upside-
down shift of a related ‘divergent’ Ramanujan-type series.

2.1. Ramanujan series of level 4 with the shift 1/2.
TueoreM 2.1. Case s =2 (£ = 4). Let

00

(L
Fy(x,q) = Z Ei );’ %" Galxg) = Z i [a4 +by(n + 0]y
n=0 0

The following identities hold:

(=) 1
8(q) = 8vg Zag<2n+1>(2 L Fil3a)=Fi0ge@ @
and
(=q)" lnlql ( q)"
G4( ) (203(2 +1)(2 T Z o3(2n +1) 1)2) 2.2)

where q = +e™V and o73(n) is the sum of the cubes of the divisors of n.

Proor. Applying Theorem 1.2,

d\3 1, _ Fi(1/2,9)
(6]%) #(q) = §F4(0, DV —zuNVu, o= m-

But, for s = 2, we know that
6;(q)

F40,9) = 63(g),  z(g) = 4A@)(1 = Ag), Ag) =

03(q)
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Using the identity 9§(q) = 6‘2‘(61) + Hj(q),

dy} 1
(47) 4@ = 3B @E @0 (@)1 = ViS @)

Then, with The On-Line Encyclopedia of Integer Sequences (OEIS) [10], we could
identify the coefficient of (—¢)" in the expansion of f(q) as 03(2n + 1). Hence,

() st = va S oan + g
n=0

which proves (2.1). Finally, we only have to apply Theorem 1.1 to arrive at (2.2). O

The following identity is known:

«/620 o32n + 1)(—q)" = m[m(x/_ 9) — 9E4(—q) + 8E4 (¢,

where E4(g) is the Eisenstein series
45 1 it
Es(g) = py (n,m;(0,0) G 1T
Hence, X '
(q%) #@) = 535 [Ea(V=0) — 9E4(q) + 8E(q)].
We use it to prove the following theorem.

THEOREM 2.2. If g = —e™V' where r € Q* (case of alternating series),

| 320
G4(—,z) ul [ S(lo16 2) 9S(10

|
: = o )+ 3501,0, r,2)], 2.3)

4’

and, if g = ™" (case of series of positive terms),

1y PP N 9 rol 1 1
- Ltes 52)- =8 (11 + 532) - 5 (1,1, —;2)],
G“(z Z) [165( 6 2 ) 16S( 172 S\ Lr+g
(2.4)
1

S(A,B,C;1) =
( ) (An? + Bnm + Cm?)!

(n,m)#(0,0)

is the Epstein zeta function [3].

Proor. If ¢ = —e™V | then —-q = ¢, and the value of T corresponding to —g is
T = i\r/2. If we define

1 9 . 8
‘f) (n + m#)4 (n+ miNr*

Unm(r) =

(n+m=¥
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then
Es(V=0) = 9Es(=q) + 8Es(@) = D Upn(r),

n,n#(0,0)

and, taking into account that dq/q = n dr/(2+/r),

3i ndr (mdr ﬂdr rdr 7rdr
= — Re[f_ -~ ~ nm + f n,m :|’
(r) 16”5(”;00) i) 277 2yi U r Unan(r)

where we have taken the real part inside the summation because for alternating series
¢(r) has to be a purely imaginary number. Integrating and simplifying, we obtain (2.3).
The proof of (2.4) is completely similar. O

2.2. Examples of Ramanujan-type series with s = 2 (level £ = 4) shifted by 1/2.
For r = 4, using the known values
2 2

2 7
$(1,0,152) = %u(z), 5(1,0,4;2) = %L_4(2),

see the method and the tables of [3] or [1], and the obvious relation S(1,0, X 12)=
165 (1,0,4;2), we get from (2.3)

AT e sl Hsvosn Ss012)-

where L_4(2) = G (the Catalan constant). Hence,

Below, we show two more examples:

i 3 42x/_+30 26\/§+14) 1 (x/§—1)8"+4_ n
n=0

% 32 20ne3\ 2 240’
which corresponds to the value g = e -mV1s , and
(D3 (5V2-6  4V2—-5\V2— 1\ V2
1y ( )( ) =2L4(2) - L 5(2),
Z;()()3 Tt 5 4(2) = - Ls(2)
-8

which corresponds to the value g = —e Observe that in [8] we arrive at the
results by relating ‘divergent’ series to convergent ones by means of the ‘upside-
down’ transformation. In addition, observe that for the levels € =1, 2,3 the two
transformations (shift and ‘upside-down’) lead to completely different series.
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2.3. Some g-series corresponding to s = 2 (£ = 4) with other shifts. We have
proved the following identity:

d V' Fuxg) _ — Firq)
(1) Fiwgp = PO 0NT 2 w0 =

Hence, if we define

f(x,q) = F3(0,9) V1 = 24 75 = 85(9)(1 = 2A(q))[4Aq)(1 - Ag)]",

¢(q>—xffff< —q—q;’]

3

Zz” "( +bln+ ) = (9() - Inlglg L

n=

Form =2,3,4,6,8, 12,24, the function

hn(g) = 64717 f(1/m, ¢") = 167"65(¢™)(1 = 2A(g"NIAg"™)(1 = Ag" N

has integer coefficients. Below we write the cases m = 2,3,4,6,8:

Finally,
d¢(q) )
dgq

ha(q) = q—28¢° +126¢° —344q" +757¢° — 13324¢"" +21984"3 — 3528¢" + 49144""
- 6860g" +9632¢°' — 12168¢% + 15751¢% —204404*" + 243904 — - - -,
h3(q) = g — 244" + 2047 + 0¢'° — 704" + 192¢'® + 564" + 04** — 125¢% — 4804°®
-3084°" + 0™ + 1104°" + 0¢* — 5204 + 0¢™* + 574" + 16804 + - - - ,
ha(q) = q +22¢° —27¢° — 184" — 944" + 0¢%! + 359¢% — 130¢% + 04> + 2144"
—230g*" — 594¢™ — 343¢% + 51847 + 0¢°7 + 8304°%! —396¢%° + - - -,
he(q) = g — 20" —70q" — 564" — 125¢% - 3084°! + 1104°7 — 5204 + 574%
+0g> + 182¢°" — 880¢%" + 119047 — 8844™ + 04> — 1400¢°" + - - - |
hs(q) = ¢ — 19¢° — 904" — 125¢% — 2004 — 522¢*' — 3434* + 36047 + 0¢%
— 43097 + 145¢%" + 1026¢% + 1910¢”7 — 2704'"3 + 3669¢'*' + 13684'%°
—2250¢"% + 0¢'% +1710¢'> + 04'%' — 2197¢'% + 920477 +

The cases m = 2, 3,4, 6 are in OEIS [10], while the cases 8, 12,24 are not yet in it. We
observe that the coefficient of ¢g* multiplied by the coefficient of ¢/, where k — 1 and
j — 1 are multiples of m, equals the coefficient of ¢*/ when k and j are coprime.

3. The g-series for Ramanujan series shifted by 1/2. Cases s = 4,6,3

In [4], we conjecture the value of (1.4) in cases when z, b, a are algebraic numbers
and x = 1/2. The observed results corresponding to s =4, s =6 and s = 3 involve
Napierian logarithms in case of alternating series and arc tangent values in case of
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series of positive terms. We rewrite those conjectures, together with all the other
cases corresponding to rational values of z, in the tables of this paper. Some few but
representative examples are in my thesis [5, pages 44—46]. Notice that in [4] and in [5,
pages 44—46], there are also examples of shifted series corresponding to Ramanujan-
like series for 1/7% and 1/7°. However, we do not know how to get g-series for those
shifted series.

3.1. The g-series for Ramanujan series with s = 4 (£ = 2) and the shift 1/2.
THEOREM 3.1. Case s =4 ({ =2). Let

128 dq
) =5—= NG f UNCNC )( G 4+n24(q)f7*24(612))
= 1 -44q+ 1126¢* - 270964° + 6409094* — 150365484 + 3512450384° — - - -

and

o (1 1 3
Fa(x,q) = Z G+ 9.+ 9,(5 + ), b/

— (1+x)3 2
Gama = 3 & x)”i‘l‘ - ;);’<“ D + o+ WL,
n=0 n

where z, a, b depend on q and G(0, q) = 1/n. Then the following identities hold:

F( )_16F2(OQ)‘/_Z "n +1)2

and

Gz(%"’) 167:/_(2 ”(2{1)2 ln|qlz 2n;1)

where c, is the coefficient of ¢" in f(q).
Proor. In this case we know that [2, Table 1]

g 1 () = 64
™D ol V= a2 @y

2(q) = 4x2(q)(1 = x2(q)),  F2(0,9) =8

where 77(g) is the Dedekind 7 function:
@ =q"* ] Ja-a).

Hence, for

(4= )¢(q> —Fz(o N @DV - (@),
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(q%)%b(q) = n4(q)n4(q2)(1 S 77241(3577‘24((]2)) = V78,
where
g(@)=1-3x44qg+5x1264" — 7 %2709 ¢’
+9 % 640909 " — 11 x 15036548 4> + - - -
Hence, the theorem holds. o

ConsecTurk 3.1. The coefficient of ¢" in g(g) is divisible by 2n + 1, which is equivalent
to assuming that all the coefficients ¢, of f(g) are integer numbers. In addition,
¢, = 1 mod p? when 2n + 1 is a prime number p.

3.2. The g-series for Ramanujan series with s = 3 (£ = 3) shifted by 1/2.

TueoreM 3.2. Let

! '(4) 54 dq
”z_ﬂf%%%i”9 )(1- |4
= 2Va T 7 (q) 27 + 2 2%/ q
=1-17¢q+126¢> —832¢" +53294" - 335164
+209054¢° — 129814247 + - -

and

F3(x,q) = i (G +0,G +0,G + x)"z"*"

£ (1+x)3 3
o (1 + 1 + 2 + X

@m@:Z“ nﬁ+¥g Ly + by + DI,
n=0 n

The following identities hold:

&C)Awwmfzqa+w

and

63(%’61) 167:/—(2 (2n{1)2 lnlqlz ““on +1)

where c,, is the coefficient of ¢" in f(q).
Proor. In this case we know that [2, Table 1]
27
27 +n2(@m~2(g?)’

23(q) = 4x3(g)(1 — x3(q)), where x3(q) =

and

7’ ))(1 1 (g )

2 — 1 17
F300,9) = 27 (q )(1 +9 Q) + 27 0% )
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Hence, for

d\3 1
@@)am=§ﬁwﬁwawvvwmn

n3(q9))(1 ~ 54

d ¥ _ 203\, 6
(q@) ) =mian (q)(l @ 27 + '@ (g%

)= vas(a,
where

g@)=1-3x17qg+5x126¢> = 7x832¢> +9x5329¢" — 11 x33516¢° +--- .
Hence, the theorem holds. O

Consecturk 3.2. The coeflicient of ¢" in g(q) is divisible by 2n + 1 which is equivalent
to assuming that all the coefficients ¢, of f(g) are integer numbers. In addition,
¢, = 1 mod p? when 2n + 1 is a prime number p.

3.3. The g-series for Ramanujan series with s = 6 (£ = 1) shifted by 1/2. In this
case we know that [2, Table 1]

el
2 - (@)
FX0,9) = Es(@),  z1(q)= 1728 L @)’
where E4(g) is the Eisenstein series
E4(q) = g
n=0
Proceeding in the same way as in the other cases,
@) [
= El(g) — 172874
(4 )a>3fE”J4@ 72874(0)
77 (Q) 12 E6(Q)
=3V3 Ee(q) =3V37
2 “Esla)

=3V3yg(1 — 3 x 332g + 5 x 81126¢% — 7 x 191472884’
+9 X 44729422214" — 11 x 1040187455460g° + - - -),

where E¢(g) and Eg(q) are the Eisenstein series

Eo(q)=1-504 ) os(mq" = 1 -

and

Eg(q) =

n=0 n=1 q
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Hence,

3V3[ (dqg (dq ( dq 12 Es(q) dg (dq 15,  Ee(q)
Gilg) ==~ f f f "D ! "f f T DE@ )

For the first smgle integral,

f n”(q)E6(") q = 2vqf(q) = 24/q(1 — 332q + 811264> — 191472884°
Es(q) q

+44729422214" - 1040187455460¢° + - - -),

and, again, we observe that the coefficients ¢, of ¢" in f(g) are all integer numbers and
that ¢, = 1 mod p? when 2n + 1 is a prime number p.

4. Examples of conjectured formulas, £ = 1,2,3

In this section we show several examples of evaluation of some Ramanujan-type
series with a shift xo = 1/2. More examples are in the tables. For discovering
the conjectured results, we have used techniques of experimental mathematics, for

example the integer relation algorithms and the function identify. For level £ = 2 and
— _ V13,
q=—eTV":

(Dn(a(3)n (153 260 \ (=1 »
nz_(;(z—)”( 72 T )182n+1 2In3 -31n2.

For level £ =2 and g = e V38,

i (l)n(%)n(ﬁ)n(4 X 14298 4 x 26390 ) 1
n
=0 (%),3, 98012 0801V2 /9942

9 13 2 2
= 771 — 16 arctan g — 24 arctan %

It is interesting to observe that the last result can also be written with logarithms as

V24P i 3V

1+ .
n - n
1—i V2-i 3—V2i
and observe in addition that (V2 + i)(V2 — i) = 3 and (3 + V2 )3 — V2i) = 11, which
are divisors of 99. For level £ = 3 and g = —e™"V?/3;

& (a3 )( D SO
; o (24+4)80 29In3-2In2-5Ins.

Forlevel ¢ =1 and g = e‘”‘rg:

S (Da(3),(3), (136 224 \(3\ o 1
2, —(Z)n (125 + En)(g) =m — 4 arctan 3
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In the tables we show all the examples corresponding to rational values of z. We finally
give an example of an irrational series. For level £ =2 and g = —e™V2I,

Z( )”( ) ( U (756+448\/')n+(429+256\/_)]i
s (42 + 24+/3)2n
42 + 24372
81 ] '

Of course our conjectured evaluations agree with the numerical approximations
obtained from the corresponding G,(1/2, g).

In Table 1, we show the Ramanujan-type series for 1/m with rational values of z in
the case s = 4 (level 2) and, in Table 2, we have written the corresponding conjectured
values of G»(1/2, g). In Tables 3 and 5, we show the Ramanujan-type series for 1/x
with rational values of z in the cases s = 3 (level 3) and s = 6 (level 1), respectively, and

in Tables 4 and 6, we have written the corresponding conjectured values of G3(1/2, )
and G(1/2, g).

20 % (42 + 24V3)? x ln[

TaBLE 1. Ramanujan series with s = 4 (£ = 2).

q a b z<0 q a b z>0
—e V3 3 20 _1 o VA 2 14 32
8 3 1 9 9 81
_,—m1 8 65 _le? -6 1 8 1
¢ 9V7 97 632 € 2V3 2V3 9
_e™VP %5 2%\6/3 —L o~V % 4Tof L
1 92 9V2 1
_e VI3 23 260 _ Lz e 7VI8 27 360 %
72 72 18 493 493 7
_ e_m/z? 415 e#4Vs 1 e—m/Tz 19 280 1
288 288 5x722 18VIL 18V11 992
_ eﬁr\/377 1123 21460 1 efm/sfs 4412 105560 1
3528 3528 8822 9801V2  9801V2 994
TaBLE 2. Some conjectured values of G,(1/2, g).
. 1 1
q —-iGa(3,9) q G2(5,9)
—eV3 In2 VA 2 — 2arctan z«_f
—e™V7 In(88 + 13V7) —4In3 | eV z
—e™V? % In3-2In2 e~V10 % +4arctan #ﬁ
—e™VI3 2In3-31In2 VI8 —% +4arctan L\/i
—e™V5  9In2-2In3-3In5 | ™2 -z +4arctan¢
—™37  In2+10In3-6In7 | V8 137” — 16 arctan % — 24 arctan g
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TaBLE 3. Ramanujan series for s = 3 (£ = 3).

[12]

q a b z2<0 q a b z>0
_eVOB3 3 53 _9 | VBB L 6 1
4 4 16 3V3 3V3 2
—e~™VTT3 7 51 _L | nVIEP3 8 60 2
123 12V3 16 27 27 27
_e~™VI3 V15 915 _1 | V2073 8 66 4
12 12 80 15V3 15V3 125
—e~™VH]3 106 1230 1
192V3 192V3 210
— TV 267 3307 _ 1
216 216 3024
_oTVE3 827 14151 1
1500V3  1500V3 5002
TaBLE 4. Some conjectured values of G3(1/2, g).
. 1 1
q -iG3(3,9) q Gs(3,9)
—eOP3 ¥(31n3-21n2) ™83 B3 12arctan )
—e V173 M (22 -1n3) VIR V(57 _ 24 arctan 2)
—e VBB B9In3-2In2-5n5) | ™8 B( 374 2arctan L)
—eVATT3 M3(81n2-51n3)
—e VOB B(71n7 - 10102 - 61n3)
—eVOR (6105 -61n2 - 51n3)
TaBLE 5. Ramanujan series for s = 6 (£ = 1).
q a b z<0 q a b z>0
e 8 63 _& e V8 3 28 3
5V1s 5V15 5 5v5 5V5 5
_ e_mm 15 154 3 e—n«/ﬁ 6 66 4
32V2 32V2 8 5Vis  5V15 53
_ e—m/ﬁ 25 342 _1 e—n«% 20 252 2
32v6 32v6 8 11v33  11v33 1P
_ e—m/ﬁ 279 4554 _9 e—m/zT; 4V3 239443 43
16030 160v30 40° 85V85  85v85 85
_e V43 52615 10836V15 1
807 802 80°
_e V6T 10177330 261702330 1
3% 4407 3% 4407 240°
_p~7V163  27182818VI0005  1090280268VI0005 _ 1
3% 533602 3% 533602 53360°
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TaBLE 6. Some conjectured values of G1(1/2, g).

q -iGi(3,9) q Gi(3.9)
VT 3‘T5 Ind eV %(n — 4 arctan 1)
_e—mV1T %5 In2 V12 3‘75(—77 + 8 arctan %)
—e~™VI9 ﬂ In 2 eV16 %(’M — 4 arctan g — 12 arctan \/75)
eV %f 27 e V28 3%6(3” — 16 arctan § — 8 arctan 1)
V43 3v3 1, 22x3°
—e" = In =5
—efn\/a % In 23133 ><5111|5
_e—™V163  3V3 3158 x295
8 2% x 231

5. Conclusion

It may be that discovering explicit formulas (as we have done in (2.2) for the case
s =2 and x = 1/2) for the coefficients ¢, could be a useful step towards proving the
patterns observed by the author. The final step would be evaluating the g-series at
q = + exp(—m\/r). The analogous patterns observed for shifted Ramanujan-like series
for 1/7* with k > 2 (see [4] and [5, pages 44-46]) are further beyond the ideas of this
paper.
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