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Abstract

This paper is concerned with the characterization of weak-sense limits of state-dependent
G-networks under heavy traffic. It is shown that, for a certain class of networks (which
includes a two-layer feedforward network and two queues in tandem), it is possible to
approximate the number of customers in the queue by a reflected stochastic differential
equation. The benefits of such an approach are that it describes the transient evolution
of these queues and allows the introduction of controls, inter alia. We illustrate the
application of the results with numerical experiments.
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1. Introduction

Queueing systems that receive signals, in addition to customers, are called G-networks and
were first introduced in [22]. Signals may come from outside or from other queues within
the network and cause different types of effects on the receiving queue. A common type of
signal, which is called the ‘negative customer’, forces the receiving queue to remove a customer
from the waiting line. Other examples of signals include: ‘triggers’, which moves a customer
from one queue to another [23]; ‘disasters’, which completely cleans the waiting line of the
receiving queue [15]; and ‘resets’, which sets the length of the receiving queue to a random
value distributed according to the stationary distribution for that queue [26]. Thus, every queue
in the system may exert some sort of control over the network through the signals. These models
have been extensively studied (some examples include [14], [17], [18], [29], [33], [34], [36],
[37], [47], [48], and [52]) and are motivated by a series of practical applications. One of the
most successful applications, which was also the initial motivation for G-networks, is neural
network modeling [21], [24], [30]. In this context, each queue represents a neuron and positive
and negative customers are interpreted as excitatory and inhibitory signals, respectively (see
also, [6], [7], and [27]). Other applications include computer networks with virus infection,
load balancing networks, and synchronization signaling in parallel computation (see [5] for an
extensive list of references). Another more recent application is modeling genetic regulatory
systems [3], [25].
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Although G-networks generally have some pleasing mathematical properties, such as prod-
uct-form stationary distributions, the transient evolution of these systems is not easily
(or conveniently) described and is rarely treated. The interaction among several different queues
and the discrete nature of the system contribute to making it a complex problem and often
the only resource available are simulations, which are time consuming and computationally
expensive. Moreover, problems such as the optimum choice of signal or customer scheduling
are impractical in this setting. Thus, a mathematical model is sought, even if approximative,
that can give a reasonable degree of accuracy.

There exists two common types of approximations that describe the transient evolution
of queueing networks: fluid and diffusion (or heavy-traffic) approximations. Usually, fluid
models describe the dynamics of the system ‘average’ by a differential equation. Diffusion
approximations differ from the fluid model in the fact that the ‘randomness’ usually found in
queueing systems is not averaged out and it appears in the model as a Wiener process (or in some
cases as an Itô integral). Hence, diffusion approximations are more faithful to the dynamics of
the system when compared to fluid approximations. However, this comes with the addition of
the heavy-traffic assumption, which requires the rate of customers entering a queue to be close
to the rate of customers leaving this queue. This is a common scenario in many applications of
interest, most notably in modern computer systems.

The problem of describing the transient evolution of a queueing network with negative
customers has been dealt with in some recent works using fluid approximations [4], [35].
In the former article, transient evolution of a state-dependent network with negative cus-
tomers was considered using a fluid approximation together with a heavy-traffic assumption.
However, as discussed in the above paragraph, diffusion approximations are more suited
for systems under this condition. To our knowledge, G-networks have not yet been treated
under a diffusion analysis. Such an approximation is useful in practical problems in which
G-networks are applicable. For example, one could use the heavy-traffic approximation to
construct a stochastic optimal control problem for synchronization of signals in parallel com-
puter systems. In addition, the diffusion model can help us gain insights into the connections
among some of the model parameters and the general behavior of queueing networks with
signals.

Diffusion approximations for queueing systems have been studied since the pioneering
works of Kingman [41], Prohorov [50], and Borovkov [10], [11] in the early 1960s. Other
early papers on the subject include [19], [20], [39], [51], and [53], to cite a few. One of the
interesting aspects of diffusion approximations is that they offer a ‘macroscopic view’ [54]
of the complex interactions that are present in queueing networks, and synthesize the general
behavior of the system in a simple time-dependent equation. In addition, the approximation
has been observed to give a good estimate for systems under heavy, or only moderately heavy,
traffic (see e.g. [43, Chapter 1]). Hence, it is no surprise that it has been successfully applied to
several practical problems, most of them in computer systems, where heavy traffic is common.
Some examples include [1], [2], [13], [28], [31], [32], and [45].

In this paper we will consider G-networks with state-dependent arrival rates (of customers
and signals), service rates, and routeing probabilities. Besides [4], discussed above, other
results regarding state-dependent G-queues and networks treat the system under a stationary
regime [9], [17], [38]. As mentioned previously, the benefits of the diffusion approximation is
that it describes the transient evolution of these networks via a stochastic model. In addition,
the state dependence allows for the introduction of feedback controls [43, Chapter 9]. We also
consider that the network is under heavy traffic, in the sense that every queue in the system is
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operating at nearly maximum capacity. Under this condition, it will be shown that the number
of customers in each queue in the network can be approximated by a reflected stochastic
differential equation. The model is an adaptation of the models presented in [43, Section 8.2]
and [49] with the introduction of negative customers. The result presented here is for a certain
class of queueing networks which satisfy Assumption 3(a), which will be presented later in the
development of the model. Two examples of networks are given which satisfy this condition:
two queues in tandem and a two-layer feedforward network.

The layout of the paper is as follows: in the following section the queueing model treated
here will be described in more detail. In Section 3 the heavy-traffic theorem for the number of
customers will be stated and proved. In Section 4 we show two examples of networks which
satisfy Assumption 3(a). Finally, in Section 5 we illustrate the application of the model with a
numerical example.

2. Queueing model

We will restrict ourselves to queues with one server, first-come–first-served (FCFS) service
discipline, and signals of the ‘negative customer’ type. Hence, any queue that receives this
signal is forced to remove a customer from the system. If the queue is empty, the negative
customer will have no effect on the system. Although being denominated a ‘customer’, this
signal does not receive service and leaves the receiving queue immediately after its arrival.
Signals coming from within the network are regular customers that have finished work at a
queue and were routed as negative customers.

The queue length process, Xi , for a network of K queues takes the form

Xi(t) = Xi(0) + Ai(t) − Di(t) − Si(t) +
∑
j≤K

(D+
ji − D−

ji(t)) − Ui(t), (1)

Ai(t) = Na
i

(∫ t

0
�a

i (X(s)) ds

)
, Bi(t) = Ns

i

(∫ t

0
�s

i (X(s)) ds

)
,

Ci(t) = Nd
i

(∫ t

0
�d

i (X(s)) ds

)
, Si(t) =

∫ t

0
1{Xi(s−)>0} dBi(s),

Di(t) =
∫ t

0
1{Xi(s−)>0} dCi(s), D̃ij (t) =

∫ t

0
1{Xi(s−)>0,Xj (s−)>0} dCi(s),

D+
ij (t) =

∫ t

0
1+
ij (s) dDi(s), D−

ij (t) =
∫ t

0
1−
ij (s) dD̃ij (s),

(2)

where Nα
i are standard Poisson processes with càdlàg sample paths (those that are continuous

from the right with left limits) and �α
i : R

K+ → R+, i, j ∈ {1, . . . , K}, α ∈ {a, s, d}, are
measurable functions.

The processes 1+
ji(t) and 1−

ji(t) are defined as the indicator functions of the events that a
customer leaving queue j at time t is routed to queue i as a positive or negative customer,
respectively. The process Ui(t) denotes the cumulative number of customers not allowed to
enter the queue due to the buffer being full by time t . If the buffer size is infinite for queue i,
the process Ui(t) can be considered as the ‘zero’ process.

The interpretation of the counting processes in (1) is the following: Ai(t) is the cumulative
number of exogenous clients that arrived at queue i by time t , Di(t) is the number of service
completions at queue i by time t , and Si(t) is the number of removed customers due to an
exogenous signal by time t . The process D+

ji(t) denotes the total number of customers that left
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queue j and joined queue i as a regular customer by time t , and D−
ji(t) is the total number of

customers removed from queue i due to a negative arrival that originated from queue j .
All stochastic processes given above are defined on the same probability space (�, F , P).

References to it are not necessary and will be omitted henceforth. Let Ft be the minimal
σ -algebra that measures all driving processes defined above up to time t (i.e. {Ft , t ≥ 0} is
a filtration). In addition, the following assumption will be used. Amongst other things, it
guarantees that the counting processes defined above are nonexplosive and have a martingale
representation, which will be given below. The condition on the continuity and boundedness
of the rates can be relaxed and that will be discussed in the next section.

Assumption 1. (a) The random quantities Xi(0) and Nα
i , i ∈ {1, . . . , K}, α ∈ {a, s, d}, are

mutually independent.

(b) The functions �α
i (·), i ∈ {1, . . . , K}, α ∈ {a, s, d}, given in (2), are continuous and

bounded.

(c) E[1α
ij (t) | F r

t ] = Qα
ij (X(t−)) for i, j ∈ {1, . . . , K} and α ∈ {+, −}, where Qα

ij : R
K+ →

[0, 1] is a measurable function and F r
t is the minimal σ -algebra that measures all driving

processes up to time t , not including the current routeing decision.

Owing toAssumption 1, the jump processesAi , Di , Si , and D̃ij have the following martingale
decompositions (see [12, Theorem 8] and [49, p. 625]):

Ai(t) = Ma
i (t) +

∫ t

0
�a

i (X(s)) ds,

Di(t) = Md
i (t) +

∫ t

0
1{Xi(s)>0} �d

i (X(s)) ds,

Si(t) = Ms
i (t) +

∫ t

0
1{Xi(s)>0} �s

i (X(s)) ds,

D̃ij (t) = M̃d
ij (t) +

∫ t

0
1{Xi(s)>0, Xj (s)>0} �d

i (X(s)) ds,

where Ma
i , Ms

i , Md
i , and M̃d

ij are Ft -martingales. In order to have a martingale decomposition
for D+

ij and D−
ij , define

M+
ij (t) :=

∫ t

0
(1+

ij (s) − Q+
ij (X(s−))) dDi(s),

M−
ij (t) :=

∫ t

0
(1−

ij (s) − Q−
ij (X(s−))) dD̃ij (s).

The same argument used in [49, p. 626] can be used to show that M+
ij and M−

ij are Ft -martingales.
Now it is possible to write

D+
ij (t) =

∫ t

0
(1+

ij (s) − Q+
ij (X(s−))) dDi(s) +

∫ t

0
Q+

ij (X(s−)) dDi(s)

= M+
ij (t) +

∫ t

0
Q+

ij (X(s−)) dMd
i (s) +

∫ t

0
Q+

ij (X(s)) 1{Xi(s)>0} �d
i (X(s)) ds,

D−
ij (t) = M−

ij (t) +
∫ t

0
Q−

ij (X(s−)) dM̃d
ij (s)+

∫ t

0
Q−

ij (X(s)) 1{Xi(s)>0, Xj (s)>0} �d
i (X(s)) ds.
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Hence, the process X = (Xi, i = 1, . . . , K)� accepts the following representation:

X(t) = X(0) +
∫ t

0
B(X(s)) ds + M(t) − U(t),

where

Bi(x) := �a
i (x) − �d

i (x) 1{xi>0} −�s
i (x) 1{xi>0}

+
∑
j≤K

(Q+
ji(x) 1{xj >0} −Q−

ji(x) 1{xj >0, xi>0})�d
j (x),

Mi(t) := Ma
i (t) − Md

i (t) − Ms
i (t)

+
∑
j≤K

(
M+

ji(t) − M−
ji(t) +

∫ t

0
Q+

ji(X(s−)) dMd
j (s)−

∫ t

0
Q−

ji(X(s−)) dM̃d
ji(s)

)
,

and Mi is an Ft -martingale.

3. Heavy-traffic limit

As it is usual in heavy-traffic analysis, we consider a sequence of queueing networks
(Xn, n > 0) indexed by the parameter n. As n increases, the system approaches heavy traffic
in the sense that the rate of customers entering the system approaches that of customers leaving
the system. The following scale is usually employed:

xn(t) := Xn(nt)√
n

.

Let any mathematical object defined in the previous section with respect to Xn now be indexed
with an upper script n (e.g. F n

t , �
a,n
i , Q

+,n
ij , etc.). Similarly, any counting process defined in

the previous section (e.g. Ai , Si , Di , D+
ij , D−

ij , and Ui) is now replaced by its scaled equivalent
(e.g. An

i , Sn
i , Dn

i , D
+,n
ij , D

−,n
ij , and Un

i ). For example, An
i (t) now denotes 1/

√
n times the

number of exogenous customers that arrived at queue i by time nt , that is,

An
i (t) := 1√

n
Na

i

(∫ nt

0
λ

a,n
i

(
xn

(
s

n

))
ds

)

with λ
a,n
i (ξ) := �

a,n
i (

√
nξ), ξ ∈ R

K , for each n > 0, and the martingale decomposition
becomes

An
i (t) = M

a,n
i (t) + 1√

n

∫ nt

0
λ

a,n
i

(
xn

(
s

n

))
ds

= M
a,n
i (t) + √

n

∫ t

0
λ

a,n
i (xn(s)) ds,

after a change of variable. Likewise, let

q
α,n
ij (ξ) := Q

α,n
ij (

√
nξ)
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for α ∈ {+, −}, i, j ∈ {1, . . . , K}, and ξ ∈ R
K . Also, let the size of the buffer for the scaled

process be Bi for the ith queue (Bi may be infinite).
In Assumption 2(a), below, we will define how state dependence is introduced. Even

though the dependence is very small for large n, it has a significant effect in the limit. As
it will be seen, the functions f α

i (x) and f
β
ij (x) will appear in the drift term of the limit

equation.

Assumption 2. For o(·) uniformly in x, we make the following assumptions.

(a) There exist nonnegative constants rα
i and r

β
ij , and bounded and continuous functions

f α
i (x) and f

β
ij (x) for j, i ∈ {1, . . . , K}, α ∈ {a, d, s}, and β ∈ {+, −} such that

λ
α,n
i (x) = rα

i + f α
i (x)√

n
+ on

α

(
1√
n

)
,

q
β,n
ij (x) = r

β
ij + f

β
ij (x)√

n
+ on,β

q

(
1√
n

)
.

(b) For any i ∈ {1, . . . , K},

ra
i +

∑
j≤K

rd
j r+

ji = rd
i + rs

i +
∑
j≤K

rd
j r−

ji ,

which is usually called the heavy-traffic condition. This condition tells us that, for large n,
the rate of customers joining a queue in the network is very close to the rate of customers
leaving this queue.

Note that Assumption 2 tells us that, for each x ∈ R
K+ ,

√
n

(
λ

a,n
i (x) − λ

d,n
i (x) − λ

s,n
i (x) +

∑
j≤K

(q+
ji(x) − q−

ji(x))λ
d,n
j (x)

)
=: bn

i (x) → bi(x),

where bi(·) is defined in Theorem 1, below.
Assumption 3, below, is on the reflection directions and it will become more clear throughout

the development of the proof of Theorem 1. Define the following matrices in R
K×K :

Ir := diag(rd
i + rs

i )i=1,...,K,

�ij := rd
i (r+

ij − r−
ij ),

�S := diag

( ∑
j∈Z\S∪{i}

r−
jir

d
j

)
i=1,...,K

,

RS := Ir − �� + �S, R := R∅,

(3)

where S ⊆ Z := {1, . . . , K} and

diag(ai)i=1,...,m ∈ R
m×m

is a diagonal matrix with entries ai .
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Assumption 3. (a) For any S ⊆ {1, . . . , K} with |S| ≥ 2, there exists an α = (α1, . . . , α|S|)�

= 0, where |S| denotes the number of elements of S, such that αi ≥ 0 and

R{i∈S}α = RS
{i∈S}e with e = (1, . . . , 1)�.

The subscript {i ∈ S} on any matrix A indicates that A{i∈S} ∈ R
K×|S| is formed by the columns

of A with indices in S.

(b) The matrix R satisfies the completely-S condition (see [43, p. 121]).

The usual interpretation for the matrix R is that its columns, denoted by di, i ∈ {1, . . . , K},
are reflection directions. That is, whenever the process xn(·) tries to cross a boundary ∂Gi :=
{ξ ∈ R

K+ | ξi = 0}, it is ‘pushed’ back into the state space in the direction of di . When
xn(t) ∈ ∂Gi ∩ ∂Gj , i 
= j , the usual assumption is that the reflection direction at this instant
is a positive linear combination of the directions di and dj , and similarly at the intersection
of more than two boundaries. This allows us to write the reflection term z(·), that appears in
Theorem 1, below, in the usual form z(t) = ∑

i diyi(t) = Ry(t) (omitting the u term). This
condition that the reflection directions at ‘corners’ or ‘edges’ of the state space are positive
linear combinations of the directions at the adjacent faces appears naturally in most queueing
systems [43]. However, this is not the case for G-networks. The actual reflection directions that
appear at the corners or edges of the state space are given by positive linear combinations of
the columns of RS(xn(t)), defined in (3), where S(ξ) := {i ∈ {1, . . . , K} | ξi = 0} for ξ ∈ R

K ,
and that is the reason for introducing Assumption 3(a). Although this condition seems, prima
facie, restrictive, we will show in Section 4 two important queueing networks that satisfy this
assumption.

We are now able to present the heavy-traffic limit in the theorem below.

Theorem 1. Let xn(0) converge weakly to x(0). With Assumptions 1, 2, and 3, {xn(·)} is tight
and any weakly convergent subsequence satisfies

x(t) = x(0) +
∫ t

0
b(x(s)) ds + M(t) + z(t), (4)

z(t) = Ry(t) − u(t),

where 0 ≤ xi(t) ≤ Bi, i ∈ {1, . . . , K}, and

bi(x) = f a
i (x) − f d

i (x) − f s
i (x) +

K∑
j=1

(f d
j (x)(r+

ji − r−
ji) + rd

j (f +
ji (x) − f −

ji (x))), (5)

Mi(t) = Ma
i (t) − Md

i (t) − Ms
i (t) +

K∑
j=1

((r+
ji − r−

ji)M
d
j (t) + M+

ji(t) − M−
ji(t)).

The Mα
i , α ∈ {a, d, s, r}, i ∈ {1, . . . , K}, are mutually independent Wiener processes, where

Mr
i (t) := (M+

i1(t), . . . , M
+
iK(t), M−

i1(t), . . . , M
−
iK(t))�. The Mα

i have variances rα
i for α ∈

{a, d, s} and Mr
i has covariance matrix

(
i)jk = rd
i

(
(
+

i ) (
+−
i )

(
+−
i )� (
−

i )

)
with (
α

i )jk =
{

(1 − rα
ij )r

α
ij if j = k,

−rα
ij r

α
ik otherwise,

for α ∈ {+, −} and (
+−
i )jk = −r+

ij r−
ik , where 
+−

i , 
α
i ∈ R

K×K .
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The process z(·) is the reflection term (yi(0) = 0 and yi(·) are continuous, nondecreasing,
and can increase only at t where xi(t) = 0; similarly, if Bi < ∞, ui(0) = 0 and ui(·) are
continuous, nondecreasing, and increase only when xi(t) = Bi).

Proof. The proof follows the ideas of Theorem 8.2.1 of [43]. By the discussion in the last
section, we know that xn(t) has the following representation:

xn
i (t) = xi(0) + Bn

i (x(t)) + Mn
i (t) − Un(t),

where

Bn
i (xn(t)) = √

n

∫ t

0
λ

a,n
i (xn(s)) − λ

d,n
i (xn(s)) 1{xn

i (s)>0} −λ
s,n
i (xn(s)) 1{xn

i (s)>0}

+
∑
i≤K

(q
+,n
ji (xn(s)) − q

−,n
ji (xn(s)) 1{xn

i (s)>0}) 1{xn
j (s)>0} λ

d,n
j (xn(s)) ds,

Mn
i (t) = M

a,n
i (t) − M

d,n
i (t) − M

s,n
i (t)

+
∑
j≤K

(
M

+,n
ji (t) − M

−,n
ji (t)

+
∫ t

0
q

+,n
ji (xn(s−)) dM

d,n
j (s) −

∫ t

0
q

−,n
ji (xn(s−)) dM̃

d,n
ji (s)

)
,

and Mn
i (t) is a martingale. Define yn

i (t) = √
n
∫ t

0 1{xn
i (s)=0} ds, which is the total server idle

time by time nt for queue i. Similarly, define yn
ij (t) = yn

ji(t) = √
n
∫ t

0 1{xn
i (s)=0, xn

j (s)=0} ds.
Using Assumption 2(a) and the heavy-traffic condition (i.e. Assumption 2(b)), we can expand
Bn

i as

Bn
i (xn(t)) =

∫ t

0
bi(x

n(s)) ds +
(

rd
i + rs

i − (r+
ii − r−

ii )r
d
i +

∑
j≤K(j 
=i)

r−
jir

d
j

)
yn
i (t)

−
∑

j≤K(j 
=i)

(r+
ji − r−

ji)r
d
j yn

j (t) −
∑

j≤K(j 
=i)

r−
jir

d
j yn

ji(t) +
∑
j≤K

O

(
yn
j (t)√
n

)

+ √
no

(
1√
n

)
. (6)

The martingales M
α,n
i , α ∈ {a, d, s}, and M̃

d,n
ij have the following associated Doob–Meyer

processes:

〈Ma,n
i 〉(t) =

∫ t

0
λ

a,n
i (xn(s)) ds,

〈Md,n
i 〉(t) =

∫ t

0
1{xn

i (s)>0} λ
d,n
i (xn(s)) ds,

〈Ms,n
i 〉(t) =

∫ t

0
1{xn

i (s)>0} λ
s,n
i (xn(s)) ds,

〈M̃d,n
ij 〉(t) =

∫ t

0
1{xn

i (s)>0, xn
j (s)>0} λ

d,n
i (xn(s)) ds.
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These processes can be obtained using the result in [43, p. 62]. Also, the martingale M
r,n
i =

(M
+,n
i1 , . . . , M

+,n
iK , M

−,n
i1 , . . . , M

−,n
iK )� has the following associated Doob–Meyer process:

〈M+,n
ij 〉(t) =

∫ t

0
1{xn

i (s)>0}(1 − q
+,n
ij (xn(s)))q

+,n
ij (xn(s))λ

d,n
i (xn(s)) ds,

〈M+,n
ij , M

+,n
ik 〉(t) = −

∫ t

0
1{xn

i (s)>0} q
+,n
ij (xn(s))q

+,n
ik (xn(s))λ

d,n
i (xn(s)) ds,

〈M−,n
ij 〉(t) =

∫ t

0
1{xn

i (s)>0, xn
j (s)>0}(1 − q

−,n
ij (xn(s)))q

−,n
ij (xn(s))λ

d,n
i (xn(s)) ds,

〈M−,n
ij , M

−,n
ik 〉(t) = −

∫ t

0
1{xn

i (s)>0, xn
j (s)>0, xn

k (s)>0} q
−,n
ij (xn(s))q

−,n
ik (xn(s))λ

d,n
i (xn(s)) ds,

〈M+,n
ij , M

−,n
ik 〉(t) = −

∫ t

0
1{xn

i (s)>0, xn
k (s)>0} q

+,n
ij (xn(s))q

−,n
ik (xn(s))λ

d,n
i (xn(s)) ds,

and analogously for 〈M−,n
ij , M

+,n
ik 〉. The proof of this characterization is omitted since it is

straightforward and cumbersome. Also, using Assumption 1(a) and (c), we have

〈Mα,n
i , M

γ,n

i 〉(t) = 0 and 〈Mα,n
i , M

β,n
ij 〉(t) = 0,

where α, γ ∈ {a, d, s}, α 
= γ , and β ∈ {+, −}. By Theorem 2.8.3 of [43], the martingales
are tight, and since each term has discontinuities of the order of 1/

√
n, they are asymptotically

continuous. Therefore, using the expression in Assumption 2(a), we can write the following:∫ t

0
q

+,n
ji (xn(s−)) dM

d,n
j (t) = r+

jiM
d,n
j (t),∫ t

0
q

−,n
ji (xn(s−)) dM̃

d,n
ji (t) = r−

jiM̃
d,n
ji (t),

modulo a negligible error that goes to zero as n → ∞.
Define the column vector yn(·) := (yn

i (·), i = 1, . . . , K)�. Observe that we can write the
terms in (6) with respect to the idle time (i.e. yn

i (t) and yn
ij (t)) in matrix notation as∫ t

0
RS(xn(s)) dyn(s) =

∫ t

0
RS(xn(s))I n(s; e) ds,

where we define the column vector In(s; α) := (In
i (s; α), i = 1, . . . , K)� for α ∈ R

K as

In
i (s; α) := αi

√
n 1{xn

i (s)=0},

e = (1, . . . , 1)� ∈ R
K , S(ξ) := {i ∈ {1, . . . , K} | ξi = 0} for ξ ∈ R

K , and RS is defined
in (3). Using Assumption 3(a), we find that, for each t ≥ 0, there exists α(t) such that

RS(xn(t))I n(t; e) = RIn(t; α(t)).

Hence, ∫ t

0
RS(xn(s)) dyn(s) = R

∫ t

0
In(s; α(s)) ds =: Rȳn(t).

Using Assumption 3(b), we can now apply Theorem 3.6.1 of [43] to show that {zn(·), xn(·)},
where zn(t) := Rȳn(t) − Un(t), is tight and yn(·) and Un(·) are asymptotically continuous.
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Let z(·) = Ry(·) − u(·) denote any weak-sense limit of zn(·). The tightness of {yn
i (·)} implies

that yn
i (·)/√n = ∫ ·

0 1{xn
i (s)=0} ds converges weakly to the zero process. Therefore, the indicator

functions in the Doob–Meyer processes can be dropped without a change in the limit. Also,
the processes M̃

d,n
ij and M

d,n
i converge weakly to the same limit process Md

i for any i and j ,
and M

d,n
i can be used in place of M̃

d,n
ij without affecting the limit.

Now, all that needs to be done is to apply Theorem 2.8.2 of [43] with the fact that the size
of the discontinuities are of order 1/

√
n to show that the martingales converge to the asserted

Wiener processes.

Remark 1. As in Theorem 8.4.1 of [43], the continuity of the functions f α
i (·) and f

β
ij (·)

in Assumption 2(a) can be replaced by measurability as long as the functions φ(·) �→∫ ·
0 f α

i (φ(s)) ds and φ(·) �→ ∫ ·
0 f

β
ij (φ(s)) ds are continuous on D(R; 0, ∞), with probability 1,

with respect to the measure induced by any weak-sense limit x(·). This is verified with the
application of Theorem 5.1 of [8].

Remark 2. Theorem 3.5.4 of [43] tells us that there exists a weak-sense solution to (4) under
the assumptions of Theorem 1. If we add Assumption (A.3.5.2) of [43] (which is satisfied if
R is an M-matrix (see [16, p. 164])) to Assumption 3(b) and suppose that b(·), defined in (5),
is Lipschitz continuous, then, by Theorem 3.5.2 of [43], there exists a unique strong-sense
solution to (4).

Remark 3. The assumption on the boundedness of the functions f α
i (·) and f

β
ij (·) can be

replaced by boundedness when restricted to G. Alternatively, this condition on the functions
f α

i (·) and f
β
ij (·) can be replaced by supposing that they have at most linear growth in x, and

adding Assumption (A.3.5.2) of [43] to Assumption 3(b). As in Theorem 8.2.1 of [43], this is
verified by the truncation technique together with the fact that any solution x(·) of (4) satisfies

lim
K→∞ P

(
sup
s≤t

|x(s)| ≥ K

)
= 0,

which can be verified with the aid of Theorem 3.5.1 of [43] and the fact that the drift term b(·)
will have at most linear growth.

4. Networks satisfying Assumption 3(a)

Assumptions 1, 2, and 3(b) are usual assumptions in heavy-traffic approximations for
state-dependent queueing systems [43, Chapter 8]. Loosely speaking, that is also true for
Assumption 3(a), which essentially requires that any reflection direction appearing on the edge
or corner of the state space be a positive linear combination of the reflections at the adjacent
boundaries. In fact, if we consider a network where queues can receive signals from outside
but not from within the network, the condition is automatically satisfied. However, it is not
valid for any G-network. In this section we show two types of network topologies that satisfy
Assumption 3(a).

4.1. Two queues in tandem

Consider two queues in tandem where each queue may send regular or negative customers
to each other, as seen in Figure 1. Both queues receive customers and signals from exogenous
sources, and there is no feedback, in the sense that a customer that has just left queue i may not
be routed immediately to queue i.
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+ / − 

+ / − 

+ / − + / − 
A1 A2

S1 S2

Figure 1: Two queues in tandem. The symbols ‘+’ and ‘−’ indicate the arrival of regular or negative
customers, respectively.

For this case, the matrices Ir , �, �S , and R are defined as follows:

Ir =
(

rd
1 + rs

1 0
0 rd

2 + rs
2

)
,

�∅ =
(

r−
21r

d
2 0

0 r−
12r

d
1

)
, �{1,2} = 0,

� =
(

0 rd
1 (r+

12 − r−
12)

rd
2 (r+

21 − r−
21) 0

)
,

R =
(

rd
1 + rs

1 + r−
21r

d
2 −rd

2 (r+
21 − r−

21)

−rd
1 (r+

12 − r−
12) rd

2 + rs
2 + r−

12r
d
1

)
,

R{1,2} =
(

rd
1 + rs

1 −rd
2 (r+

21 − r−
21)

−rd
1 (r+

12 − r−
12) rd

2 + rs
2

)
.

Hence, the condition is verified if there is an α = (α1, α2)
� with positive components such that

Rα = R{1,2}e, which is true as long as rd
1 , rd

2 > 0.

4.2. Two-layer feedforward network

Let us now consider a feedforward network with two layers, in the sense that the queues on
the first layer may send customers to queues in the second layer, but not vice versa; see Figure 2
for reference. Each queue can also receive regular and negative exogenous arrivals and there is
no feedback. Suppose that there are K1 queues on the first layer and K2 queues on the second
layer. Define K = K1 + K2. We index the queues starting on the first layer in such a way that
if K1 < i ≤ K , the ith queue is in the second layer.

Define Z1 = {1, . . . , K1}. For this scenario, the matrix RS is given by

RS =
(

diag(rd
i + rs

i )i=1,...,K1 0

−�̃� diag(rd
i + rs

i +∑
j∈Z1\S r−

jir
d
j )i=K1+1,...,K

)
,

where �̃ ∈ R
K1×K2 is defined as

�̃ =
⎛
⎜⎝

r1(r
+
1(K1+1) − r−

1(K1+1)) · · · r1(r
+
1K − r−

1K)

...
...

rK1(r
+
K1(K1+1) − r−

K1(K1+1)) · · · rK1(r
+
K1K

− r−
K1K

)

⎞
⎟⎠ .
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+ / − + / − 

S1
SK

1
 + 1

SKSK
1

Figure 2: Two-layer feedforward network.

In order to verify Assumption 3(a), let S ⊆ {1, . . . , K} be an ordered set with |S| ≥ 2. Define
S1 ⊆ {1, . . . , K1} and S2 ⊆ {K1 + 1, . . . , K} as ordered sets such that S1 ∪ S2 = S. Then
choose α = (α1, . . . , α|S1|, β1, . . . , β|S2|)� such that αi = 1 for i = 1, . . . , |S1| and

βj = rd
k + rs

k +∑
l∈Z1\S1

r−
lk r

d
l

rd
k + rs

k +∑
l∈Z1

r−
lk r

d
l

for j = 1, . . . , |S2|,

where k is the j th element of S2. Now we can verify that R{i∈S}α = RS
{i∈S}e. Since this works

for any choice of S, Assumption 3(a) is satisfied.

5. Numerical experiments

In order to illustrate an application of Theorem 1, let us suppose that we have the system
of Subsection 4.1, given by Figure 1. It will be assumed that every customer leaving queue 1
joins queue 2 as a regular customer, and queue 2 does not receive exogenous clients. Also,
both queues have finite buffers. Suppose that queue 2 needs to reduce customer loss due to
buffer overflow and it does that by sending signals to queue 1. Hence, every time queue 2 has
its buffer almost full, it will start sending signals to the first queue. In this example, it will be
shown how we can use the result derived here to choose the optimal routeing strategy for a
system operating under heavy traffic.

As it is common in application (see, e.g. [43], [45], and [46]), we do not have a sequence
of queues indexed by the parameter n. Rather, we have one queueing system that we want to
approximate. Hence, we need to choose a large N such that the rates for our problem satisfy

�α
i (

√
Nx) = λ

α,N
i (x) ≈ rα

i + f α
i (x)√
N

, α = a, d, s,

Q
β
ij (

√
Nx) = q

β,N
ij (x) ≈ r

β
ij + f

β
ij (x)√
N

, β = +, −,

and the heavy-traffic condition holds (i.e. Assumption 2(b)). Now, we can approximate the
distribution of the number of customers in each queue at time Nt using the distribution

√
Nx(t),

where x(·) is the limit process given by (4).
For our example, let us suppose that

λ
a,N
1 (x) = λ, λ

a,N
2 (x) = 0, λ

s,N
1 (x) = 0, λ

s,N
2 (x) = 0,
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and that λ
d,N
1 (x) = µ1 and λ

d,N
2 (x) = µ2, where µ1, µ2, and λ are positive constants. By the

heavy-traffic assumption, there exist (‘small’) constants b1 and b2 such that b1 = √
N(µ1 − λ)

and b2 = √
N(µ2 − µ1). That is, the rate of customers entering each queue is close to the rate

of departing customers. Hence, λ
d,N
1 (x) = λ + b1/

√
N and λ

d,N
2 (x) = λ + (b1 + b2)/

√
N .

Also, we suppose that

q
+,N
12 (x) = 1, q

+,N
21 (x) = 0, q

−,N
12 (x) = 0, q

−,N
21 (x) = g(x)√

N
,

where g : R
2 → [0, 1], and that the size of the (unscaled) buffers are

√
NB1 for the first queue

and
√

NB2 for the second queue. The heavy-traffic limit is given by

dx(t) =
(

−b1 − λg(x(t))

−b2

)
dt +

(
2λ −λ

−λ 2λ

)1/2

dW(t) +
(

1 0

−1 1

)
dy(t) − du(t),

where A1/2(A1/2)� = A. It is perhaps noteworthy to mention that the function g(·) only
acts upon the first component of x(·), even though we are interested in controlling the second.
However, the second queue will be affected indirectly by the control through the reflection term.

Now we want to choose a g(·) which will reduce buffer overflow in queue 2. Let us suppose
that λ = 1, b1 = b2 = 0.1, and B1 = B2 = 25.6, and define the step function

s(x) =
{

1 if x2 > 15,

0 otherwise.

Figure 3 compares the same realization of x(t) with g(·) set to g(x) = s(x) and g(x) = 0 for
initial condition x(0) = (B1, B2)

�. Observe that the sample path with no control hits buffer
overflow more frequently. The sample paths were constructed with the Euler method (e.g. [42,
p. 110]). The time discretization parameter was set to h = 0.01. The reflection term was
implemented by pushing the process back (in the direction of the reflection vector) into the
state space every time it crossed a boundary.

We can also find the optimal choice of g(·) with respect to a cost function. For this example,
we will use the following discounted cost:

W(x, g) = Eg
x

[∫ ∞

0
e−βt (cg(x(t)) dt + v du2(t))

]
,

where c and v are constants associated with the cost of routeing negative customers (or losing
customers at the first queue) and the cost of losing customers due to buffer overflow at queue 2,
respectively.

We use the Markov chain approximation method [40], [44] to find the optimal control
numerically. We set β = 0.01, and the discretization parameter is set to h = 0.1. Plots of the
control for different choices of c and v are shown in Figure 4. Note that the optimal control is
of the switching type (i.e. after a given threshold, the control is used at maximum rate). This
type of optimal control has also been found in different situations for the control of queueing
systems [46].

It is interesting to see the shape of these switching curves. Note that the curves move upwards
at the right side of the state space. This can be explained by the delay of the control action,
since the control at queue 2 is done indirectly. When queue 1 and queue 2 are almost full, there
most likely will be buffer overflow loss at queue 2 even if it sends signals to queue 1.
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Figure 3: Sample path of x(t) with g(x) = s(x) (black) and g(x) = 0 (gray). (a) Plot of x1(t) versus
time. (b) Plot of x2(t) versus time. (c) Plot of x1(t) versus x2(t).
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Figure 4: Switching curves for the optimal controls with varying values for c and v.

6. Conclusions

We have presented heavy-traffic limits for a class of state-dependent G-networks which
satisfy Assumption 3(a). Two examples were given which satisfied this condition. Our current
work concentrates on extending the results to any class of G-networks, and for networks with
different kinds of signals.

In addition, we are interested in the extension of the ideas considered in [20] to the network
case treated in this paper. The mentioned article raises a relevant problem with respect to
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diffusion approximations with reflecting boundaries: in the ergodic scenario, no probability
mass concentrates at the state space boundaries. The addition of the boundary conditions
in [20] could improve the approximations for cases when the traffic intensity is not very high
and the distribution at the boundaries is important.
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