
REPRESENTATION BY QUADRATIC FORMS 

GORDON PALL 

1. Introduction. The elementary portions of the theory of integral repre­
sentation of numbers or forms by quadratic forms will be somewhat simplified 
and generalized in this article. This indicates certain directions in which new 
applications can be made. The applications made here will be largely to the 
representation of numbers or binary quadratic forms by ternary quadratic 
forms. Particularly, we shall obtain the correct estimate (Theorem 10) needed 
to fill a lacuna in certain work of U. V. Linnik [1] on the representation of large 
numbers by ternary quadratic forms. Since Linnik applied his theorem on 
ternaries to prove [9] that every large number is a sum of at most seven positive 
cubes, a lacuna in this proof can now be regarded as filled. 

While a genus, consisting of a finite number of classes of forms, is regular in 
the sense that one or other of its classes represents any number not trivially 
excluded by the generic conditions, it is difficult to prove anything general 
about the numbers representable separately by a single class. Thus, for 
example, x2+ y2+ 7z2 and x 2 + 2y2— 2yz + 4s2 are representative forms (one 
from each class) of the two classes of a certain genus, and represent between 
them all (and only) the positive integers not of the forms 72k+l(Jn + r), (r = 3, 
5, 6). But a given number (e.g. 3) not of the excluded forms may happen to 
be represented by one class but not the other. In this example it can be 
proved that each class represents all positive integers congruent to 0 or 1 mod 4 
and not of the excluded type 72A;+1(7n+r), and there is some reason to believe 
that all "large" numbers represented by either form are represented by the 
other. Although general theorems stating that single classes are regular for 
large numbers have been proved (Kloosterman [2], Tartakowsky [3], Ross and 
Pall [4]) for forms in four and more variables, the situation is more complicated 
in the case of positive ternary quadratic forms. 

Examples illustrating this were published by the author in 1939 [5]. Thus, 
the forms/ = x2+ y2+ 16s2 and g = 2x2+ 2y2-\- 5s2— 2xz — 2yz represent the 
two classes of a certain genus of determinant 16. It was proved that g repre­
sents no square m2 such that all the prime factors of m are congruent to 1 mod 4. 
Since / obviously represents all squares, it is clear that g does not represent all 
the large numbers represented by its genus. The example shows also that, 
in general, a class may not represent the numbers consistent with its genus and 
divisible by a large square factor. 

It may be of interest to state another property of / and g, that by combining 
classical results of Glaisher [6] with results on the representation of numbers 
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8n + l in the Jones-Pall article mentioned earlier, one obtains precise formulae 
for the number of representations/^) and g(n) of an arbitrary integer n b y / 
and g. This is believed to be the first known example among genera of forms 
in more than two variables. If r0(n) denotes the number of representations 
of n as a sum of three squares (for which there are well-known expressions), 
then 

f(n) = g(n) = r0(n)/3 if n = 2 or 5 mod 8; 
f(n) = g{n) = 0 if n = 3, 6, or 7 mod 8; 
/(«) = g(n) = (1 - j / 3 ) r 0 ( » ) if » = 4(4& +j)J = 0, 1, 2, 3; 
f{n) — g(w) = 0 if n = 1 mod 8, w not square, 

= ( — l ) ^ 8 - 1 ^ if w = s2, 5 odd and positive; 
f(n) + g(n) = 2r0(rc)/3 if n = 1 mod 8. 

Linnik [1] obtained, by means of generalized quaternions, a theorem stating 
that under certain conditions (which are not satisfied by the preceding ex­
ample) a class of positive-definite, ternary quadratic forms represents the 
sufficiently large odd numbers prime to the determinant which its genus repre­
sents. At a certain stage of his proof, he reduces the problem to that of 
representing a binary quadratic form <t> = k(t>i(<t>i properly or improperly primi­
tive) as the sum of squares of three linear forms 

(aix + biy)2+(a2x + b2y)2+(azx + bzy)2 

such that the g.c.d. of the numbers a2bz — dzb2, #3&i- dibz, a\b2 — a2b\ is equal 
to the divisor k of </>. Later, <t> is thus represented by a more general ternary 
quadratic form. He states that if D denotes the determinant of <j> then for 
every positive e, the number of such representations of <j> is of the order 0(D€); 
and that "this can be proved by methods similar to those of Gauss." Classical 
treatments (e.g. in [7]) seem, however, to have been restricted to the case 
where the divisor k of <j> is squarefree; and Linnik's statement is in fact not 
true in general. The true estimate is given in Theorems 4 and 5, and involves 
the factor A, where h2 is the largest square factor common to k and ab — t2, 
where <f>i— ax2+ 2txy + by2; thus h can be as large as DI/Q. 

Fortunately, the forms in which h is large can be counted differently, and 
hence Linnik's applications can be carried through successfully. This was 
indicated by the author [8] in 1941 for the special case of ordinary quaternions 
and a sum of three squares. 

Notations. Unless otherwise indicated, capital letters A,...9Z denote matrices. 
The symbol T^71'® indicates that 7\ has n rows and k columns. A, . . . , G 
are symmetric. German letters £, I), t designate column vectors. TT denotes 
the transpose of T. I is an identity matrix; a zero matrix is denoted by 0; 
p is a prime. The determinant of a quadratic form / = %'A% is denoted by 
l/l or |-4J. The form <t>i= ax2+ 2txy + by2 is properly primitive (p.p.) if a, 2t, 
and b are relatively prime (a, t, b integers) ; improperly primitive (i.p.) if a, t, b 
are relatively prime and a, b are even. The terms unimodular and unit-modular 
designate integral square matrices of respective determinants 1 and ± 1 . 
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2. Integral and primitive representations. Let A{n,n) and Bi{k,k) be non-
singular, symmetric, real matrices, 1 < k < n. We say that A represents B\ 
if there exists an integral matrix T^n,k) such that 

(1) T\AT1= Bi; 

and we call T\ a. representation of B\ by A, Also, T\, or £ — T$, is called a 
representation of the quadratic form t)T5it) by the quadratic form £TA%. Note 
that since a representation is a matrix, two representations are considered as 
equal only if corresponding components are equal. Thus the solution x = 7, 
y = 4 of x 2 + ;y2= 65 gives rise under permutations and sign-changes to eight 
representations of 65 by the form x 2 + y2, or by its matrix I. 

In a similar manner, since TT
1(W

TAW)T1 = (WT1)
TA(WT1), where W is 

any unimodular automorph of A, the matrix WT\ is a representation of Bi by 
-4, with T\. As PFranges over all the unimodular automorphs of A, the set of 
matrices WT± will be called a set of representations, and denoted by (WTi). 

If the g.c.d. M of the minor determinants of order k in Ti is 1, the repre­
sentation is termed primitive. If A and # i are integral, the problem of finding 
the representations of B i by A can be reduced to that of finding the primitive 
representations of a certain finite set of matrices by A. We use for this purpose 
the following lemma. 

LEMMA 1. Let 7\ ( n , f c ) be an integral matrix of g.c.d. n, 1 < k < n. Then 
Ti can be expressed in one and only one way in the form 

(2) Ti=R!M, 

where i?i(w,fc) is primitive, M^k,k) is integral, \M\ = n, and M has the form 

Mi Mi2, . . • , Mifc 

0 jLt2, • • • ,M2fc , / i l , . . . , ttjfc= Mi 

(3) | 0 ^ /**</*<(* = 2, . . .,k;j <i), 
0 0, . . . , Mfc J 

w/zere /Ae elements MI» • • • > M* flfs positive integers, the elements My; a&0fl£ eac& M;> 
are integers reduced modulo Mi, a^d J/wse fre/aw /&e principal diagonal are 0. 

Proof. By Lemma 3 below, we can obtain (2) with R\ primitive, and M 
merely integral and of determinant M> but have the possibility of replacing 
Ri by R\V~l and M by VM, with F unimodular. Hence the lemma is a 
consequence of the following result, first given for a general k by C. 
Hermite [11]. 

LEMMA 2. 7/ ikf(fc'k) is integral, and \M\ = /x > 0, //*ew oy cftoice 0/ a wni-
modular matrix V, VM can be made equal to one and only one Hermite-matrix (3). 

If we substitute Ti= RiM in (1), we have 
(4) RT

1AR1= B'u where B\ = {MT)~lB1M-\ 

and the left member is an integral, symmetric matrix. Hence 

(5) B i = MTB\M, 
where B\ is integral. Thus n2 is restricted to be one of the finitely many 
square factors of | Bi\, and hence the Hermite-matrix M has only a finite number 
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of possible values. All the representations of B\ by A are found, without dupli­
cation, in the formula T\= R\M, where M ranges over the Hermite-matrices (3) 
such that (ikfT)-1^iikf_1 is an integral matrix and R\ runs over the primitive 
representations of every such matrix by A. 

If k = 1, this amounts to the observation that all integral solutions t of 
f(h,..*,tn)=bi are given by t = ju£, where fj? is a square factor of bi and £ 
is a primitive solution of/(xi, . . . , xn) = fri/V2-

It should be noted that, in finding or enumerating the representations of B\ 
by A, either can be replaced by an equivalent matrix. If A is replaced by 
PlAP and Bx by VXB{V where P and V are unimodular, then the representa­
tion Tt is replaced by the corresponding representation P~lT\V of VTBiV by 
PTAP. 

It can be proved that the integral matrix T\ has a greatest right divisor M, 
namely an integral non-singular matrix M{k'k) such that (a) Ti= R\M for 
some integral matrix R±, and (b) if N{k 'k) is any integral matrix such that 7 W - 1 

is integral, then MN~l is integral. More generally, the following result holds. 
LEMMA 3. Let T-£njh) be an integral matrix of rank k, and denote the g.c.d. 

of the minor determinants of order k in T\ by ju. Assume 1 < k < n. Then, (i) 
T\ has a greatest right divisor M, (ii) \M\ = ± ju> (iii) every greatest right divisor 
of Ti is given by VM, where V^k,k) is unit-modular, (iv) there exists an integral 
matrix T2^

n,n~k), called a {right) complement of 7\, such that (7 \ T2) has deter­
minant n, (v) if T2 is a particular complement of T\, then every complement 
r*2 of Ti is given by 
(6) r * 2 = Ttf+TtU, 
where U{n~k ' n~k) is an arbitrary unimodular matrix and H{k' n~k) is any rational 
matrix such that TiH (or MH) is integral. 

It should be remarked that (i), (ii), and (iii) hold also when k = n. For 
the proof we refer to Siegel [10]. However, a proof of (v) for the primitive 
case will be useful later: 

LEMMA 4. If 7 \ is primitive, and T2 is one matrix such that (TiT2) is uni­
modular, then the most general such complement T*2 is given by (6) with U any 
(n — k, n — k) unimodular matrix and H any (k, n — k) integral matrix. 

Proof. Let (SiS2)T, with S^n'k) and S2
(w »*-*>, denote (TiT*)'1. Then 

(7) 5 T
1 r 1 = 7 1 , ST

1T2=0, 5 T
2 r ! = 0 , ST

2T2=I2, 
where I\ and I2 denote identity matrices, of orders k and n — k. Hence, if 
!T*2 is any complement of T\, 

<8> [£]< r™-[? %]> 
where H = STi T*2 and U = 5T

2 T*2. Evidently, H is integral and (com­
paring determinants) U is unimodular. Multiplying on the left by (T\T2), we 
have 

(9) (7 \ T*2) = (2Ti T2)R, where R = 

and hence (6). 
I o uy 
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3. The basic algorithm. Let 7 \ be a primitive representation of B\ by A, 
1 < k < n. Choose a particular complement T2 of 7\ , so that T = (7 \ 2"2) is 
unimodular, and construct the matrix equivalent to A, 

X and B2 being denned by the last equation. Construct also ST = T~l, S = 
(5i 52), where 5i ( n ' f c ) and S 2

( w , n~*\ denote adj 4 by C, and construct 

<»> *-««»-*T«-[Sg; & « ] - [ ? £ ] • 
The algorithm is based on a consideration of what happens to B (or D) when 
T2 is replaced by other complements 7\H + T2U (H integral, U unimodular) 
of TV 

Denote |j5i| and |Z>2|, respectively, by &i and d2. It will be convenient to 
record here the result of ''completing squares" relative to B\ and D2l in B and 
D. To complete squares, we replace B by PTBP and D by QTDQ, where 

^ 0 'T '* l H V * °J • peT= eV =7; 

and so obtain 

where 
(13) G = bxB2- i£(adj 5i)i£T , E = <W?i- iT (adj D2)L. 
If a = \A\y then |Z>| = a71"1, and it will be found that, since BD = a/, 
(14) LT = -Bx-

lKJ D2, GD2= abj2, B±E = ad2Ily d2= M"-*" 1 , 
\G\ = abin~k-\ adj G = bin~k~2D2, E = an~fc adj S i . 

If 7"2 is replaced by T\H + T2U, then T is replaced by TR, where 

Thus, the effect on the quadratic form £T B]C, of replacing T2 by TiH + T2U, 
is to apply the unimodular transformation U to the variables X]c-\-ly • • • i Xny 

and then the translation 
n 

(16) Xi= yi+ Z hijXj(i = 1, . . . , ft), xy= yy(j = k + 1, . . . , n) 

where i î = (A*y). The matrix G obtained by completing squares is evidently 
not affected by the translation (16). We thus have the following theorem. 

THEOREM 1. With any primitive representation Ti of Bi by A is associated 
an aggregate of pairs of matrices : 
(17) UT GU and UT K + HT Bu 

the aggregate being derivable from any one pair G and K by use of an arbitrary 
unimodular U and integral H. Here G is the matrix obtained on il completing 
squares" with respect to Bi, in the matrix B = T AT, where T is a unimodular 
matrix having T\ as its first k columns. The same matrices G and K are assoc­
iated with WTi, where W is any unimodular automorph of A. 
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The last statement is evident, since, if T is replaced by WT, the same 
matrices B and hence the same matrices G and K are obtained. 

The important case k = 1 is worth formulating separately. 
THEOREM 2. Let t be a primitive representation of a non-zero number m by a 

real non-singular quadratic form f. All forms g = mxi2+. . . obtained from f by 
unimodular transformations whose first column is t, are obtainable from any 
particular one of them, 
(18) g i= m(xi+. . .)2+ 4>(x2, • • • , xn), 
of which the form after completing squares is here displayed, by applying an arbi­
trary unimodular transformation to </>, and then replacing x\ by Xi+ &2#2+. . . 
+ hnxn with integers h2, . . . , hn. The same forms g are obtained if t is replaced 
by Wt, where W is a unimodular automorph of f. 

The invariance of the class of </> for a given primitive set of representations 
of m has important consequences in the theory of reduction of w-ary quadratic 
forms. It may be remarked also that there are applications in cosmogony 
of results of the sort that there is only one set of representations of certain 
numbers m, as for example [15] of 1 by x2 — y2 — z2— t2; and this is connected 
(as will be clear from the following) with the fact that only one class of forms </> 
may appear on completing squares. 

Conversely, for given B\, G, and K, we can set 

(19) G + i£(adj £i)XT= biBit B = I" J J H . 

Observe that if G and K are replaced by if GU and if K + HT Bu then B is 
replaced by RT BR with R as displayed in (9). If it happens that A ~ B, let 
T be a unimodular transformation of A into B. Then, as is well known, the 
most general such transformation is WT, where W ranges over the unimodular 
automorphs of A. Hence the matrices WT\, where T\ consists of the first k 
columns of T, constitute a set (WTi) of primitive representations of Bi by A 
associated with the pair G and K. 

By confining attention to integral matrices A and Bu some limitation is 
obtained on the possible matrices G and K. Then K and G are integral matrices 
such that 
(20) i£(adj JBi) KT= - G (mod bt), (&i= \Bi | ) . 
Since #i(adj B\) = &1J1, evidently if K satisfies (20), all the matrices K + HTBi 
with iJ (Â; ,n_fc) an integral matrix, are also solutions. These matrices are said 
to form a right-sided residue class modulo Bi, and two matrices in the same 
right-sided residue class will be termed congruent modulo Bi (or right-congruent, 
to avoid ambiguity). 

If a matrix G is chosen in the class of equivalent matrices UT GU, then U is 
restricted to be a unimodular automorph of G, and the associated matrices K 
satisfying (20) constitute a complex of solutions of (20), in accordance with the 
following definition. Two integral matrices K and Kr are said to be in the 
same complex of solutions of (20) if, for some unimodular automorph U of G, 
UT K and K' are congruent modulo B\. 
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Thus, every set (WTi) of primitive representations of Bi by A is uniquely 
associated with a certain class of matrices G, and if we select a matrix G of the 
class, with a unique complex of solutions K of (20). Conversely, any symmetric 
matrix G and associated complex of solutions of (20) is connected with a set of 
primitive representations of B\ by some matrix A'. 

In some cases, a set of nonequivalent matrices Af, . . . , A^ and a set of 
nonequivalent matrices G', . . . , G(s), each G(;) (j = 1, . . . , s) being accom­
panied by one or more complexes of solutions K of (20) with G = GU), can be 
associated by our algorithm. For example, if A', . . . , A^h) consist of repre­
sentatives (one from each class) of a given determinant a, then (cf. (14)) 
G', . . . , G(s) will be matrices of determinant a6in~fc-1; and if K is a solution 
of (20) with G one of the G(y), then the matrix B constructed as in (19) will 
have determinant a, and hence must be equivalent to one of A', . . . , A^h). 
Examples will show that the matrices G', . . . , G(s) may not comprehend all 
classes of determinant ab\n~h~1, since (20) may not be solvable for some of 
these. An important case is that where A', . . . , A{h) are representatives of 
the classes of a genus. Then G', . . . , G(s) can be shown to consist of the 
classes of one or more genera. In general, not every complex of solutions of K 
of (20) with G = G(y) will be such that the matrices B constructed therefrom 
as in (19) are in a prescribed genus, and it becomes necessary to specify those 
solutions. 

It should be noted that, if k = n — 1, G is a matrix of one element, namely 
abin~h~l— a — \A\. The only unimodular automorph of G is U = [1]. Con­
gruence (20) is then a single quadratic congruence 

n-l 

(21) £ Cijkikj = — a (mod &i), 

where adj B\— (cij) and K = [ki, &2,. •., fen-i]. Accordingly, all the primitive 
representations of an in — l)-ary quadratic form by an w-ary quadratic form/ 
can be found by solving (21), constructing from these solutions quadratic forms 
g with matrix B as in (19), and determining whether / is equivalent to such 
forms g. 

This process is somewhat simpler than that of Gauss, Smith, and Min­
kowski, who preferred to work with the adjoint form (11), as will be briefly 
indicated in § 9. If the matrices G are known, the process can be used for 
n - k > 1. 

4. A fundamental quantitative relation. The preceding association can 
be put on a more quantitative basis by use of the following theorem. 

THEOREM 3. Let A, Tu Bi, G, and K be associated as in the preceding algo­
rithm. Let Ti(^4, T\) denote the subgroup of unimodular automorphs W of A 
such that WTi = 7\, and I ^G , K) the subgroup of unimodular automorphs U of G 
such that if K and K are congruent modulo B\. The two subgroups are iso­
morphic. 

https://doi.org/10.4153/CJM-1949-032-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1949-032-9


REPRESENTATION BY QUADRATIC FORMS 351 

Proof. If T is unimodular and T\ is the matrix of its first k columns, and 
B = T1 AT, then the most general unimodular transformation of A into B 
with T\ the matrix of its first k columns is given by WT with W in Ti(A, 7\). 
For every such W, T~~lWT is an automorph of B of the special form 

(22) T~lWT = T~\T1 WT2) = R = 

The condition RT BR — B expands into 

(23) K = UT K + HT Bi, UT GU = G. 

Hence Ubelongs to T2(G, K). Conversely, if [/is in T2(G, K), and i ? is defined 
by (231), then RT BR = B for the R displayed in (22), and W = TRT'1 is an 
automorph of A such that WTi= 77? (Ji 0)T = (7\ r 2 ) ( / i 0)T = TV This sets 
up a one-one correspondence between the two subgroups, and is it easily veri­
fied that this correspondence is preserved under multiplication. 

COROLLARY. If k = n — 1, the representations WT\ of a set are different 
for different automorphs W, and the only automorph W of A such that WTi = T\ 
is W = / . 

Proof. The matrix G is unary and the only U is [1]. Note the assumption 
here that A and B\ are non-singular. 

The number v of elements in r2(G, K) may be finite or infinite, but the index 
denoted by y, of T2(G, K) within the group T2(G) of all unimodular automorphs 
U of G, is finite. Indeed, if the elements of T2(G, K) are denoted by U\ 
U", . . . , then eachcoset U'V, U"V, . . . is characterized by the property that 
the products VT U'T K, VT U"1 K, . . . , are congruent modulo B\\ and the 
number of incongruent residues modulo B\ is finite. Thus y is equal to the 
number of incongruent elements K modulo Bi in a complex of solutions of (20). 
If the number u of automorphs U of G is finite, u = vy. Hence, by Theorem 3, 
if also the number w of automorphs W of A is finite, 
. v 1 _ number of distinct representations WT\ _ y 

v w u 

If w is finite, the weight of a representation T\ (by A) is defined to be 1/w. By 
(24), the sum of the weights of the representations in a set (WTi) is 1/v. Now 
v is finite when u is finite, even though w may be infinite. It is consistent and 
natural to define the weight of a set of representations (WTi) to be 1/v, if v is 
finite. 

The association of § 3 can therefore be given the following quantitative form. 
Let the numbers Uj of unimodular automorphs of G^ be assumed finite, (j = 
1, . . . , s). Denote by A^%) (B\) the sum of the weights of all sets of primitive 
representations of B± by A{l) ; and let p(G^j)) denote the number of solutions K 
of (20) (with G = G(i)) which are incongruent modulo B\ and are such that 
the corresponding matrix B in (19) is equivalent to one of the A{l). Then 

(25) E ^ ( 0 ( B i ) = E P ( G ( ^ ) M . 

Note that if A^lBi] denotes the number of primitive representations of B\ by 

u-n 
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A^l\ and the numbers Wi, . . . , wh of unimodular automorphs of A', . . . , A^h) 

are finite, the left member of (25) has the form XA{i)[Bi]/iVi. 
The weight of a matrix, or class, is the reciprocal of the number of its uni­

modular automorphs. Hence the right member of (25) is the sum of the 
weights of the matrices G(j) multiplied byp(G ( j )). Since matrices of a given 
genus can be supposed congruent to any modulus, p(G{j)) depends only on the 
genus of G(j). Hence, if the matrices G^ include the classes of a genus r, and 
p(r) denotes the value of p(G) for G in r, the corresponding terms in (25) unite 
into P(T)W(T) where w{r) denotes the weight of the genus, i.e. the sum of weights 
of its classes. 

5. An example: representation by binary quadratic forms, n = 2, k = 1. 
The reader may find it of interest to review this classical case as an instance 
of the preceding methods. L e t / = [a, b, c] denote an integral binary quadratic 
form of non-zero discriminant d = 62 — 4a£. It is desired to find the primitive 
representations r. of a given non-zero integer m by / , i.e. the coprime solutions 
Xi, X2 Of 

(a) ax i2 + bx\x2 + cx2
2 = m. 

If £ is a primitive solution of (a), there exist integers y\, y2 such that X\y2 — 
x2y± = 1; and it is easily seen that the general formula for such integers is 
given in terms of a particular pair by yi+ hx\, y2+ hx2, with h an arbitrary 
integer. The unimodular T = [£ ty] replaces / by g = [m, n, q] where 

(b) n = 2axiyi + b{x1y2+ x2yx)+ 2cx2y2, 

m is given by (a), and q is then fixed by the discriminant d = n2— ^mq. If 71 
and y2 are replaced by 3>i+ hx\ and y2+ hx2, g is replaced by the equivalent 
form [m, n + 2hm, q']. Thus, every primitive representation £ of m by / is 
associated with a solution z = n of 

(c) z2= d(mod 4m), 0 < z < \2m\. 

For any unimodular automorph W of/, WT replaces / by the same g, and the 
set of primitive representations Wl is associated with the same root z of (c). 

Conversely, for every solution z of (c), consider the integral form 

(d) gz— [m, z, (z2— d)/(4ra)], of discriminant d. 

If / is not equivalent to gz, then no primitive representations of m by / are 
associated with z. If/ ~ gz, and T is a unimodular transformation of / into g21 

the most general such transformation is WT, W ranging over the unimodular 
automorphs of / . The first columns Wl of WT constitute a set of primitive 
representations of m by / associated with z. Hence we have two theorems : 

THEOREM A (Gauss). Let / = [a, &, c] be an integral binary quadratic form of 
non-zero discriminant dt m be a non-zero integer. The number f (m) of primitive 
sets of representations of m by f is equal to the number of solutions z of (c) such 
thatf ~ [m, z, {z2- d)/(4m)]. 

THEOREM B (Dirichlet). Letfi, . . . ,fhbe representative forms, one from each 
class, of integral binary quadratic forms of a given non-zero discriminant d, m be 
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a non-zero integer. Let R'(m, d) denote the number f \{m) + . . . + fh(m) of sets 
of primitive representations of m by the system offorms f\, . . . ,/&. Then R'{m, d) 
equals the number of solutions z of (c). 

If we desired the number of sets of primitive representations of m by the 
system of primitive classes of discriminant d, we would merely restrict z to be 
a solution of (c) such that gz is primitive. Or, if we wished the classes to be 
those of a given genus, we could express the condition that gz is in that genus. 
It is readily shown that if m is divisible by no prime p such that d/p2 is an 
integer of the form 4& + 0 or 1, then m is represented in at most one genus of 
discriminant d, and that gz is necessarily primitive,—so that both the pre­
ceding conditions are somewhat trivial in the binary case. 

6. The primitive representation of a binary quadratic form as a sum of 
three squares. As a preliminary to its extension in § 8, we consider by the 
preceding methods the classic problem of finding the number N of primitive 
representations of a positive-definite classic binary quadratic form $ = [af, 
2t', V] by x2 + y2 + z2, that is the number of solutions of the identity 

afx2+ 2t'xy + bfy2 = (aix + Piy)2+(a2x + (32y)2+(azx + fay)2 

in integers ai, . . . , /33 such that a2i#3 — a3/32, ai/32 — a2/3i, a3/3i — ai/33 are rela­
tively prime. Here A = J ( 3 , 3 ) , B\ is the matrix of <j>, b\= a'V — t'2 > 0 , and 
(21) reduces to 
(26) b'ki2 - 2t'kik2+ a'k2

2 = - 1 (mod bx), 

with K = [fei, k2]. For any integral solution K of (26), the matrix 

B = I BR B 1 ' Where 52==(1 + h'kl2~ 2t'k^+ a'k22)/bu 

is a classic, positive-definite matrix of determinant 1, and hence (since there is 
only one class of such matrices) is equivalent to A. Since A has 24 unimodular 
automorphs and G = [1], iV = 24X, where X is the number of solutions K modulo 
Bi of (26). The computation of X is reduced to that of the number ix of solu­
tions K modulo 6i, by the following lemma. 

LEMMA 5. Let B^hjk) be assumed merely integral and of non-zero determinant 
db /J, 13 > 0. Set HT = [hi, . . . , hk\. As hi, . . . , hk run through all integers, 
HT Bi gives rise to exactly /3k~l incongruent matrix residues modulo /?. 

Proof. The property in question is unaltered if B\ is multiplied on both 
sides by unit-modular matrices. Hence Bi can be replaced by a diagonal 
matrix {ei, . . . , e&}, w n e r e the e's are positive integers and their product 
equals /3. Then HT Bi is the diagonal matrix {hiei, . . . , &&£&}, and the ele­
ments have, independently, f3/ei, . . . , 0 / ^ residues modulo 0. 

Now ju/X is equal to the number of incongruent residues modulo b\ which 
are obtained, for given K, from K + HT B\ as HT = [hi, h2] ranges over all 
integral vectors. By Lemma 5, ju/X = &i. Hence N = 24 fi/bi. 

The conditions for (26) to be solvable (and hence for <fi to be primitively 
representable as a sum of three squares) will now be examined. No odd prime p 
can divide all three numbers af, t', and V, since such a prime would divide the 

https://doi.org/10.4153/CJM-1949-032-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1949-032-9


354 GORDON PALL 

modulus bi and does not divide the right member — 1 . Similarly, if a1 and b* 
are even, then /' must be odd, hence &i= 3 mod 4. Since, by (26), <j> represents 
— 1 mod p, the generic character (4>\p) must have the value ( — l\p) for every 
odd prime p dividing b\. Now, if 4>\ is any primitive non-negative binary 
quadratic form of discriminant d ( = — 2qe, e odd, q > 0), then the generic 
characters of <£i are known to satisfy 

(27) (2 |mH-l |m) è ( e + 1 > I I (m\pi) = 1, 

where \e\ = pip2- • • ps expresses \e\ as a product of primes, and m denotes any 
integer prime to d and represented by 0i. If b\ = 4 or 0 mod 8, the residue mod 4 
or 8 of the odd numbers represented by <j> is invariant, and by (26) this residue 
has to be that of — 1 ; however, if we substitute — 1 for m in (27), it reduces to 
the impossibility (-1)*(«+D (-i)*(«-i) = 1. Hence b& 0 mod 4. The same 
contradiction is found if <f> is properly primitive and e = 6i==3 mod 4. Finally, 
if <j) is improperly primitive (hence bi= 3 mod 4), then the application of (27) 
to 0 i = J</>, for which (0i|/>) = ( — 2\p), shows that f2|&i) = — 1, i.e. h= 3 mod 8. 
Hence, a positive definite classic binary quadratic form is primitively representable 
as a sum of three squares if and only if </> is p.p. and \<j>\ = 1 or 2 mod 4, or c/> is 
i.p. and \<j>\ = 3 mod 8, and <£ represents — 1 mod |<£|. 

Now a form equivalent to </> can be given the residue ax2+ hbiy2 mod 6i, 
where a = — 1 = A mod b\. Hence (26) has 2vb\ solutions, and N = 24.2\ 
where v denotes the number of distinct odd primes dividing b\. 

To obtain the number of primitive representations of a positive integer b\ 
( = 1 or 2 mod 4, or 3 mod 8) as a sum of three squares, we may take n = 3, 
k = 1, A'= 7, A = 1, 5 i = 6i in (25). Then C , . . . , G(s) are representative 
matrices (one from each class) of the particular genus of binary quadratic 
forms of determinant b\ which are primitively representable by adj 7 (== 7). 
Using the residue — x2— b\y2 mod b\ for any of the G(î), (20) becomes 

[wi If] " " [ "o o] (modôl)' 
which has 2V solutions fei, k2 mod b\. Hence, the number of primitive repre­
sentations of &i as a sum of three squares is equal to 24.2^ s/u, where s denotes 
the number of classes of the genus described above, and u is the number of 
unimodular automorphs of any form in that genus (u = 4 if bi— 1, u = 6 if 
bi= 3, u — 2 otherwise.) 

7. Properties of Hermite-matrices. To obtain all representations, primitive 
or imprimitive, of Bi by A, we have to consider the Hermite-matrices M such 
that MT B\ M~l is in a genus capable of primitive representation by A. The 
discussion will be simplified by reduction to the case where |il7| is a power 
of a prime. 

LEMMA 6. (i) Let mi, m2 be coprime integers. An integral matrix Q of 
determinant Wiw2 has a unique Her mite-matrix of determinant m 2 as a right-
divisor, (ii) If mi, m2, . . . , ms are coprime in pairs, a matrix Q of determinant 
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miW2. . . ms can be expressed in one and only one way in the form UM' \Mf
2, 

. . . , Mfs, where U is unimodular and M\, . . . , M'8 are Hermite-matrices of 
respective determinants mi, . . . , ms. (iii) If Mi, . . . , Ms are Hermite-matrices 
of determinants mi, . . . , ms, coprime in pairs, then the matrix Q of determinant 
miw2 . . . ms having Mi as its right-divisor of determinant mi (i = 1, . . . , s) is 
uniquely determined up to a left-unimodular factor. Hence, if Q is a Her mite-
matrix, it is unique. 

Proof, (i) We can express U\QU2 as a diagonal matrix D, which can evi­
dently be factored as DiD2 with \D±\ = mi and \D2\ = m2. The existence of 
a right-divisor of Q, with determinant m2 follows. This divisor can be sup­
posed to be an Hermite-matrix. To establish its uniqueness, consider N±Mi = 
N\M\, where |iVi| = \N\\ = mi, and |jkf'2| = |itf2| = m2. Hence ( ^ 1 ) " % = 
(M'iM^1), and both sides are integral since their respective possible denom­
inators are coprime. Hence M'2= UM2 with U unimodular, and U = I by 
Lemma 2. 

(ii) Obvious by repeated applications of (i). 
(iii) Let Q = Q1M1. We will prove that the Hermite right-divisors of Qi 

with the determinants m2, . . . , ms are uniquely determined, and hence (iii) 
will follow by induction. Thus, suppose Q2M'2Mx= QZNXM2 and QAM"2Mi = 
QzN\M2, where the Q's have determinants m%, . . . , ms and the other matrices 
have determinants mi or m2 according to their subscripts. The argument used 
in (i) shows that M'*Mi= UNxM2 and M"2Mi= UfN\M2. Hence (UN^1 

M ,
2=(C/ ,iV ,i)-1ikr , /

2, (UNiXU'N'i)-1 must be integral and hence unimodular, 
j | f ' 2 = U"M"2, M'2= M"2. 

Two quadratic forms are in the same genus if they have the same index and 
and determinant, and are in the same class w.r.t. p (defined by residues modulo 
pr with r large) for every prime p dividing the determinant and for the prime 2. 
The class w.r.t. p is unchanged by the application to the quadratic form of 
integral transformations of determinants prime to p, or of rational transfor­
mations of determinants prime to p and with coefficients whose denominators 
are prime to p. It follows that the class w.r.t. p of B'\ = (MT)~ BxM~l is the 
same as that of (MTi) BiMi*1, where Mi is the Hermite right-divisor of M 
whose determinant is the highest power of p dividing \M\. Also, by (iii) of 
Lemma 6, the number of Hermite-matrices of determinant m\m2. . . ms (where 
the wii are powers of distinct primes pt, i — 1 , . . . , s) for which (M ) BiM~x is 
in a given genus, is the product of the numbers of Hermite-matrices Mi of 
determinant m2- for which (MTi) B\Mi~l is in the class w.r.t. pi determined 
by that genus. 

Let B\ be an integral, positive-definite 2 by 2 matrix of determinant 61, and 
let v denote the number of distinct odd primes dividing b\. Let x(P) denote 
the number of Hermite-matrices 

m M, = [ f « 1, , , ,, «„, , „n-«saAe , » ^ , , < p-, 
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such that B'i = (MTi) B\M{~1 is an integral matrix satisfying the conditions 
of primitive representation by x2Jr y2-\- z2 relating to the prime p, but if p > 2 
count every system q, r, s for which |J3'i| is prime to p as worth only \. The 
reason for counting the latter systems as worth \ is that in applying the 
formula 24.2V for the number of primitive representations of B'\ (or rather of 
B"i) by i", the value of v is diminished by one, from the value as defined for B\. 
Accordingly, the number of all representations of Bi by / (3>3) will be 

24.2"nx(£), 
p 

where p runs over the primes such that £2|4&i. 

8. The factors xip)- First consider p > 2. The form 4> can be given the 
residue pUlniiXi2 + pU2m2x2

2 (mod pT) (r sufficiently large), where nil and m2 are 
prime to p, and 0 < U\< u2. On applying to </> the inverse of (28), we obtain 
the form 

(29) 0 '= alx1
2+ 2b1x1x2 + Cix2

2, ax= pu^2rmu &i= - qpui-^r-8mll 

Cl= p-2r-2s(q2puwii+ p2r+u*m2). 
The conditions on <f>' for primitive representability by x2Jr y2Jr z2 are that one 
of a\, bi, C\ be prime to p, and that if p divides \<j>f\ then <f>f must represent 
— 1 mod p. It will be convenient to consider instead the slightly more general 
condition that <j>f shall represent — d mod p, where d is a given integer prime 
to p. 

The solutions with &i prime to p require 

(30) r = \u\, q = 0, s < \u2, 

since b\ and c\ must be integers and q < ps. With q = 0, we may have also 

(31) r < \uu q = 0, s = \u2, 

since C\ must be prime to p when p divides a\ and b\. For the remaining cases, 
with q not zero, we set q = plq\, 0 < t < s, qi prime to p. 

If p\a,i but not 6i, then ui+ t = 2r + s} hence (c\ being integral), Ui+ 2t < 
2r + 2s, U\-\- 2t = 2r + ^2- From these readily follow u2— t + s, \{u2— U\) 
< t — u2— s, and hence 
(32) \u2 < s < i(ui+ u2), t = u2— s, r = t — \(u2— Ui). 

Also, q\ has 2e3 values mod p2s~uz= ps~\ where e% = \\ 1 + (— m\m2\p)} ; and 
hence g has 2e3 values mod ps for each complex of values 5, £, r. Note that in 
the present case j$' | is prime to p. 

There remain to be considered the cases satisfying 

(33) 2r <uu2r + s < ux+ t, p2r+2s precisely divides pu^2tq1
2m1+ p2r+u*tn2. 

It will be convenient to subdivide these cases into three parts, as follows: 
(a) 2s = u2, \{u2— ui) < t < \u2, r < t — \{u2— ui); 

(b) \u2 < s < | (w i+ u2), \{u2— Ui)< t < u2— s, r = t — \{u2— ux), 

while qi mod ps~l is such that (gi2mi+ m2)/p
2s~U2 is prime to p; 

(c) r < \u\, t < r + \{u2— U\), s — t -\- \u\— r, q\ arbitrary prime to p. 
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Thus (a) can be verified as embodying the conditions to be satisfied when 
2r + 2s = 2r + u2 < 2t + uu whence (as r > 0) \{u2 — Ui) < t < s. Again, 
(b) corresponds to U\+ 2t = u2+ 2r < 2r + 2s, whence (by (332)) t < u2— s 
< \u2. Note here, for use in the case where 2s = u2} that it can be proved 
that <Zi2mi+ m2 has the quadratic character of — d modulo p for precisely 
0 values q\ modulo p, where 
(34) 6 = \{p -2 - {- dmi\p) - ( - dm2\p) - ( - mxm2\p)). 

Note also that if 2s > u2, (— m\m2\p) = 1, and qi2nii+ m2 = p2s~U2qf, then 

(qi+ hp**-u*)2mi + m2 = p2s~U2(qf + 2q1m1h + p^-^Wrnx), 
and the last factor has the quadratic character modulo p oi — d for \{p — 1) 
residues h modulo p; consequently, (qi2mi+m2) /p2s~u* has the quadratic char­
acter of — d for p — 1 residues qi modulo ^2s_M2+i. Finally, (c) occurs if Ui+ 
2t = 2r + 2s < 2r + u2 (whence t < s is equivalent to r < \u\). 

We will use the abbreviations ei, e2, e3= 0 or 1 according as (respectively) 
Wi, u2j u2— U\ are odd or even; and rji= j { l +(— dm\p)), bt= { § ( ^ + 1)}, 
(i = 1,2); 178= 1{1 + ( - mmJiP)}. 

For odd p, x(P) will be a sum of terms due to each of the cases (30) to (33) 
(c), and determined as follows. 

If 2s < u2 in (30), mi must have the quadratic character of — d. Hence 
the terms %{P) corresponding to (30) and (31) are, respectively, 
(35) € I 5 2 Ï 7 I + i €i€2, a n d €2ôiry2, 

the ^ being due to the circumstance that \<j>'\ is prime to p if s = \u2 in (30). 
The term of x(P) arising from (32) is evidently 

(36) €3î?35i. 

In case (33)(a), for each value t = \u2— i (i = 1, 2, . . . , 5i — 1), gi has 
(P ~~ l ) £ s - < - 1 = (p — l)pi_1 values modulo ps~\ and r has ôi — i values. The 
corresponding part of x(P) is therefore 

(37) €2772 E (p - l ) ^ " 1 ^ ! - 1)= em{(P°l- 1)/(P - 1) - M-

If 25 = u2 in (33) (b), we can set t = 5 — j (j = 1 , 2 , . . . , %ui). Then qi 
has 6pj~l values modulo p8~\ and the corresponding part of x(p) is 

(38) 0€2e3 E Pj~l = \ Wz(ph~ 1) - ïe*z{ph- l)/(p - 1), 
j 

where f = | { l + (— dmi\p) + (— dm2|/>) + (— WiW2|^)} = 771 + T/2+ 773— 1. 
If 25 > u2 in (33)(b), we can set 5 = \(u\ + u2)— i (i = 1, . . . , ôi — 1) and 
t = \{u2— Ui) + j (j = 0, 1, . . . ,i — 1), and have for the corresponding term 
of x(£), 
(39) 63T73 E E ( f " l ) ^ ' - ^ €3773{ (Ph~ 1)/(P - 1 ) - ôl}. 

* i 
Finally, in (33) (c), U\ is even, and for given r, t> and 5, gi has (£ — l)ps~l~l = 

(£ — l ) £ 5 l _ r - 1 residues mod ps~\ and the corresponding term of x(P) is 
« i - i 

(40) rjiei Z ( ^ - 5 1 + ô 2 ) ( ^ - l ) ^ 1 - r - 1 = r7i€1{(ô2-5i)^1 + ( ^ 1 - l ) ( / ( ^ ~ l ) - Ô 1 } . 
r=0 
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The sum of the terms in (35)-(40) will be found to be 
(41) X(P)= K1(PS1~ 1)/(P - 1 )+ K2p\ 
where KI = ei7ji + e2r)2+ €3̂73 — (^7i+ ^2+ Vz— l)eie2, K2 = \ €ie2 + ei77i(<52 — 5i). 
Thus the values of K\ and K2 may be tabulated as follows: 

Kl K2 

Case #1 even, u2 even. 1 i + l { l +(~~ dmi\p)}(u2 — Ui)/2 
ui even, u2 odd. §{l + ( — dmi\p)} | { l +(— dmi|^)}w2 + 1 — «i)/2 
«1 odd, ^2 even. | { l + ( — dm2J£)} 0 
Ui odd, ^2 odd. | { l +(— mim2\p)} 0 

The value of 2x(p) thus obtained agrees with that for the case d = 1 given 
by the author [8] without details of proof; the method then used was quite 
different and based on a formula of Siegel. To express the value of x(P) in 

terms of generic characters of <£, we may write <f> = ktf>u where $1 is either p.p. 
or i.p., and k is a positive integer. For each odd prime p, we may set k = 
pUlki, and |</>i| = pu*~utfi, where ki and t\ are prime to p. Then uL and u2 

coincide with their values in the associated form-residue pUlntiXi2-\- pU2M2x2
2j 

(m\p) = (k1\p)(<t>1\p)AmiM2\p) = (ti\p). 
Before discussing x(2), we will compute the modified value xi(P) f° r Linnik's 

problem, in which the number of representations is desired in which the divisor 
k of the binary form is equal to the divisor of the representations. This now 
means that U\= r + s. 

In (30) this gives r = s = \u\, and contributes to xi(P) the term €1171 if 
« i < u2, fei€2 if Wi= u2. The contribution due to (31) is 0 unless \u2< U\< u2l 

and then is e2r;2. In (32), we need Ui= u2, and then get 773̂ 1 values r, s, t. So 
far the contribution is small. However, in case (33)(a), if r + s — U\, then 
r — Ui— \u2< t — \{u2 — Ui), t > \u\. Thus (33) (a) requires that \u2< Ui< 
u2, and the conditions to be satisfied are 

\u\< t < \u2, 2s = u2, r = Ui— s} qi prime to p. 
Thus we may set t = \u2— i, (i = 1, 2, . . . , v), where v = [\{u2 — U\— 1)], 
qi has (p — l)ps~t~1 = (p — l )£ z - 1 values modulo ps~\ r now has one value, 
and the corresponding part of xi(P) 1S 

e2V2Z(P ~ 1)^"_1= e2ri2(pv- 1). 
i 

Case (33) (b) is found to require \u2 < u± < u2, and then to specify 
\{u2— ui) < t < \u\, r = t — \{u2— ui), s = i ( # i + u2)— t. 

The subcase 2s = u2 implies Ui= 2t and gives the contribution 0ei€2£l(w2~Wl)-1. 
Also, 2s > u2 implies/ < \u\, we can set/ = \{u2 — Ui) + j (j = 0, 1, . . . , 
«l — l - [§«2]), and find the contribution €3^3(̂ 1 - [hu2])(p - l)£*(w2-"i)-i. 
Finally, (33) (c) is equivalent to 

\u\ < s < \u2, 0 < r = ui— 5, t = \u\. 
Hence the contribution to xi(P) is 

Ml [h(U2— 1)] 

according as U\ < \u2 or \u2 < U\ < u2. 

https://doi.org/10.4153/CJM-1949-032-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1949-032-9


REPRESENTATION BY QUADRATIC FORMS 359 

Summing up, the value of xi(P) for °dd primes p is given by 

1, if Ui= u2 = 0; 

(42) j€i€2+ r}Zdu if « i = u2 > 0 ; 

yieipUl/2> if MI < §«2; 
pvp, if | ^ 2 < Wi< «2, where p = €1771+ c27?2+ 0eie2+ €3773(̂ 1 — [i^2])(£ — 1). 

Here v = [\{u2 — Wi— 1)]. Note that the order of size of this factor is that of 
the power of p dividing h, where h2 is the largest square factor common to k 
and |0i|. 

Except for the values of x(2) and xi(2), we have the following theorem. 

THEOREM 4. Let k be a positive integer, </>i be a positive-definite integral 
binary quadratic form, either properly or improperly primitive, A = |<£i| 7^ 0, 
<f> = k(f)i. The number of all representations of 0 by x 2 + y2+ z2 is given by 

(43) 24.2" n x(p). 
p\2k& 

Here v denotes the number of distinct odd primes dividing kA, and x(P) is given 
for odd primes pby (41) with d = 1 and in accordance with the following notations. 
For any prime p, set k = pUlki, A = pu*~Ulti, ki and h prime to p. If p > 2, 
define (mx\p) = (k^i^p) and {m2\p) = (wi/i|/>), ôi= [(«1+ l) /2]. If p = 2, 
then x(2) = 0, except that x(2) = 1 in the following cases: 

(44) ui+ u2 odd; U\ and u2 even, ti= 1 mod 4; U\ even, 0i i.£., £1= 3 mod 8; 
Wi and u2 odd, 0i £.£., ti= 1, 3, or 5 mod 8. 

r&e number of representations in which the divisor of the representations is equal 
to the divisor k of $ is given by 

(45) 24.2" n xi(P), 
p\2k& 

where xi(P) is given for odd primes p by (42), and xi(2) = 0 except that xi(2) = 1 
in the following cases : 

(46) u\— u2— 1; u\— u2 in all but the first case of (44). 

If m — k2A and h2 denotes the largest odd square factor common to k and A, then 
the expression in (45) has for large m the order of size h.0(m€), for any preas signed 
positive e. 

Proof. It remains only to verify the values of x(2) and xi(2). The form 0 
is equivalent to a form having to modulus a sufficiently high power of 2, either 
the residue 

2UlmiXi2 + 2u*m2x2
2, with m\m2 odd and 0 < U\ < u2, 

if 0i is p.p., or the residue 2Wl(2xx
2 + 2xix2 + 2jx2

2), with j an integer, U\ < 0, 
if 0i is i.p. 

In the former case, the notations in (29) can be used with p = 2. The 
conditions that 0' must satisfy are that a\, b\, C\ are integers such that either 
ai or Ci is odd and aiCi— bi2 = 1 or 2 mod 4, or a± and Ci are even but &i is odd 
and aiCi— bi2 = 3 mod 8. Hence ai cannot be divisible by 4, therefore Ui = 
2r + 1 or 2r. 
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If Ui= 2r + 1, then since b\ is integral, q = 0 or 28~1. If q = 0, then Ci 
must now be odd, u2 = 2s. If q = 2s"1, then c i= | ^ i + 2u*~28m2 must be odd 
or double of an odd, hence u2 = 2s — 1 and m\m2 = 1, 5, or 3 mod 8. 

If Ui= 2r, then q = 0, £i= 2u*~28m2, hence either w2= 25 + 1, or u2 = 2s 
and Wim2= 1 mod 4. 

In the latter case (with <j>i i.p.)> 4> is given by 
(47) ax= 2w!+1-2r, 6i = + 2wi"2^-«(2r - 2g), ci = 2u^-2r~2s(q2 - 2rç + 22rj). 
Since 4|ai is excluded as before, ^ i = 2r or 2r — 1. 

If ux = 2r - 1, then ax= 1, 6i= 2" 5 (2 r " 1 - g), hence g = 2r~1 if r - 1 < s, 
g = 0 if r — 1 > s. If g = 0, then £i = 22r~2sj = 0 mod 4, and the condition 
that aiCi- h2 s 1 or 2 mod 4 is contradicted. If q = 2r~\ then ci= 22r-2~2s 

(4/ — 1), which is not integral since r — 1 < s, a contradiction. 
There remains Wi= 2r, # i= 2. If 5 = 0, then g = 0, &i= 2 r, Ci = 22 r + 1j , 

hence r = 0 and j must be odd. Us = 1, then r > 1 since bi is integral, g = 0 
since d is integral, hence r = 1 and j must be odd since <£' can only be i.p. 
Let 5 > 2. Then r > 2 and g is even since b\ and Ci are integral. Il r > s, 
we may set q = 28~lk (k = 0 or 1), have ci = 21~2S(22S-2^2— 2 r + s ~ ^ + 22rj), 
k even, & = 0, r = s and j = 1. If r < s, we may set q = 2 r - 1 + 28-1& (& = 
0 or l ) , c i = |{&2+(4j — l)22r_2s} which cannot be an integer. Thus there 
are no solutions in the case with </>i i.p. unless U\ is even and j is odd, and 
then q, r, and 5 are uniquely determined. 

From this, (44) readily follows, and then by taking r + s = #i, also (46). 
In Linnik's application to proving that (under certain conditions) a large 

number is represented by each class of a ternary genus, it was assumed that m 
is prime to the determinant d of the genus. The determinant of the binary 
quadratic form </> = &</>i, which is to be represented by a ternary form of 
determinant d2 happens to be of the form bi= m — qik, where q\ is an integer 
and k is the divisor of </>. Hence the assumption that m is prime to d implies 
that k is prime to d. To fill the gap in Linnik's proof it therefore suffices to 
prove the following theorem. 

THEOREM 5. Consider a representative set of forms / i , . . . , / s with integral 
matrices of a given non-zero determinant d, and an integral binary quadratic form 
<t> — k<f>i (0i p.p. or i.p.) of determinant b\= k2A, where k is prime to d. Let h2 

denote the largest square factor common to k and A. Let p denote the number of 
sets of representations ofcfrbyfi, . . . ,fs such that the divisor of the representations 
is k. Then for any positive e, there exists a constant q, depending on e and d, but 
independent of bi and 0, such that 

(48) p < qhibtf. 

Proof. The condition of primitive representation is, as in (26), 

(49) b'kî* - 2t,k1k2+ a'k2
2 s - d (mod bi). 

Hence the divisor k of </> = a'x2+ 2t'xy + b'y2 must divide d. If k is prime to 
d this implies that k = 1. Accordingly, the representations of divisor k of the 
form 4> = k<t>i by ternaries of determinant d are associated with primitive 
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representations of forms which are properly or improperly primitive, and which 
represent — d modulo A, where A = |$i|. The theorem is therefore a conse­
quence of the following three lemmas. 

V 

LEMMA 7. Let &i= XT pf* express bi as a product of powers of distinct primes. 

Then the number of divisors ofbi, namely 11(0;+ 1), is 0 (bi) for every positive e. 
Hence, 2V = 0(6ie) and 5"= 0(bi€). 

Proof. See [14]. 

LEMMA 8. If a'', t', and V are relative prime, the number of solutions K 
modulo Bi of (49) does not exceed \d.T, where v denotes the number of distinct odd 
primes dividing b\. 

Proof. If [a', 2tf, bf] is i.p., then bi= a'bf — t'2 is odd, and the prime 2 does 
not affect the result. Hence for any prime p dividing 6i, <j> can be given the 
residue m\X\2-\- pu*m2x2

2 (mod p8), where mi and m2 are prime to p and ps is 
the precise power of p dividing b\. Then (49) becomes p8m2ki2+ Wife2= — d 
(mod p8), for each p8. Hence ki has p8 values modulo ps, or b\ values modulo bi, 
and this is cancelled by the factor b\ due to Lemma 5. Also k2 can have at 
most 4p8 residues modulo p8 if p25\d and p28+2 does not divide d, and p28\p8; 
and at most p[^s] residues modulo p8 if p8\d. 

LEMMA 9. The number of systems of values r, s, q for which the form <£' in 
(29) is primitive modulo p, but such that r -\- s = Ui, does not exceed 5 (« i+ 2)pa

1 

where pa denotes the precise power of p dividing h (cf. last statement of Theorem 4). 
This holds true for p = 2, with </>' given either by (29) or (47). 

Proof. We follow the steps in § 8, dropping the condition that <j>' represent 
— d mod p, and noticing whether the statements are valid also for p = 2. The 
number of systems r, s, q satisfying r + s = Ui and (30), or (31), is at most 1. 
From (32) are derived if p is odd less than 2(ui+ 1) values r, s, g, indeed 2<5i 
values if Ui= u2, none if U\< u2. If p = 2, (32) gives at most four values q\ 
mod p8~\ hence at most 2(wi+ 1) values r, s, q. We have (33) (a) as before, 
with at most p° — 1 systems r, s, q if |w2 < U\< u2, zero otherwise. In (33) (b), 
if 2s = u2, we replace 0 by p — 1 (taking #i arbitrary), and thus obtain at most 
(p — Vjp0-1 systems, r, s, q. If 25 > u2} the number of systems obtained is at 
most twice that obtained earlier, hence at most 2(ui+ \)(p — l ) ^ - 1 . In (33) 
(c) we may replace 771 by 1 and have at most p™1 — 1 if u\ < \u2, pv — 1 if \u2 < 
Ui< u2, —in both cases p°'— 1. The sum total does not exceed 2(wi+ 3) p°r. 

The factor for p = 2 due to case (47) remains to be considered. The pos­
sibility ai and b\ even, C\ odd, with r + 5 = Ui, is easily seen to be contra­
dictory. If ai is odd, then r = | ( ^ i + 1)» 5 = ui~~~ r* an<^ since b\ is an integer, 
q has 2 residues modulo 2s. Finally, considérai even, bi odd. Sincer + s = #i, 
1 — 2l~rq is odd. There are 1 + [^i/2] values q, r, s with q = 0. If g 5̂  0, 
we may set q = 2lqh must have s > t > r, while 

ci= { ( 2 ^ + 1
5 - 1)2+ 4tj - l} /2 8" r + 1 . 

Thus 2l~r+1qi — 1 has at most two residues mod 2 s _ r , and hence q has at most 
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four residues mod 2s. Thus there are at most 4 (# i+ 1) complexes g, r, s. The 
total due to (47) does not exceed 5(« i+ 2). 

9. Adjoint representations. Gauss, Smith, and Minkowski used a some­
what different algorithm from that which we have described in the preceding. 
They made use of the case k = 1 or n — l o f a correspondence (which will here 
be simplified and generalized) between the primitive representations of a form 
4> in k variables by a form f in n variables, and the primitive representations 
of a certain related form \p in n — k variables by the adjoint of/. 

Certain aspects of their treatments are superfluous, as for example the 
insistence upon dealing with integral forms, and this fact hides the essential 
simplicity of the correspondence. Indeed, the forms <j> and \p, f and adj / , are 
also in a certain measure superfluous, and the correspondence is basically one 
between adjoint representations described as follows. 

Consider (Si S2)
T = (7 \ T^)-1, where (7 \ T2) is unimodular. If T2 is replaced 

by any complement T\H + T2 U of T, then T~x is replaced by 
_ ((Ti T2) [h HlY1 [h -HU-n[S\ 1 [S\- HU^ST 

(50) V Lo u\) = Lo_ EHLST IJ
 = L u'lsT* 

and hence 52 is replaced by S2(U
J) \ Similarly, if 5i is replaced by any left 

complement SiV + S2J (V unimodular, J integral) of S2, then Ti is replaced 
by Ti(V )_ 1 . Thus the two aggregates of representations T\V and 
S2U, where F ( fc , /b ) and U^n~k*n-^ are arbitrary unimodular matrices, are 
adjoint to one another in the following sense. For any U and V, T± V has a 
right complement T2, and S2U has a left complement Si such that ( S i ^ t / ) - 1 = 
(T\V T2)

T. Only the matrices T\V and S2U arise from one another in this 
manner. 

Consider now (10) and (11). If T2 is replaced by any complement TiH + 
T2U of Ti, D2 is replaced by the equivalent matrix U^DoÇU7)-1. This coin­
cides with D2 if and only if UT is a unimodular automorph of D2. Similarly, 
if 5i is replaced by other complements, T\ is replaced by r i ( F T ) - 1 , and this 
is a representation of B i by A if and only if VT is a unimodular automorph 
of Bi. 

It follows that there is associated, with the ensemble of primitive repre­
sentations (TiV) of Bi by A (where F runs through all unimodular automorphs 
of .Bi), in a unique manner an ensemble of primitive representations (S2U) of 
D2 by adj A (where U ranges over the unimodular automorphs of D2) ; and 
conversely. 

Representations of non-equivalent matrices Bi and B\ by A cannot be 
associated with the same ensemble of primitive representations of D2 by C, 
since the replacement of Si by other complements of S2U replaces Bi by an 
equivalent matrix. 

If Bi is replaced by an equivalent matrix ZTBiZ (Z unimodular), and 7\ by 
TiZ, the matrices S2U are unaltered. Thus, corresponding primitive repre­
sentations of ZTBiZ by A are associated with the same representations of D2 

by C as are those of Bi itself. 
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Since at least one minor determinant of order k in T\ is not zero, TiV= T\V 
implies V = V. Hence as V ranges over the unimodular automorphs of 5 i , 
the matrices T\V are distinct; and similarly for S2U. 

If k = n — 1, and A and B\ are integral, then D2 is an integer d2, and B± is 
an integral (n — l)-ary matrix of determinant d2. Hence all the primitive 
representations of d2 by C can be obtained by choosing one matrix B\ from 
each of the finite number of classes of determinant d2l and constructing the 
primitive representations of T\ of each such B\ by A. The number of 
ensembles of primitive representations (TiV) will now be exactly equal to the 
number of primitive representations of d2 by C, since a unary D2 has only one 
unimodular automorph. 

Gauss, Smith, and Minkowski made use of this correspondence to reduce 
the problem of representing numbers to that of representing (n — l)-ary forms. 

It should be observed, finally, that in general, for a given A, a correspon­
dence can be set up between ensembles of primitive representations of a set 
of non-equivalent matrices B^ii = 1, . . . , hi) by A, and a set of non-equi­
valent matrices D2

{j) (J = 1, . . . , h2) by adj A. As noted in (14), the deter­
minants satisfy d2 = bian~k~1; and the matrices D2 satisfy adj G = bin~k~2D2, 
with Bi one of the B^x), and b{~xG the matrix obtained by completing squares 
with reference to B\ in B. The corresponding sets of matrices can be deter­
mined precisely in particular cases. 

Thus, for example, if w = 3, A = C = I,k = 1, and b\ is a positive integer, 
the matrices D2^

j) are representatives of the 5 classes of the genus described 
in § 6, and each such matrix has 24.2v/u ensembles of primitive representations 
by adj Ay if we assume that b\^ 0, 4, 7 mod 8. Hence, as before, the number 
of primitive representations of b\ by x 2 + y2+ z2 is equal to 5 24 2v/u. Thus, 
the representations of 2#i2+ 2xix2+ 2x2

2 as (aiXi+ bix2)
2 + (a2xi+ b2x2)

2+ 
(dzXi+ b^x2)

2 will be found by trial to be 48 in number, and since this binary 
form has six unimodular automorphs they comprehend 8 ensembles,—corres­
ponding to the 8 representations of 3 as a sum of three squares. Similarly, it 
may be verified that 2xi2+ 2xiX2+ 2x2

2 has 48 representations by x 2 + y2+ 
z2+ 2w2, comprehending 48/6 = 8 ensembles; and that these are associated 
with 16 representations of xi 2+ 6x2

2 by 2x2+ 2^2+ 2s2+ w2, hence 16/2 = 8 
ensembles. 

10. The alternative algorithm based on the adjoint form. The method 
used by Gauss, Smith, and Minkowski differed from ours in one further respect. 
What they did (in the case k = n — 1) was, essentially, to construct the adjoint 
matrix D in (11) rather than B. 

If T2 is replaced by any complement TiH + T2Uf D is transformed by 

([o1 u] ) = [-(£TrirT if-1]' 
and hence D2 is replaced by U-'D^iU7)'1 and L by U^L - C/-1D2(f/T)_1iîT. 
If we choose a particular matrix D2 in its class, (U ) - 1 (and also UT) is re-
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stricted to be a unimodular automorph of D2, and L is replaced by U~lL — 
D2H1". Thus the set of primitive representations (WTi) of B\ by A is assoc-
ciated with a matrix £>2 and a complex of solutions L of the congruence 
(51) LT(adj D2)L = - an~k adj J5i (mod d2). 

Here, two matrices L and Z/ are defined to be in the same complex of solutions 
of (51) if there exists a unimodular automorph UT of D2 such that U~l L and V 
are in the same left-sided residue class modulo D2. An equation similar to (25) 
can be formulated, it being necessary to confine attention to solutions L of (51) 
such that if D\ is defined by 

(52) LT(adj D2)L + an~k adj B i = d2Du 

then the matrix D (formed as in the last member of (11)) is equivalent to one 
of adj A',. . . , a d j A™. 

The case k = n — 1 is particularly simple. Then D2= d2— b\, adj D2= 1, 
and the only automorph if of D2 is 1. Congruence (51) becomes 

(53) LTL = - a adj Bi (mod 61), 

and two matrices L and 1/ are in the same complex if and only if L = Lf mod 
b\. Accordingly, there is a 1-1 correspondence between the solutions L mod b\ 
of (51), such that the resulting matrices D are equivalent to one of the adj A^, 
and the sets (WTi) of primitive representations of B\ by the system of matrices 
A^. 
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