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Abstract

The integration of functional and logic programming languages has been a topic of great
interest in the last decade. Many proposals have been made, yet none is completely satisfactory
especially in the context of higher order functions and lazy evaluation. This paper addresses
these shortcomings via a new approach: domain theory as a common basis for functional and
logic programming. Our integrated language remains essentially within the functional
paradigm. The logic programming capability is provided by set abstraction (via Zermelo-
Frankel set notation), using the Herbrand universe as a set abstraction generator, but for
efficiency reasons our proposed evaluation procedure treats this generator's enumeration
parameter as a logical variable. The language is defined in terms of (computable) domain-
theoretic constructions and primitives, using the lower (or angelic) powerdomain to model the
set abstraction facility. The result is a simple, elegant and purely declarative language that
successfully combines the most important features of both pure functional programming and
pure Horn logic programming. Referential transparency with respect to the underlying
mathematical model is maintained throughout. An implicitly correct operational semantics is
obtained by direct execution of the denotational semantic definition, modified suitably to
permit logical variables whenever the Herbrand universe is being generated within a set
abstraction. Completeness of the operational semantics requires a form of parallel evaluation,
rather than the more familiar left-most rule.

Capsule review

This paper's aim is to allow the expressiveness of both logic and lazy functional programming
styles to coexist within a single language. Cleanliness and correctness are the guiding principles,
and this contrasts refreshingly with much of the previous work in this area.

Rather than attempting to add logical variables directly, sets are used to provide logical
expressiveness. The authors demonstrate the relationship between such sets and the more usual
predicate approach (found in Prolog, for example). The semantics used for sets does not
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interfere with the standard lazy functional semantics, and so their inclusion is cleanly achieved.
Perhaps the most interesting and original view developed in the paper is that logical variables
ought not to be considered a feature of the programming language, but rather that they arise
as an implementation optimisation. The viability of this view is demonstrated by translating the
denotational semantics into an operational semantics.

Consistent with their intention of providing a clean approach is the recognition that some
degree of parallel evaluation is required to achieve completeness. The authors have also quite
correctly resisted the temptation to provide an abundant repertoire of set operations, and have
instead provided only those required for the purpose in hand. This parsimony means that
referential transparency may be retained.

1 Integration of functional and logic programming

On the surface, functional programming and logic programming seem to be two quite
distinct ways to describe computation. In functional programming, programs are
function definitions, and computations are expressed as the definition and application
of functions, whereas in logic programming, computations are expressed as the search
for values satisfying (logical) constraints. We should clarify at the outset that, by logic
programming, we mean programming with first-order relational Horn clauses (van
Emden and Kowalski, 1976) (or Horn logic for short), the declarative basis for
Prolog. A Horn logic program presents a set of relational definite clauses over a
domain of first-order terms, along with a goal clause. Some problems can more
naturally be described in terms of functions, others in terms of predicates. However,
both capabilities are desirable, and hence the integration of these two paradigms has
been a topic of great interest in the last decade (see DeGroot and Lindstrom (1986)
and Bellia and Levi (1986) for two good surveys).

Functional programs contain much more control knowledge than logic programs,
due to the deterministic nature of functions and the uni-directional nature of function
reduction (or application). This property is the key to obtaining more efficient
implementations of functional languages. (Often, deterministic computation in
Prolog requires a complex and sometimes semantically unclear metalogical
annotation of the program.) The functional paradigm also offers lazy evaluation and
higher-order functions, whose uses for program modularisation are well-known
(Hughes, 1990). On the other hand, logic programs can sometimes be more abstract
than functional programs, since less control knowledge need be embedded in the
program. The price for this increased abstraction is that a non-deterministic search
must be conducted to obtain solutions to the logical constraints.

An integrated language must account for all of the above features. Although many
proposals have been made, none is completely satisfactory especially in the context
of higher order functions and lazy evaluation. This paper addresses these
shortcomings via a new approach: domain theory (see Stoy (1977) for an introduction).
Domain theory was devised by Scott to justify the popular interpretation of recursive
lambda expressions as functions. Since most functional programming is based upon
this interpretation, we consider domain theory of fundamental importance in the
theory of functional programming. From the perspective of domain theory, a
functional language is essentially a shorthand notation for a restricted and
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computable subset of domain-theoretic concepts. Domain theory can also be used to
understand logic programs, since the fixed-point semantics of Horn logic pro-
gramming is given in domain-theoretic terms (Lloyd, 1987). Thus domain theory can
be used as the foundation for an integrated language.

/ . / Design philosophy

There are two roles that denotational semantics may play in the creation of a
programming language: the descriptive role and the prescriptive role. The more
traditional descriptive role of denotational semantics is to concisely describe a
language whose design was motivated by operational efficiency and generality, rather
than clarity and simplicity. The prescriptive approach (Ashcroft and Wadge, 1982)
uses the domain-theoretic concepts as building blocks for the designer. If only
computable domain-theoretic primitives are used, a simple operational semantics
results as a by-product of the design process. The prescriptive approach aims for
simplicity and elegance, perhaps at the expense of generality and efficiency. The goals
of the prescriptive approach to denotational semantics and the goals of functional
programming are thus in perfect agreement, so in this work, we conscientiously
follow the prescriptive approach.

Just as there are two approaches to the use of denotational semantics, there are two
approaches to functional programming. The purists demand that every feature in the
language be consistent with the basic paradigm. This ensures that the mathematical
structure of the paradigm may be used in reasoning about programs. This greatly aids
writing, debugging and reasoning formally about programs. The pragmatists, on the
other hand, recognise that practical programming tasks may require that the rules be
broken occasionally. Language designers from both camps have the same goal - a
language which is pure, elegant and practical. Nevertheless, they approach this goal
from different directions. The pragmatists seek to control and tame the dangers of
existing meta-logical and extra-logical features, while the purists try to design pure
languages of increased power. This work is presented from the purists' perspective.
In judging our proposed language's expressiveness, one should not compare it to Lisp
(McCarthy el al, 1965) or Prolog (Clocksin and Mellish, 1981), but rather to their
pure subsets in which all metalogical and extra-logical features are absent. The
combination of Lisp and Prolog has been well-studied (Robinson and Sibert, 1982;
Smolka and Panangaden, 1985). Our objective is to show that purely declarative
versions of these languages may be subsumed by a single purely declarative language.

1.2 Approach

Our approach is to incorporate the logic programming capability within the
functional framework via set abstraction (Zermelo-Frankel set theory). We showed
(Silbermann and Jayaraman, 1989) that relative set abstraction adds to a lazy, higher-
order functional programming the expressiveness of first-order logic programming.
Sets, as well as functions, can be treated as first-class objects. We prefer relative set
abstraction to the absolute set abstraction construct (Darlington et al., 1986) because
the former combines better with higher-order constructs. Essentially, we require every
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logical variable in the absolute set construct to have its generator-set explicitly
specified as the Herbrand universe of terms, in order to obtain the corresponding
relative set construct. We showed (Silbermann and Jayaraman, 1989) that the non-
flat lower powerdomain (sometimes called angelic) was the appropriate domain
construction for incorporating these sets. Thus our proposed language is defined in
terms of (computable) domain-theoretic constructors and primitives, using power-
domains to model the set abstraction facility. The result is a simple, elegant and
purely declarative language that successfully combines the most important features of
both pure functional programming and pure Horn logic programming. Referential
transparency with respect to the underlying mathematical model is maintained
throughout. The language embodying these ideas is called PowerFuL, because
/Werdomains were used for integrating Functional and Logic programming.

The key concepts of PowerFuL will be demonstrated via a sparse notation,
admittedly without many modern syntactic niceties. In particular, we have considered
neither clausal-style function definition via pattern-matching, static polymorphic type
checking, nor arithmetic. Many modern functional languages simulate equational
reasoning via a syntax resembling clausal equational function definition, implemented
by left-to-right pattern matching (Hudak, 1989). Because the format of this syntactic
variant distracts from the language's true semantics, we do not discuss it.
Nevertheless, its implementation is well understood, and can easily be added to our
language in the manner described in Peyton Jones (1987). There is considerable
interest in strongly typed logic programming languages, and we see no incompatibility
between functional and logic programming in this area. However, the development
and use of type systems in logic programming lags behind functional languages, for
which many polymorphic type systems have been studied (Hudak, 1989). Until there
is a consensus on appropriate type systems for logic programming, we prefer to deal
with an untyped language augmented with a modest set of run-time type-checking
primitives.

Our approach to the operational semantics follows the idea of semantics-based
translation. That is, denotational semantics is treated not only as a means of language
description, but also as an implementation language (Pleban, 1984; Schmidt, 1986).
This approach is based on the observation that reduction of the program syntax by
the operational semantics parallels the simplification of the corresponding math-
ematical expressions in the semantic domain, and hence the reduction of the syntax
will not be significantly more efficient than simplification of the denoted semantic
expression. That is, a second semantics based on reduction rules for program syntax
would be redundant. Our approach involves compiling the syntax to the domain-
theoretic notation, and simplifying the resulting mathematical expression via equality
axioms provided for each semantic primitive. The equality axioms for each semantic
primitive are used as left-to-right reduction rules, applied using the leftmost
computation rule (so that reduction will terminate, if possible).

For logic programming, the standard operational semantics (resolution) is much
more efficient than direct execution of the fixed point semantics (Lloyd, 1987). For
efficient execution of PowerFuL's logic programming component, the semantics-
driven evaluation procedure is modified by the incorporation of runtime program
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transformations. These transformations result in certain set enumeration parameters
(those enumerated by the first-order Herbrand universe) being treated in ways
analogous to the treatment of logical variables in resolution derivations (Lloyd,
1987). Completeness of the operational semantics requires a degree of parallel
evaluation, rather than the more familiar left-most rule.

1.3 Outline of paper

Before introducing PowerFuL, we first present in section 2 a higher-order functional
language called LispLike, in domain-theoretic terms. In so doing, we clearly delineate
those aspects of our language design that are commonplace in functional
programming from those that are new in this proposal. Section 3 extends the
language of section 2 with a set abstraction construct that meshes well with the
higher-order capability. Section 4 discusses two critical issues relating to the
operational semantics: The first issue is that quite reasonable and correct logic
programs may be inherently nonterminating, and therefore call for a fair evaluation
strategy in the underlying computation rule. The second issue is that the execution
procedure, when the Herbrand universe is used as a set abstraction generator, must
employ generalised derivations, using logical variables to represent arbitrary elements
of the Herbrand universe, rather than working from ground instantiations. The
principle is analogous to Robinson's resolution method (van Emden and Kowalski
1976; Lloyd, 1987) in Horn logic programming. Section 5 compares our
accomplishments with those of related work, and suggests avenues of further
research.

2 Lisp-like functional programming

We describe a purely declarative, untyped, lazy, higher-order functional programming
language. Being untyped, it resembles a purely declarative subset of Lisp. Therefore,
we will refer to this language as LispLike. Its set of first-class objects includes
booleans, atoms, ordered pairs of first-class objects, and functions over the set of first-
class objects.

Before beginning a formal analysis, let us demonstrate the style and look of the
language with a few simple function definitions.

l e t r e c

append be X 11 12. if null?(11) then 12

else cons(car(ll), append(cdr(11), 12)) fi

map be X f.X 1. if null?(l) then 'nil

else cons(f(car(l)), map(f,cdr(l))) fi

infinite be cons('a, infinite)

in

The map example shown above is in curried form. Higher-order functions and infinite
objects are defined in a conventional manner.

11 FPR2
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The remainder of this section is organised as follows. Section 2.1 will review the
mathematical primitives from domain theory that will be used. The formal definition
of Lisplike follows in section 2.2. Section 2.3 discusses implementation via direct
execution of the denotational semantics. Section 2.4 discusses use of the denotational
semantics in equational reasoning.

2.1 Review of semantic primitives

We assume the reader is familiar with elementary domain theory, specifically with
concepts and notations such as bottom (X), approximation (<=), pointed complete
partial order (i.e. domain), functional, least fixed point, =, strictness, chain, least
upperbound ( U), monotonicity, continuity, the interpretation of a recursive definition
as the least fixed point of the associated functional, and Scott's inverse limit
construction (Scott, 1982; Schmidt, 1986; Gunter and Scott, 1990) for recursive
domain specifications. The basic notation and theory may be found in Schmidt
(1986).

This section lists the primitive domains, domain constructors and operations which
may be used by a simple functional programming language. Each primitive operation
is described via equations which, when used as left-to-right rewrite rules, implement
that operation.

To distinguish the notation of domain theory from programming language syntax,
our convention will be to write programming language syntax in t e l e t y p e , the
primitive semantic functions in boldface; metavariables in rules, axioms and other
equations will be italicised. Definitions and theorems in this section were taken from
Schmidt (1986).

2.1.2 Elementary domain constructors

The basic kinds of elements in LispLike are booleans, atoms, ordered pairs and
functions. The relevant domains, domain constructors and operations are standard in
the literature, so proofs of continuity will be omitted. (The interested reader may find
proofs in Schmidt (1986), and other writings on denotational semantics.) Each
primitive function can be implemented via its associate axioms of equality, if
interpreted as left-to-right rewrite rules. Note that for each primitive, a simplification
rule applies as soon as the outermost constructor of any strict argument is available.

In our notation, B refers to the discrete domain containing TRUE, FALSE and _L
(sometimes written as _LB to prevent confusion with bottom elements of other
domains).

For any domain D, we have the primitive function if: B x D x D -> D, implemented
via:

if(TRUE, arg2, arg3) = arg2

if(FALSE, arg2, arg3) = arg3

if(±, arg2,arg3) = ±.
The conditional is strict only in its first argument. For clarity, when writing nested
conditionals, we shall feel free to express this primitive using the alternative if... then
...else ...fi notation.
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From the syntax of each program, we determine a finite set of atoms, which denote
atomic values Ax through An. With the addition of a bottom element 1 these elements
make up the domain of atoms, A.

Provided monotonicity is maintained, a function over the atoms can be defined via
a set of equations, one for each element of the domain. For example, for each atom
A, one can define a strict primitive function isA4?:A-i-B:

isA(?(lA) = 1 B

isA/?(A() = TRUE

isA,?(A,) = FALSE for i +y.

For instance, the primitive is'nil? tests whether an atom is equal to 'nil. Note that the
last equation is actually an equation schema, with one equation for each combination
of/*/

Given domains Dt and D2, we can construct domain Dx x D2, whose elements are
ordered pairs of elements from their respective domains. Associated with this
construction are two strict primitives: left: Dxx Z)2->Dlt and right: Dx xD2-+D2.
Each primitive is defined by a single simplification rule:

left( < 1st, 2nd >) = 1st

right( < 1st, 2nd >) = 2nd.

Given domains Dx and D2, we can create a domain Z)1-»D2, the continuous
function space from Dx to D2. Elements of D1-»D2 are created as follows: if e is an
expression containing occurrences of an identifier x, such that whenever a value
aeDx replaces the free occurrences of x in e, the value [a/x]eeD2 results, then
Xx.e is an element of DY^D2.

The associated primitive operation is function application, written simply as one
argument beside the other: (Dl -> D2) x Dx -> D2, which takes a function fe Dx ->• D2

and an element aeDx, and produces f{a)eD2. This operation associates to the left.
Whereas other primitives are implemented via rewrite rules, function application is
implemented via beta-reduction. (The details of beta-reduction may be found in
Schmidt (1986) or any basic text on the lambda calculus, and will not be given here).
Function application is strict in the left argument, in the sense that (-LD^D) a equals
J-D for any second argument a in D. Beta-reduction of an application may be
performed as soon as the abstraction variable x is identified, even where the body e
is not yet fully simplified. Thus, function application behaves in a way analogous to
our other primitive operations, simplifying as soon as the 'outermost constructor' is
known.

A functional is a continuous function whose mapping is of the form D->D (same
domain D for input and output). Often domain D is itself a function space.

Theorem 2.1 (Schmidt, 1986, p. 114)
For any domain D, the least fixed point of a continuous functional F:D-+D exists and
is defined to be fixF = U i>0 {/*(!)}, where P = Fo Fo ... o F, i times. The fixed point
operator fix is implemented via the axiom below:

fix(F) = F(fix(F)).
11-2
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Given domains Dv ...,Dn, the domain Dx + ...+Dn is a collection of elements of
the form dD, where deDt.

If elmnt is an element of D1 +... + Dn, and if, for 1 ^ / ^n,et: D whenever free
occurrences xt in et are replaced by elements in Df, then the following is a value in D:

cases elmnt of isD^xJ -> e1

D is£»2(x2)->e2

0 isDn(xn)-+en

end.

If e/mn* is replaced by any element of form aD, then the cases expression above
equals [a/xt]e(. If elmnt is replaced by L, then the expression equals LD. When the
case is the top-level construct in a function definition, we often use an equational
notation with one equation for each subdomain, plus one equation mapping J. to 1 .
For instance, Stoy (1977) defines two operations over disjoint sums via this
mechanism.

Definition 2.1
For each 1 < i ^ n, operator _|Z)4: (D1 +...+ Dn)->D( (read as the retracts from
domain Dx+ ... +Dn to D{) is defined as follows:

Definition 2.2
For each 1 ̂  / ^ n operator -sD(: (D1+ ... +Z)n)->B is defined as follows:

±ED( = 1 B

XDieD( = TRUE

XDjeDt = FALSE for i +j.

These operations can be used for run-time typechecking.

2.1.3 A recursive domain for functional programming

The domain we propose for definition of a Lisp-like functional programming
language is the solution to the following recursive equation:

D = B + A + DxD + D ^ D ,

where B refers to the booleans, and A to a finite set of atoms. That is, LispLike's
domain contains booleans, atoms, ordered pairs of smaller elements (to create lists
and trees) and continuous functions. At the top level, D is a disjoint sum of four
subdomains: booleans, atoms, ordered pairs from D and functions over D. To further
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compact the notation for subdomain tags, we rename subdomains B, A, D x D and
D-*D as b, a, p and/(for iooleans, atoms, ordered pairs and/unctions, respectively).
Similarly, we will write the retracts _|B, _|A, _|D x D and _|D -»• D as _|i, _|a, _|/J and
_|/, respectively. The type predicates _eB, _eA, _eD x D and _£D -> D will be written as
-£b, _£a, _e/? and _e/, respectively.

2.1.4 Equality

A programmer will frequently wish to compare elements for equality. Unfortunately,
strong equality (=) is not generally computable over pointed complete partial orders.
For example, consider the predicate i>:B-^B, where P is denned a s h . x s TRUE.
We have 1 E TRUE, yet P ( l ) ^ P(TRUE), demonstrating that = is not monotonic.
Remember that _L often represents the value of an inherently nonterminating
computation. The undecidability of the halting problem prevents us from always
recognising when an argument equals ±. Instead, we must rely on a strict
approximation to =. The function kx.ky.if(x,y,not(y)), where not is denned as
kx.if(x, FALSE, TRUE), is monotonic (and continuous). This kind of approximation
is called weak equality.

We would like to define a form of weak equality over D. Unfortunately, there does
not seem to be any reasonable continuous approximation to equality over D^-D.
Equality over D x D can be approximated to the extent that equality can be
approximated over D (two ordered pairs are equal iff their corresponding elements are
equal). We present the following approximation of equality over D, via a system of
mutually-recursive functions, again relying on rewrite rule notation in lieu of using
the case statement. The first step is the determination of the first argument's source.

DeqD?(lDJo6/) = l 6

TteqDl(booleanb,obj) = DeqB?(o6/, boolean)

DeqD?(atoma,obj) = DeqA?(oi/',arow)

DeqD1(pairp,obj) = DeqPl(obj,pair)

DeqDl(Junctionf,obj) = H&\E1{obj, function).

After stripping the tag from the first argument, control is passed to a second
function which checks the tag of the other argument, before any further evaluation.
These functions, DeqB?: D x B -> B, DeqA?: DxA^B, DeqP?: Dx(DxD)^-B and
DeqF?: Dx ( D ^ D ) ^ B return FALSE if the other tag disagrees, and otherwise
continues the examination, if appropriate. These special functions are given below:

The definition of DeqB?: D x B->B is as follows.

DeqB?(lD, boolean) = Lb

DeqB?((i1)6, b2) = if(6ls b2, if(b2, FALSE, TRUE))

DeqB?(atoma, boolean) = FALSE

DeqBl(pairp, boolean) = FALSE

DeqB?(/M«c//o«/, boolean) = FALSE.
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Given a function AeqA?: A x A->B, which compares two atoms for equality (and
which will be presented later), the definition of DeqA?: D x A-*B is as follows:

DeqA?(lD,arow) = l 6

DeqA1(booleanb,atom) = FALSE

DeqAliiatonij)^ atom2) = AeqA?(ato/fl1; atom2)

DeqA?(pairp,atom) = FALSE

DeqAl(functionf,atom) = FALSE.

We can define the function AeqA?: A x A-^B to compare two atoms for equality:

AeqA?(la, atom) = lb

AeqA?(A15 atom) = is A^atom)

AeqA?(An, atom) = isAn(atom).

We define function DeqP?: Dx (DxD)^B as follows (note that this function
contains a recursive call to DeqD?):

DeqP?(lD!jpa//-) = ±b

DeqP?(booleanb,pair) = FALSE

DeqP?(atoma,pair) = FALSE

D e q P ? ^ ) ^ ) = if(DeqD?0eftQ>1),left(p8)), DeqD?(right^1),right(^2)), FALSE)

DeqP?(functionf,pair) = FALSE.

Function DeqF? :Dx(D-*-D)->Bis trivial. It returns FALSE if the tag of the first
argument disagrees with the tag of the second argument, and lb otherwise. The
details are:

DeqF?(lD,/««c/io«) = 1 6

DeqF1(booleanb,function) = FALSE

DeqF'\atoma, function) = FALSE

DeqF^(pairv, function) = FALSE

,) = Lb.

Note that the functions defined by these mutually recursive specifications are
correctly implemented by mutually recursive sets of rewrite axioms in such a way that
any application of one of these functions can be simplified as soon as the outermost
constructor of the left-most argument becomes known.

Theorem 2.2
The function AeqA? is symmetric in its two arguments; i.e. for any ava2eA,
AeqA?(a1;a2) = AeqA?(a2,ax).

Proof
Since the domain A has a finite number of elements, this can be verified by
enumerating all possibilities. •

https://doi.org/10.1017/S095679680000040X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000040X


A domain-theoretic approach 283

Theorem 2.3
The function DeqD? is symmetric in its two arguments; i.e. for any (/,,(/2eD,

Proof Sketch
Replace the set of equations for each function with a single case statement. In the
body of DeqD?, replace the function calls by their denning case statements. Take the
resulting recursive definition of DeqD? and abstract out the function name, writing
it instead as the least fixed point of the associated functional. One can then prove its
symmetry via fixed point induction (sometimes called computational induction; see
Manna (1974) for a good introduction). •

Fixed point induction is one of several techniques which denotational semantics
provides for proving properties of programs. Though this is a valuable benefit of our
approach to functional programming, the details of these techniques is beyond the
scope of this paper.

Though the functions used to build the approximation to equality could have been
denned by composing other more primitive semantic operators, we prefer to
implement them directly via simplification equations (the same way the true primitives
are implemented - the motivation for this should become apparent in section 4.2).
When mentioning 'semantic primitives' in later sections, we will have these 'less
primitive' functions in mind as well.

2.2 Formal definition

A LispLike program is an expression to be evaluated. The syntax is:

expr ••••= (expr) | TRUE | FALSE | A1 | ... | An

| cons(expr, expr) \ ca,r(expr) \ cdr(expr)

| if(expr, expr, expr) | null?(expr)

| hool?(expr) |atom?(expr) | pair?(ex/?r)

| func?(expr)

| expr = expr

| identifier | l e t identifier be expr i n expr

| l e t r e c identifier be expr, ..., identifier he expr in expr

| X identifier . expr

| expr expr.

These constructs have close analogs in other functional languages, so only a brief
explanation of the denotational equations is required.

A LispLike program is a syntactic expression, built up via the composition of
subexpressions, as shown in the above BNF. Every legal expression denotes an object
in domain D, and this denotation gives meaning to the expressions. The meaning of
an expression is denned in terms of the denotations of its subexpressions.
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The equations below define the semantic function S', which maps each syntactic
expression to an object in domain D. In each denning equation, the environment p
associates pre-defined syntactic identifiers with other elements in domain D (p is
therefore in [Id-*D]).

We present the semantic equations for the various constructs in the order of their
appearance in the BNF:

• Parentheses provide clarity and override the default left-associativity:

£[(expr)\ p = S\expr\ p.

• For each syntactic atom (represented by A*) in a program, we assume the existence
of an atomic object (represented by A,) in the domain of atoms A, and therefore, with
the appropriate tag, in D. In practice, an initial quote distinguishes an atom from an
identifier:

P = (Ai)a-

• The cons specifies an ordered pair, useful for creating lists and binary trees. We
will permit lists to be written in the [. . . ] notation, e.g. [ ' a p p l e , ' o r a n g e ,
' g r a p e ] , but this is only an abbreviation for the nested-pair representation using

<£lcons(exprl,expr2)}p= <(S\exprll p), {S{expr2\ p> v.

• To select a pair's left and right elements, ca r and cdr are used. Though these are
useful only when applied to an ordered pair, because LispLike is untyped they may
be applied to any legal expression. Applications of car and cdr to inappropriate
sorts will be undefined, i.e. they will denote 1 D . The denotational equation for a ca r
expression could have been written via the cases operation:

S[car(e;c/?r)I P = cases S\expr\ of isB(bool) -»• 1

0 isA(atom) -»• 1

• Q isD x V(pair) -»- Mt(pair)

D isD-*D(/««c)-»±
end.

The cases statement would remove the tag and apply the relevant primitive to the
ordered pair. If the argument were from any of the other subdomains of D, (or if the
argument is _LD), the result would be ±D.

Because the definition of 'cdr' would require a similar case analysis, we prefer to
abstract out the case analysis via retracts. The retract _|/? strips the tag that was
added when the ordered-pair was inserted from D x D into D. If the argument had been
inserted into D from some other domain, _\p returns the undefined ordered pair (so
that selection of either side yields 1D). Though a real implementation might offer an
error message in such a case, we believe that, within the declarative paradigm, such
messages are best viewed as commentaries on the computation process, e.g. as
supplementary output from a rudimentary symbolic debugger invoked by default. If
the programmer wishes to trap and handle such useless applications, he is free to test
the argument before applying the operator:

= T\gM{{S\expr\ p)\p).
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• Equations for the booleans resemble those for the atoms. Included are some basic
boolean functions:

<f [TRUEI p = TRUE,
<?[FALSE] p = FALSE,
g\no\(expr)\ p = (if((tf[gjc/vj p) | b, FALSE, TRUE)),
g{if(exprl, expr2, expr3)\ p = il((g\exprl\ p) | b, g\expr2\ p, g\expr3\ p).

The conditional, i f {condition, expr2, expr3), may also be written as i f condition
then expr2 e l s e expr3 f i .

• The programmer can test whether an expression denotes a boolean, an atom, an
ordered pair, or a function:

g\boo\%expr)\ p =

g\a.tom1(expr)\ p = {{g{expr\ p) ea)b

g$pairl(expr)} p = ((g{expr\ p)zp)b

Slfanc%expr)] p = ((gfexprj p)ef)b.

• In some cases, expressions can be compared for equality. The equality predicate
can compare booleans, atoms, and provided it can compare the respective subtrees,
ordered pairs. It does not attempt to compare functions for equality (if you try, it
returns Lb). The condition n u l l ? tests whether its argument equals the atom ' n i l :

g\(exprl = expr2)\ p = (DeqD?(c?|[ex/>r/]| p, g\expr2\ p)\

p = <q'nil = expr\ p.

In a recursive higher-order language, the comparison of two functions for equality
is not generally computable. Our equality predicate therefore denotes lb when
applied to two functions. A typed language might prevent equality from being applied
to functions in the first place. For instance, ML distinguishes equality types from
other types which may contain functions (Milner, 1984). Lisp (McCarthy, 1965),
using the equal predicate, and Scheme (Abelson and Sussman, 1985), using the
equal? predicate, compare the syntax of functional expressions for equality. To
maintain referential transparency, however, it is important to distinguish equality of
syntax from semantic equality.

The user is free to use cons and atoms to define his own notation for function
definition and application, and even an interpreter to evaluate' function' applications.
If this is done, then = could be used to compare such expressions for syntactic
equality. However, to be able to reason about higher-order programs, it is nice to
have functions directly supported by the denotational semantics, even if true function
equality cannot be made available.

• We can look up identifiers in the environment, and also create new bindings. The
l e t construct establishes the static scope of an identifier, and associates a value to
it. The l e t r e c establishes a static scope for one or more identifiers whose values are
defined via mutual recursion. A program is invalid if it contains a reference to an
identifier outside its scope. The semantic function S> creates a new environment by
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extending the current environment whenever a new identifier definition is enc-
ountered. The application of an environment to an identifier denotes the object in D
which the environment associates with that identifier:

S\identifier\ p = ^{identifier)

<?Jlet id be exprt i n expr2\ p = $[expr2l p[S[exprj p/id]

ec defs i n expression} p = ̂ {expression} (3)\defs\ p)

exprj p = p[fix(XX. (£[expr\ p[X/id}))/id]

3{id\>e expr, defs} p = 9[defs] (p[fix(XX.{S\expr\ {3>\defs\ p[X/id])))/id]).

• We can create functions through lamba abstraction, and apply functions to their
arguments. A function parameter is represented by an identifier:

SIX id. exprj p = Q,x.{S\expr\ p[x/id]))f

S\exprx expr £ P = ((HexprJ p) \f) {S\expr2\ p).

In the above equations, we considered only functions of one argument. A function
of multiple arguments can be considered syntactic sugar either for a curried function,
or for a function whose single argument is a list.

2.3 A sample program execution

Consider the following program:

l e t r e c append be 1 x y. if nul l?(x) then y else

cons(car(x) , append(cd(x), y))

in append ['g, ' h ] ['a, ' b ] .

Translating from syntax to semantics, we get:

$ [ l e t r e c append be X x. X y. i f nul l?(x) then

y else cons(car(x) , append (cdr(x) , y))

in append cons( 'g ,cons ( 'h , ' n i l ) ) cons( 'a ,cons

( ' b . n i l ) ) I 0

= & I append cons ( ' g , cons ( 'h , n i l ) )

c o n s ( ' a , c o n s ( ' b , ' n i l ) ) ] px

where p1 is

3) \ append be X x. X y. if nul l?(x) then y else

cons(car(x), append(cdr(x), y)) J []•

Before continuing further, let us determine the value of environment px.

2) [ append be X x. X y. if nul l?(x) then y else

cons(car(x), append(cdr(x), y)) J Q

= [fixXZ.(<? I X x. X y.

if null?(x) then y else cons (car(x), append

(cdr(x), y)) ] [Z/append] / append]
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= [fixXZ.(kX.(kY.

Y
< LEFT(X\p), {£ I append(cdr (x))] [Z/append]

[Jf/x] [Y/j])f 7>p))/)//append]
= [fnXZ.(XX.(\Y.

IF((DeqD?('iiilo,Jf)»)l*>
Y,

< LEFT(JT|/>), ((Z|/)RIGHT(*|/>)) \f Y>p))/)//append].

Before using this environment to evaluate other syntax, we may wish to simplify it
further. This is dangerous because simplification of ^.-expressions in the language of
denotational semantics does not always terminate. However, we need not worry
about non-termination at this stage so long as we exclude beta-reduction and fixed
point expansion from our simplifications.

IF(AeqD?(Ar, nil),

Y,

<LEFT(Jf|/0, ( (Z | / )RIGHT(* | /0) 1/ F>p)) /) / /append].

Ail references to p1 in the following will refer to the above environment. We now
continue with our previous development.

S I append cons('g,cons('h, 'nil)) cons('a,cons('b,'nil)) J p1

= (<f I append cons(' g, cons(' h, nil))] px)|/

S I cons (' a, cons ('t>, cons ('b, ' nil))] px

= {{£ [ append]] Pi)!/^ [ cons(' g, cons(' h, 'nil))] p^l/

£ | cons('a,cons('b,'nill)) Jpx

IF(DeqA?(;r, nil),

Y,

Y>v))f)f)|/< 'ga, < 'ha, 'nila>p>p)|/< 'aa,

<'bo,'nila>p>p.

We have completed the compilation into our domain-theoretic notation. What
remains is the interpretation of this notation via leftmost simplification of the redexes.
We begin by rewriting the fix expression. Everytime we need to reduce an expression
of the form

fix kZ.body
we replace it with

(kX.(kY.lF(DeqA?(X, 'nil), Y, (LEFT(X\p), ((hxXZ.body\f)
mGHT(X\p))\fYyv))f)r
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Expanding the fix operator, we obtain:

(((XX.(XY.

IF(DeqA?(A-, nil),

Y,

<LEFT(X\p), ((hxXZ.body\f),

R I G H T S ) ) | / Yyp))f)f) |/<'ge, < 'ha, 'nila>p>p) |/< 'aB. < %> '<>*>

= ((XX.(XY.

IF(DeqA?(A', nil),

Y,

((tixXZ. body \f) R I G H T S p)) \f Y>p))/) < 'ga, < 'ha, 'nila>p>p) \f

< X , < K 'nila>P>P.

The next two leftmost operations are beta-reduction followed by simplification of a
retract, yielding:

(?,y.IF(DeqA?« 'g0, < %, 'nila>p>p, 'nil),

Y,

<LEFT«'ga,<'ho,'nila>p>?)|jp),

WxXZ.body \f)RIGHT« 'ge> < \ , 'nila>p>p|/,))|/7>p))

<'ao,<'ba,'nila>P>P-
Performing beta-reduction again:

IF(XDeqA?«'ga, <'ho, 'nil.),),,, 'nil),

<'««. <'b..'™U>p>p.
<LEFT«'ga,<'ha)'nila>p>p|^),

WKkZ.body \f)RIGHT« 'ga, <'ha, 'nOe>p>p|/>)) | /< 'aa, < 'ba, 'nila>p>p>p)

= IF( FALSE,
<'aa,<'bo/nila>p>p,

<LEFT«'gB><'ho,'na.>p>pl/').
(ffixkZ.body \f)RIGHT« 'go, < 'ha, 'nila>p>p |^)) | /< 'aa, < 'bo, 'nila>p>p>p)

= <LEFT«'ga,<'ho/nila>p>pb),

((fixXZ.6orfy|/)RIGHT«'ge> <'ha, 'nUa>p>p|/>))|/<'ao> <'bo, 'nila>p>p>p

= < 'ga, ((fixXZ.body\f)RIGHT« 'ga, < \ , 'nila>p>p |^)) |/< 'aa, < 'ba, 'nila>p>p>p.

Continued leftmost simplification will eventually produce:

< 'ga, < '"a, < '•«. < 'ba, 'nil»>p>p>p>p-

2.4 Equational reasoning in Lisp Like

Equivalence of expressions is based upon mathematical equality in the domain of the
denoted semantic objects. One consequence of having infinite objects in the domain
(objects such as infinite lists and functions with infinite traces) is that no algorithm

https://doi.org/10.1017/S095679680000040X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000040X


A domain-theoretic approach 289

exists to decide the equality of two arbitrary elements. (Equational reasoning is easier
in weaker systems, and some have used this fact as an argument against higher-order
objects (Goguen, 1988). Nevertheless, one can sometimes prove the equality of
functions and thereby prove theorems about the language and demonstrate the
correctness of program transformations. Earlier, we proved that the function
corresponding to ' = ' is symmetric in its arguments. Below is another example.

Theorem 2.4
The LispLike expression

Y = Xf. (Xx .f(x x)) (kx .f(x x))

is a Y-combinator, i.e. for any LispLike expression g, Yg andg (Yg) both denote the
same element of LispLike's semantic domain.

Proof

Y has no free identifiers, so we can ignore its environment. For any environment p,

*\Y\ p = (XF.((XX.F\f((X\f)X))f)\f(XX.F\f((X\f)X))s)f.

This simplifies to:

(XF. (XX.F\f((X\f) X)) (XX. F\f((X\f) X))f)f.

Let G be the semantic object denoted by g. Therefore, Yg denotes:

((XF.(XX.F\f((X\f)X))(XX.F\f((X\f)X))t)t)\fG.

This simplifies to

(XF.(XX.F\f((X\f)X))(XX.F\f((X\f)X))f)G.

Beta reduction produces

(XX. G \f((X\f) X)) (XX. G \f((X\f) X))f. (1)

If the above is what Yg denotes, then g (Yg) must certainly denote:

(G | f) ((XX. (G | /) ((X\f) X)) (XX. (G \f) ((X\f) X))f). (2)

Beta reduction of (1) produces

G \f(((XX. G \f((X\f) X))f\f) (XX. G \f((X\f) X))f).

Simplifying the second occurrence of \f yields:

G \f((XX. G \f((X\f) X)) (XX. G \f((X\f) X)\).

But that is exactly what g(Yg) was shown to denote in line (2) above. Therefore,
Yg and g (Yg) denote the same object, and are considered equal. •

3 The PowerFuL programming language

This section extends LispLike with a relative set abstraction construct based on lower
powerdomain theory, hence the name PowerFuL (Powerdomains for .Functional and
Logic programming). To understand why such a construct provides the expressive
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power of first-order Horn logic, we must view logic programming from another
perspective: a set of Horn logic clauses defines a set of recursively enumerable
predicates whose arguments are elements of the program's Herbrand universe. The
Herbrand universe is a set of finite, fully-defined first order terms, containing a finite
number of atomic values, and trees built by nesting a variety of ordered-sequence
constructors called functors, with the atomic values as leaves. A LispLike program is
capable of denoting the elements of a Herbrand universe, provided one is satisfied
with cons as the sole constructor - experience with Lisp testifies to its generality and
power.

In order to define predicates over this universe of terms, we note that a Horn logic
predicate is a recursively-enumerable relation whose attributes represent elements of
the Herbrand universe. That is, such a relation can be viewed as a (possibly infinite)
set of tuples of elements from the Herbrand universe. A tuple is an ordered sequence
whose length is determined by the arity of the predicate. A LispLike program is
capable of representing any such tuple as a list (built using cons). What Lisplike lacks
is the ability to denote recursively-enumerable sets. A relative set abstraction
construct provides this missing capability.

The BNF of PowerFuL appends the following equations to the BNF of LispLike:

expr ••••= set?(expr)\U(expr, expr)\{expr: qualifier *}

qualifier •••— condition \ enumeration

condition ••••= expr

enumeration ••••= identifier € expr.

This syntax adds the recursively enumerable set as a first-class datatype. If the
condition in a set clause is unsatisfied, the clause represents 0. Enumerations in set
clauses permit us to build new sets from old. When there are no qualifiers to satisfy,
the set-clause indicates a singleton set, and the ' : ' is usually omitted. Below are a few
short program fragments to demonstrate the use of set clauses:

l e t r e c

crossprod be X si s2. {cons(X,Y) : X E si, Y e s2}

filter be X p s. {X : X e s, p(X)}

intersection be X si s2. {X : X e si, Y e s2, X = Y}

splits be X 1. U(

{cons('nil, 1)},

{cons( cons(car(1), car(S)), cdr(S) ) :

S £ splits(cdr(l)) })

iri

The function crosspod creates a set of ordered pairs; in each pair, the left element
is from the first set, and the right element is from the second. The function f i l t e r
takes a set and creates a subset, including only those elements which can satisfy the
predicate. The elements of i n t e r s e c t i o n ^ / , , set2) are those objects which
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PowerFuL can determine are in both set1 and set2. (Note that the result will not
contain any higher-order objects, since PowerFuL cannot verify the equality of such
objects). The function s p l i t s takes a list, and computes a set, each element of which
splits the input list into two shorter lists.

Ordered pairs may contain sets as elements, functions may take sets as parameters
and return sets as results, and sets may contain functions, or even other sets. The
following example demonstrates the use of a set which contains functions:

letrec

map be X f.X 1. if null?(l) then 'nil

else cons(f(car(1)),

map(f, cdr(l)))fi

one be X v. 'a

two be X v. 'b

three be X v. ' c

in

{S1 : P 6 U({one}, {two}, {three}), map(P)(['x, ' y, 'z])

= ['c, 'c, 'c]}.

As the generator set for ¥, U({one}, {two}, {three}), is enumerated, each
element is tested to see whether it produces list [' c, ' c, ' c ] when mapped across
the elements of [' x, ' y, ' z ]. The resulting set will contain those functions from
the generator which satisfy the condition. The value of this set-abstraction is therefore
{three}.

To demonstrate logic programming in PowerFuL, one merely translates assertions
about the truth of predicates into statements about set-membership. Where a definite
clause program asserts P{tuple), we could equivalently assert that tuple e P, where P
now refers to a set, and tuple is represented as a list. For example, consider the
following program and goal, written in Prolog syntax (Clocksin and Mellish, 1981):

a p p ( [ ] , Y, Y).
app([H | T] , Y, [H | Z]) : - app(T, Y, Z).

r e v ( [ ] , [ ] ) .
rev([H] | T] , Z) : - rev(T, Y), app(Y, [H], Z).

?- rev(L, [a, b, c ] ) .

The logical variables in each program clause are (implicitly) universally quantified
over the Herbrand universe. With a syntax more oriented towards sets, one might
instead write:

[ [], Y, Y] e app

[ [H | T], Y, [H | Z] ] e app :- [T, Y, Z] e app

[ [], [] ] e rev
[ [H | T], Y] e rev :- [T, Z] e rev, [Z, [H], Y] e app

?- [X, [a, b, c] ] e rev.
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To make the universal quantification of logic variables more explicit (and thus come
closer to the syntactic style of PowerFuL), one might write the following (where hu
stands for 'Herbrand universe'):

[ [], Y, Y] e app :- Y £ hu

[ [H | T], Y, [H | Z] ] e app :- H,T,Y,Z £ hu, [T, Y, Z] e app

[ [], [] ] e rev

[ [H | T], Y] e rev :- H,T,Y, Z £ hu, [T, Z] £ rev,

[Z, [H], Y] £ app

3 X £ hu, [X, [a, b, c] ] e rev?

Here, we have taken the liberty of writing h, t , y, z e hu instead of four separate
enumerations. We have used mutually-recursive definite clauses to define sets (instead
of predicates). We could call this paradigm set clause programming, but it is really just
another syntax for relational clauses. It becomes obvious that the predicates/sets are
defined via relative set abstraction and the Herbrand universe. Furthermore, the
Herbrand universe itself can be defined via relative set abstraction.

Let the booleans TRUE and FALSE and the set of atoms A, be the zero-arity
constructors. Suppose we are willing to live with cons as the single nonzero-arity
constructor. Then the Herbrand universe, hu, can be defined in PowerFuL by the
following:

l e t r e c

boo l s be U( {TRUE}, {FALSE})

atoms be U {{AJ, . . . , {An})

hu be U(atoms, bools, {cons(X,Y) : X, Y e hu}).

in . . .

Therefore, the equivalent PowerFuL program is:

l e t r e c

b o o l s be U( {TRUE}, {FALSE})

a toms be U ( { ^ } , . . . , {An})

hu be U ( a t o m s , b o o l s , {cons(X,Y) : X, Y £ hu})

app be U( { [ [ ] , L , L ] : L e hus},

{[ [H | T ] , Y, [H | Z] ] : H ,T ,Y,Z £ hu,

W e app , W=[T,Y,Z]})

r e v be U( {[ [ ] , [ ] ]},

{[ [H | T ] , Z] : H, T,Y, Z £ hu, V £ r e v , W e app ,

V = [T, Y ] , W = [Y, [H] , Z]})

i n

{ L : L £ hu, V £ r e v , V = [L, [ ' a , ' b , ' c ] ] }.

This technique demonstrates that any first-order relational clause program may be
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easily translated into PowerFuL, and that we have indeed captured the full expressive
power of definite clauses.

In the last example, the PowerFuL program used sets to express definite clause
relations, which in turn were used to define functions. With so many levels of
translation, it is no wonder that the resulting PowerFuL version is ugly! A better
PowerFuL style would be to use functions where functions are intended, and sets only
where necessary.

letrec

bools be U( {TRUE], {FALSE})

atoms be U({^}, . .., {An})

hu be U(atoms, bools, {cons(X.Y) : X, Y e hu})

append be X 11 12. if null?(ll) then 12

else cons(car(11), append(cdr(11), 12)) fi

reverse be X 1. if null?(l) then []

else append( reverse( cdr(l) ), [car(l)]) fi

in

{ L : L e hu, V 6 rev, V = [L, ['a, 'b, 'c]] }.

A formal definition of PowerFuL requires new semantic primitives. To be specific,
we need a domain, each of whose elements represents a set of elements drawn from
another domain. Such domains, called power domains, are reviewed in the next
section. The formal definition of PowerFuL follows in section 3.2. Section 3.3
demonstrates the computation of sets via direct execution of the denotational
semantics. Section 3.4 discusses use of the denotational semantics in equational
reasoning about sets.

3.1 Review of powerdomain primitives

Section 2.1 discussed the definition of a cross-product domain from two simpler base
domains; what remains to be discussed is the definition of a domain, each of whose
elements represents a subset of a simpler base domain. This is the essence of
powerdomain theory. This section reviews the basics of powerdomain theory, so that
our functional programming domain may be extended to include sets. The next
section will use this enhanced domain as the semantic basis of a functional
programming language incorporating logic programming capability.

3.1.1 Varieties of powerdomains

Several versions of powerdomains have been proposed. These differ primarily
according to the interpretation given to a computation that is divergent or otherwise
undefined, and therefore disagree on the partial ordering over sets. The demonic
powerdomain (Main, 1987) is used when program correctness requires that all
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possible computation paths be successful. Computation can then be viewed as the
process of paring out that which cannot result. Therefore, the least defined element,
-L <?<£>)> of the demonic powerdomain 3P{D) is equated with the set of all elements in
domain D. If set A is a subset of set B, one considers set A to be more defined than
set B. This powerdomain also goes by the names Smyth powerdomain and upper
powerdomain. The angelic powerdomain (Main, 1987) is the dual of the demonic.
Angelic powerdomains are appropriate for describing whatever successful outcomes
might result from a non-deterministic program's execution. Finitely failed and non-
terminating paths add no new information. This powerdomain is also called the
Hoare powerdomain and the lower powerdomain. The Egli-Milner powerdomain
(Main, 1987) was the first powerdomain developed. It combines aspects of both the
demonic and angelic powerdomains. A partially-defined set under this partial order
combines information both about that which the set is known to contain and that
which it is known not to contain. Because it demands preservation of all possible
information about the computation, it is very difficult to work with.

The fixed-point semantics of first-order Horn logic programming (Lloyd 1987; van
Emden and Kowalski, 1976) can be described in terms of powerdomains. A Horn
logic program defines a functional T whose least fixed point is the set of predicate
statements whose truth is implied by the program (thus demonstrating a direct
connection between the fixed point semantics and the model-theoretic semantics).
Computation of this set begins with the empty set; predicate statements are added to
the set as proofs for their inclusion are found. If all derivations fail or diverge, the
set of ground predicates remains empty. The addition of new failing and diverging
paths may reduce the efficiency of the computation, but will not alter the final result.
All elements of the Herbrand universe are fully defined, so the partial order over sets
of elements reduces to the subset relation; the empty set is the _L element. These
considerations imply that a very simple angelic powerdomain is being used.

When using the angelic powerdomain to model deterministic computation of sets,
rather than non-deterministic computation of single values, the preferred name is
lower powerdomain. Before incorporating sets via lower powerdomains into our
functional programming domain, let us examine its properties in more detail.

3.1.2 Properties of lower powerdomains

With the lower powerdomain's partial order, a set becomes more defined both by
adding new elements and by increasing the definition (according to the partial order
of the base domain) of pre-existing elements.

Conventional domain theory assumes the continuity of operators. To ensure the
continuity of the operator which creates a singleton set in 0>(D) from a single element
in domain D, for any chain of elements tt e D, { LJ t {tt} = LJ, {/J. We can find a partial
order with the properties we desire only if we are willing to work with equivalence
classes of sets. This is no problem, because under the assumption of angelic non-
determinism, many distinct sets are computationally equivalent (and thus may be
treated as being equal). The singleton set {tt} will therefore actually represent the
equivalence class of sets to which that singleton set belongs.

https://doi.org/10.1017/S095679680000040X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000040X


A domain-theoretic approach 295

To define the partial order over (equivalence classes of) sets, a few definitions are
needed:

Definition 3.1 (Schmidt, 1986, p. 295)
A Scott-topology upon a domain D is a collection of subsets of D known as open sets.
A set U £ D is open on the Scott-topology iff:

(1) U is closed upwards, that is, for every d2eD, if there exists a dxeU such that
dl £ d2, then d2e U;

(2) If del/ is the least upper bound of a chain C in D, then some ceC is in U.

The definition of open set just given is meant to capture the idea of a computable
property.

Definition 3.2 (Schmidt, 1986, p. 296)
The symbol £ _, pronounced 'less defined than or equivalent to', is a relation between
sets. For A,B £ D, we say that A £ ^B iff for every aeA and open set U £ D, if
aeU then there exists a beB such that beU also.

Intuitively, A £ _ B means that for every computable property held by any element
of set A, there is an element in set B which also has the property.

Definition 3.3 (Schmidt, 1986, p. 296)
We say Ax B iff both A^^B and B^^A.

Intuitively, two sets are equivalent (under the angelic assumption) if no element of
one set has a computable property unless some element of the other set also has it.
We denote the equivalence class containing A as [A]. This class contains all sets
B £ D such that A x B.

Definition 3.4 (Schmidt, 1986, p. 297)
We define the partial order on equivalence classes as: [A] £ [B] iff A £ _ B. For domain
D, the powerdomain of D, written SP{D), is the set of equivalence classes, each member
of an equivalence class being a subset of D.

Definition 3.1 (Schmidt, 1986, p. 297)
The following operations are continuous:

{_}: D-> 0>{p) maps de D to [{d}].

_ U _: ^(D) x 0>(D) -» 0>(D) maps [A] U [B] to [A U B].
+: (Z)1 ->^(£»2))-(<?(/>,)-^(Z)2)) is If.X[A]. [ U {f(a):aeA}].

To motivate the + primitive, suppose an operator / accepts an element of dl of
domain DY and, based on this element, implicitly defines a set of possible results, each
of which is in domain D2. Suppose that operator/ then produces an element of this
set, non-deterministically choosing from among the possibilities. The application
f(dj) is said to denote the set of possible results, a subset of domain D2. This subset
is represented by a member of domain ^(D^ (the powerdomain of Z)2). The operator
is therefore in Z)1->^'(Z)2). Suppose two non-deterministic operations / and g are
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composed, i.e. that we perform non-deterministic operation g upon input x, yielding
output y, and then perform non-deterministic operation/upon y. The set of possible
results is the union over y (where y is any element in the set denoted by g(x)) of the
sets denoted by f(y). We may express composition of/and g applied to x as f+g(x).
The larger the set denoted by g(x), the larger will be the set denoted by f+(g(x)).
Thus, + is interpreted as

Xf.Xset. U {j{x):xeset}.
The operator + may be used to distribute a function over the elements of a set.

Suppose we have a set S = {1,2,3}, and we wish to create a new set such that for each
element x is in S, f(x) is contained in the new set. We may write

which reduces to

Our powerdomain construction differs slightly from that which is usually found in
the literature. The pioneers of powerdomain theory were primarily concerned with
binary non-determinism. One of the two paths would always be chosen, so every set
of possible results would contain at least one value (even if that value were 1). The
least denned angelic powerdomain element is therefore {_L}. To represent sets and
relations directly, the lower powerdomain is lifted by a new bottom element, the
empty set 0. The empty set is needed to represent an empty relation, e.g. a predicate
that is false on all arguments, or an empty set of bindings to a Horn logic goal. It is
clear that {J.} is inadequate for this purpose. Should + be used to distribute a function
over an empty set of solutions, the result, too, should be empty. But, consider what
happens when the function to be distributed is a constant function: (Xx.{'a})+{±D}
reduces to (kx.{'a}), 1D, which is {'a}. In other words, {1D} contains an element with
the computable property of being an element of D (a trivial property held by all
elements of the base domain, represented by the Scott-open set that is D itself),
whereas no computable property is manifested in any of the elements of 0 .

It is clear from the partial order given in Definitions 3.2-4 that 0, if included in
the powerdomain, would be strictly less defined than any other element,
including {±}. Though it may be reasonable to interpret the completely undefined set
as empty, it seems less intuitive that the empty set should be considered undefined.
With lower powerdomains, sets are assumed empty until proven otherwise. When
summarising the result of a partial evaluation, we approximate an uncomputed set
with 0 to indicate that we have no evidence as of yet that the set contains anything
(the possibility of finding elements in the future is not necessarily ruled out). When
partial evaluation yields {!}, then at least we know that the set does contain something,
even though we know nothing about it. Seen in this light, 0 carries less information
than {1D}.

Another variation is that we use a noncurried variation of ' + ' : {{D -»• 0>(D)) x
<!P(P). The following axioms can be used to implement +:

^(0) = 0
F+({Expr}) = F(Expr)

F(Set, U SeQ = (F+(SetJ U F(Setj).
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This primitive is not quite strict in the first argument, since

produces {-L} (assuming set is non-empty), which, though less defined than most
powerdomain elements, is more defined than L9iD) = 0. It is, however, strict in the
second parameter. Therefore, when computing using a ' leftmost' computation rule,
one should consider the second argument to be 'leftmost'. A simplification axiom is
applicable whenever the input set's outermost constructor is known.

It is not essential to understand every detail about the construction of
powerdomains. What is important is to choose the appropriate version, and to use
only those operators known to be continuous under that construct's partial order.

3.1.3 A recursive domain for functional and logic programming

The domain D for PowerFuL may contain ' sets' of elements from D, including sets
of functions, and sets of sets.

We shall enhance LispLike with a set abstraction feature whose semantics are based
on the lower powerdomain. The new language, will be based on the domain which
satisfies the following recursive domain equation:

D = B + A + DxD + D^D + ^ ( D ) .

As before, the domain contains booleans, atoms, ordered pairs of smaller elements (to
create lists and trees) and continuous functions. The difference is that this new
domain also includes a subdomain of sets (elements of lower powerdomains). To de-
emphasise the tags, we will replace the subdomain tag _#(D) with _,. Similarly, we will
write the retract _|^(D), as _|s. The type predicate _e^(D) will be written as _£.s. Here,
s stands for set.

The weak equality predicate will be extended by including DeqS?: D x

DeqS?(lD, set) = lb

DeqS^booleans,,, set) = FALSE

DeqSl(atoma, set) = FALSE

DeqS1(pairp, set) = FALSE

DeqSl(functionf, set) = FALSE

The following additional axioms are needed to define and implement DeqD?:

DeqD7(sets, obj) = DeqS?(ofe/, set)

DeqB1(sets, boolean) = FALSE

DeqAl(sete, atom) = FALSE

DeqP?(«?rs, pair) = FALSE

DeqF?(set,, function) = FALSE.

The symmetry of DeqD? (see Theorem 2.3) is unaffected.
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3.2 Formal definition

This section provides denotational equations for the new syntactic constructs, to be
added to the denotational equations given for LispLike.

• First, we add another type-checking predicate

g[setl(expr)] p = {{S{expr\ p) zs\.

• To build sets, the user begins with singleton sets, each constructed from an element
of the powerdomain's base domain. The union operation builds larger sets from
smaller ones. Expressions of the form U^set^ ...,setn) are syntactic sugar for a nesting
of binary unions:

g\U(expri, expr2)} p = (((*[ex/vj p) \s) U ((S{expr2\ p) | s)\
£\{expr :}Jp = ({g\expr\f>}\.

• To build a new set out of an old one, we can filter out those elements not meeting
a specified condition by using a condition as a qualifier. Unless the condition
evaluates to TRUE, the expression denotes the empty set:

g[{expr: condition, qualifierlist}} p

= (if (g\condition\ p) | b then (i\{expr:qualifierlist}\ p) | s else 0 fi)s.

• Enumerations are the syntactic basis for relative set abstraction. An enumeration
parameter is associated with a set expression which provides possible instantiations.
The scope of the enumerated identifier includes the principal expression (left of the
' : ' ) , and also all qualifiers to the right of its introduction. (The scope of an
enumerated identifier never reaches beyond the set-clause of its introduction. In case
of name conflict, i.e. when the identifiers on the left-hand sides of two enumeration
clauses have the same name, an occurrence of the identifier refers to the enumeration
parameter of the innermost scope.)

g{{expr: idegenrtr, qualifierlist}} p

= (XX. {{S\{expr: qualifierlist}} p[X/id]) | s)+ (£\genrtr\ p) | s\.

Note the use of the primitive ' + ' (for distributing elements of a powerdomain to a
function) in defining the meaning of the set abstraction construct.

3.3 Program execution

To compute with conceptually-infinite objects, whether these objects be recursive
functions, recursively-defined infinite lists, or recursively-defined infinite sets (e.g.
hu), an outermost computation rule is needed. Because most common primitives are
strict in their leftmost argument, the leftmost computation rule is traditional. For
expressions in our functional notation, leftmost evaluation will produce a normal
form (a fully-simplified equivalent expression) if one exists. If the expression equals
anything other than ±D, leftmost evaluation will produce the weak head-normal form
(Peyton Jones, 1987), i.e. an expression which, though not necessarily fully simplified,
exposes the outermost constructor.
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For our use, the definition of leftmost must be modified slightly. The primitive
function ' + ' : ((D -> ̂ (D)) x ̂ (D)) -»• ̂ (D) is strict in its second argument, not the first.
To distribute a function over the elements of a set, it must first evaluate its second
argument (the set), at least until a singleton set constructor or union constructor is
encountered (upon which the ' + ' simplifies). Therefore, we have defined the second
argument of ' + ' as being leftmost.

Sets are represented as binary union trees whose leaves are singleton sets.
Syntactically, this is similar to the representation of cons trees. The ' + ' operator
distributes a function across all the leaves of the union tree; its operational behaviour
is analogous to an easily constructed LISP functional which would apply an input
function to all leaves of a cons tree. The leftmost rule should therefore retain the
same completeness properties. The sufficiency of these completeness properties will be
discussed in section 4. For now, however, we must be content with a sample execution
to trace the use of the semantics operation ' + ' to define and implement relative set
abstraction. Consider the following syntax:

l e t setOfTuncts be \J({\ x. ca r (x )} , {X x. cdr(x)})

in let setOfPairs be U({cons('a, 'b)}, {cons('c, 'd)})

in {g(x) : g e setOfFuncts, x e setOfPairs}.

Let us translate this to the semantic domain. Translating the ' l e t ' constructs yields:

<?[ {g(x) : g e setOfTuncts, x e setOfPairs} ] p

where p maps setOfFuncts to

(({XX.Mt(X\p))f}s | s) U ({(XX. right(X\p))f}s1 s)).

which we will refer to as VAL1 for convenience, and maps se tOfPa i r s to

which we will refer to as VAL2.

Further translation of the main expression yields:

(XG.((Sl{g(x) : x£ setOfPairs}!

or
) : xesetorP&irB})p[G/g])\sy(VALl)\s),.

Further translation yields

p[G/g)[X/x])\s\)\sr(VALl)\s)s,
or

(x) :}]p[G/g][X/x])\sy(VAL2)\s\)\sy(VAU)\s)s.

Completing the translation to the semantic domain yields:

(XG. (((XX. {(G \f) X},) | sT( VAL2) | *),) | s)+( VAL1) | s),

Simplifying the retracts, VAL1 becomes

({(XX.left(X\p)),} U {(XX.right(X\p))f}\,
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VAL2 becomes

({<'ao.'b.>P}U{<'cB,'«!„>,})„

and the main expression becomes

(XG. ((XX. {(G | / ) X}y({('aa, \yp} U «'ca, 'da>p}))+

({(XX.Mt(X\p))f} U {(XX.right(X\p))f})\.

Simplifying the outermost occurrence of + yields:

((XG. (XX. {(G | /) A-})+(«'aa! 'bo>p} U «'ca, 'da>p}))+{(^. Mt(X\p))f} U

(XG. ((XX. {(G \f) X}T({(%, 'ba\} U {<'ca, 'da}p}W{(XX. rights)),})..

Simplifying each of the two outermost occurrences of + yields:

((XG.((XX.{(G\f)X}y(«'K, 'ba>,} U {<'cB, 'Aayp})))(XX.Mt(X\p))1 U

(XG. ((XX.{(G | /) X}y({(\, \}p} U «'ca, 'da>p}))) (XX.rights\p)\),

Further reduction yields:

(((XX.{(XX.Mt(X\p))Z})+({<'aa, \}p} U {<'ce, 'da>p})) U

((XX. {(XX. RIGHT(^b)) Jr})+({<'aa, X>p} U {<'ce> 'da>p})))f.

Continuing in this vein yields:

(((XX.{(XX.Mt(X\p))X}) <'ao, 'ba>p U (XX.{(XX.Mt(X\p))X}) <'ca! 'da>p) U

((XX. {(XX.right(X\p))X}) <'aa, \>P U (XX.{(XX. right
Additional beta-reductions produce:

(({left«'aa,'ba}p\p)} U {left«'ca,'i.\\p))) u ({"Sht«X,\\\p)} U

{right«'ca,'do>p|/>)})),.

Final simplification of retracts and ordered pair selectors yields:

(({^a}U{'cJ)U({'ba}U{'da}))s>
or less formally:

({'aB>'co>'ba,'da})f.

3.4 Equational reasoning

Equivalence of PowerFuL expressions is based upon mathematical equality in the
semantic domain of the denoted objects. To prove the correctness of program
transformations, one first translates the syntax of each expression to the semantic
domain. There, the equality may be proved using mathematical reasoning. Below are
simple examples of theorems which are easily proved:

Theorem 3.2 (in the semantic domain)
(Xx.{x}ys = s.
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Proof
(By definition of + and set union.)

Corollary (in the syntactic domain)
{x:xe{y}} = {y}.

In general, one can demonstrate that, if PowerFuL expression S denotes an element
of the form sets, then S and { z: zeS} denote the same element.

Theorem 3.3 (in the semantic domain)
f+(S1vS2)=r(S1)(jf

+(S2).

Proof
(By definition of + and set union.)

Corollary (in the syntactic domain)
{/(x):x€51 U St} = {f(x):xeS1} U {f(x):xeSt}.

3.5 Discussion

In the implementation of Horn logic programming (Lloyd, 1987), procedure
activation depends upon the equality of the arguments of a subgoal with the
respective arguments of a corresponding clause head. It has generally been assumed
that a language combining logic programming with higher-order functional
programming would require that higher-order objects be tested for equality. The term
usually used is higher-order unification, a procedure capable not only of verifying the
equality of two objects, but also of finding bindings for parameters so as to make two
expressions equal.

The reader may be disappointed that no construct is provided to compute equality
over functions or over sets. In higher-order functional programming, higher-order
equality is not continuous, and therefore undecidable; in first-order Horn logic there
are no higher-order objects to be compared. Perhaps, then, it is reasonable to omit
this operation from a language combining the two paradigms. Nevertheless, a great
deal can be done with higher-order objects in functional programming which does not
depend on equality testing. In the logic programming framework, where parameter
passing itself is based on unification, incorporation of higher-order objects would be
more difficult. This is why our synthesis is essentially functional in nature.

We would emphasise that our objective was not to provide a rich set of operations
on sets; rather, we view set abstraction as merely a vehicle for integrating functional
and (definite clause) logic programming. Given this goal, it is not necessary to have
operations such as finding the cardinality of a set or deciding whether a value is or
is not a member. As noted earlier, such operations would be analogous to Prolog's
metalogical operations, e.g. negation-by-failure. A possible line of further work would
be to incorporate such capabilities in an extended language, and examine their
semantic and operational implications. Semantic analysis of this feature, analogous
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to Lloyd's analysis of negation-by-failure in Horn logic (Lloyd, 1987), would
probably require use of the Egli-Milner powerdomain (Schmidt, 1986), which records
both the properties which can be found among a set's elements and the properties
which cannot be found among them. Noting that a complete and efficient
implementation of negation-by-failure has yet to be found, serious obstacles to that
line of research can be expected. Fortunately, the need for negation-by-failure will
often be avoided through the use of the if/then/else construct and the type-checking
primitives (Naish, 1985).

We have seen that conventionally-defined functions, such as append, can be used,
not only in the usual way, but also within a set abstraction to compute the set of inputs
which would yield the desired output. For efficiency, such a function might be
compiled differently for use within and without set abstractions. PowerFuL
distinguishes between usages where backtracking might be needed, and where it is not
(i.e. whether or not the usage falls within a set abstraction). Actually, a theoretically-
complete or fair implementation must compute elements of sets in parallel, not via
backtracking, as we shall see in the next section. This distinction is important for
obtaining a more efficient implementation than is possible with all functions defined
as relations.

4 Operational semantics

Section 2 showed that a functional language could be executed by direct
implementation of the denotational semantics, usually using a leftmost computation
rule. The example in section 3 demonstrated the use of this method in computing set
abstractions. This section discusses modifications to this method which must be
considered in the implementation of PowerFuL.

4.1 Non-termination and computation rules

Most implementors are concerned with computation of expressions denoting objects
that are finite and fully defined. Lazy languages are demand-driven; they compute
only those finite pieces of infinite objects that are specifically requested (e.g. when car
and cdr are applied to an infinite list so as to isolate a specific finite portion). In
contrast to an infinite list built by ordered pairing, sets have no implicit ordering; the
binary set union creates w«ordered pairs of subsets. The analogy between cons trees
and set-union trees breaks down when we realise that there is no referentially
transparent way to restrict computation to a union's left or right subset - the
designation of left and right are arbitrary and without meaning - and therefore there
is no operation in the language to reduce an infinite set to any specific element. The
user cannot ask for the 'first' element; any operation performed on one element must
be performed on all.

Because sets may be infinite, we cannot wait until computation is complete before
reporting our results. Even in ordinary Horn logic, a program can denote an infinite
set of possible solutions, as in the following example:

a p p ( [ ] , Y, Y).
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app([H | T] , Y, [H | Z]) : - app(T, Y, Z).

?- a p p ( [ l , 2 ] , X, Y), app(X, [ 1 , 2 ] , Y ) .

Even though standard Prolog's search strategy is not complete for Horn logic, Prolog
does make a serious effort to compute infinite sets. Rather than waiting for the entire
set to be computed (which cannot happen), the system suspends and turns control
over to the user each time another member of this set is computed. With each new
solution, the user has a better approximation to the complete set. In the execution of
a program denoting an infinite set, it is up to the user to terminate computation when
the approximation becomes adequate.

Even when the set of solutions is finite, one cannot assume that a complete search
of the solution space will terminate. The derivation space may contain non-
productive branches which diverge. Nevertheless, a complete breadth-first Horn logic
interpreter can be built. This requires the parallel computation of a union's subsets.
In essence, we are saying that both subsets of a binary union are equally and
simultaneously 'leftmost'. With nested unions, there can be quite a lot of parallel
computation. To be sure, one can evaluate one side of the union first, but then
evaluation of the other side would depend on termination of the former. This latter
strategy, analogous to Prolog's depth-first search strategy, might be adopted for the
sake of efficiency, but complete evaluation is at least possible in principle. Perhaps in
an interactive implementation, the programmer will be able to direct the
computational effort to a specific portion of the set expression. As the desire for
referential transparency prevents such commands from being part of the language per
se, they could be provided in the meta-linguistic environment, analogous to online-
debugger commands.

4.1.1 Complete computation rule

Because computation of logic programs with infinite solution sets will not terminate,
we must understand the meaning of non-terminating programs and their com-
putation. Our approach is analogous to Vuillemin's study of systems of first-order
mutually-recursive functions (Vuillemin, 1974), and also to Wadsworth's theory of
co-normal forms in the pure untyped lambda calculus (Wadsworth, 1976). When
programs are apt to denote infinite objects, a complete implementation will produce
a sequence of increasingly-better finite approximations to the denoted object, such
that the least upper bound of this (possibly infinite) chain of finite approximations is
in fact the denoted object. In this way, operational completeness is extended to
consider non-terminating computations.

Program execution was demonstrated in the examples of sections 2.3 and 3.3. Once
the denotational equations have translated the program syntax to the semantic
domain, execution refers to the simplification of the resulting semantic expression via
the axioms provided with each semantic primitive. (These axioms were provided in
sections 2.1.2,2.1.4 and 3.1.2). Each simplification is the result of an axiom being used
as a left-to-right rewrite rule. We say that a semantic expression is simplifiable if any
of these axioms is applicable, i.e. if it contains redexes. A single application of an
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axiom to a redex is called a simplification. If a semantic expression is not simplifiable,
then we say the expression is fully computed, or alternatively, in normal form. Not
every expression has a normal form - it may represent an object that is infinite, or
perhaps not fully defined.

Though execution proceeds one simplification at a time, let us group the
simplifications into computation steps. Each computation step simplifies some or all
of an expression's redexes, but to limit the amount of work done in a single
computation step; any redexes that result from simplifications in the current step will
be left for later computation step. The computation rule decides which of an
expression's redexes will be simplified in the next computation step. To aid further
discussion of program execution, the following definitions provide a compact
notation for these and other concepts.

Definition 4.1
If tx and t2 are two expressions in our functional notation, we say that t1-^t2 ift2 can
be produced from tx via a single computation step {i.e. by simplifying some or all oft^s
redexes, but leaving any new redexes).

Definition 4.2
A computation is a sequence of zero or more computation steps. We say that tn is
computed from t0, written as /„->* tn, if tn can be produced from ta via a finite number
{possibly zero) of''->•' steps. When computation steps are performed according to
computation rule c, we write t1 ->c t2 to indicate a single step, and t1 ->* tn to represent
a finite computation of zero or more steps using computation rule c.

Definition 4.3.
Given an expression t, we define the current approximation of t, written t[L], to be the
result obtained by replacing each redex with the bottom element of the reducible
primitive's output domain.

Theorem 4.1
For any expression t in the functional notation, t[±] E t.

Proof
By monotonicity of the primitives in t. •

Corollary
If Ms a fully computed expression in the functional notation, then t = t[±].

Proof
From the definition of 'fully computed', t and t[±] are identical expressions. •

Given any expression t, we can seek approximations better than t[±] by performing
simplifications before approximating.
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Definition 4.4
For any expressions t1 and tn such that tx ->*?„, we say that tn[L] is a finite
approximation of t^

Since all our operations are continuous, we may equate an expression with the least
upper bound of all possible finite approximations, i.e. for any expression / in the
functional notation, t = U t_^H t([±]. Note that if t has a normal form tn, then tn is,
in fact, this least upper bound. This equation generalises the notion of normal form
even to consider expressions for which simplification does not terminate.

Definition 4.5
For any expression t and computation rule c, the computed result is U t^*tf tt[l.].

Theorem 4.2
For any expression t in the functional notation, and any computation rule c, the
computed result approximates the true result; i.e. LJ t^*t ?f[JL] E U (^», ft[-L].

Proof
Because {tt[±]:t-** tt} <= {/,[!]: t-+* t,}. D

Definition 4.6
A computation rule is said to be complete if the computed result does not merely
approximate the true result, but actually equals it.

Theorem 4.3
A computation rule is complete for term t if, for every derivation f->* t( there exists a
derivation t-^*t} such that tt[±] E t}[±].

Proof
The condition of the theorem implies that the true result approximates the computed
result. Since the converse is also true, the computed result must equal the true
result. •

, i - >

4.1.2 Safe computation rules and completeness

To determine which computation rules are likely to be complete, Vuillemin developed
the concept of safety.

Definition 4.7
For any expression t and computation rule c, let t[c<r-1] be the result of replacing every
redex that would have been chosen by rule c with the bottom value of the reducible
primitive's output domain.
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Thus, t[c<r- J_], i.e. LJ tlc^XJ_,t tt[l.], is taken to represent an upper bound on the
quality of our approximation of t, given that none of the chosen simplifications ever get
performed.

Definition 4.8
A safe computation step is any computation step (i.e. a step using any rule c) where
t[c+- _L] = t[l.]. A safe computation rule is one which performs only safe computation
steps.

Among the simplifications performed in any safe computation step are those so
critical that no improvement of the current approximation would be possible were
they forever omitted. If any improvement to the current approximation is possible,
then a safe computation step will perform work necessary toward that end. Since any
finite approximation requires only a finite amount of work (by definition), it should
be possible to equal or better any finite approximation via a sufficient number of safe
computation steps. Therefore, any safe computation rule is assumed to be complete
(Vuillemin (1974) did in fact prove that safe computation rules are complete, albeit
for a weaker system). We have not yet found a more rigorous proof that safety implies
completeness for this denotational framework, but we believe it to be true (such a
result would belong to the general literature on domain theory, and thus would be
beyond the scope of this paper, in any case). We shall now discuss safe computation
rules for the functional notation into which PowerFuL programs are compiled.

Definition 4.9
The parallel outermost rule chooses all outermost redexes in each computation step.

Theorem 4.4
The parallel outermost rule is a safe rule.

Proof
For any expression t, under the parallel outermost rule, all non-outermost
simplification opportunities will disappear from f[c-«--L]. •

It should not be necessary to simplify all outermost redexes in every computation
step. Consider an expression headed by the conditional primitive (if). It seems
reasonable to restrict computation to the first argument, the condition, and postpone
evaluation of the other two arguments until we know which one is needed. Indeed,
for any primitive, we would like to limit computation to the leftmost argument in
which that primitive is strict, until the primitive itself is reducible. If the outermost
constructor of this argument never appears, then this argument must be _L Because
the primitive in question is strict in this argument, the entire expression headed by the
primitive must equal _L (in which case, the values of its other arguments are
irrelevant). If the outermost constructor of the first strict argument does appear so
that the primitive may simplify, then evaluation of the other arguments has been
delayed only temporarily.
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The above reasoning may not apply if the primitive application occurs within the
body of a function. Evaluation of the leftmost argument may be impeded by the
presence of unbound lambda variables. However, if reduction is limited to outermost
redexes, beta reduction would bind the lambda variable before redexes within the
function body are even considered. The presence of unbound lambda variables only
becomes a problem when computing an unapplied function for its own sake (an
unusual situation indeed), in which case we simply use the full parallel-outermost rule
when selecting redexes within the function body.

In each computation step, the modified parallel-outermost computation rule
therefore simplifies all outermost redexes except that, in searching for redexes among
the arguments of a primitive not contained within a function body, it limits
consideration to redexes occurring in the primitive's leftmost strict argument. This
modified parallel-outermost rule can be proven safe via structural induction on the
height of the expression.

Assuming that the value being computed occurs in domain:

E = (B + A + ExE + ^ ( E ) ) x ,

(i.e. the value being computed is neither an unapplied function, nor a structure
containing an unapplied function), then parallel evaluation (i.e. multiple sim-
plifications within one computation step) will only occur when computing the subsets
of a union (as we already guessed) and the arguments of an ordered pair. (The latter
also makes sense - purely leftmost computation of a pair of infinite lists would never
begin the second list.)

4.2 Optimisations

This section modifies the reduction operational semantics so as to make logic
programming (i.e. the use of hu as a set abstraction generator) practical. The
standard way of computing a relative set expression is to enumerate the elements of
the generator set and reinstantiate the body as each element of the generator set
appears. Consider the following expression:

letrec

append be X 11 12. if null?(ll) then 12

else cons (car(ll), append(cdr(11),12)) fi

in {X : X 6 hu, append(X, ['a, 'b]) = ['c, ' d, 'a, 'b]}.

The set denoted by hu is analogous to Horn logic's Herbrand universe of first-order
terms. Evaluation of this set would result in a union tree whose leaves are each a
singleton set containing one element. As it is created, it is absorbed into the
development of the union tree of elements for the set abstraction as a whole. Each leaf
in the final result is a value that would be denoted by

l e t r e c

append be X 11 12. if null?(ll) then 12

else cons (car(ll), append(cdr(ll),12) ) fi
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i n

{ term : append (term, [ ' a , 't>]) = [ ' c , ' d, ' a , ' b ]}

where term represents one element of hu. This is accomplished via the simplification
rules for ' + ' (the semantic primitive which gives meaning to our set abstraction
construct). Each leaf singleton set is easily computed; for values of term not satisfying
the equality, the subset reduces to 0. This is the general method for computing
relative set abstractions, and it works for any generator the user can define.

However, when hu is the generator set, this conceptually simple' generate-and-test'
approach is wasteful. Such an implementation is analogous to a Horn logic
interpreter which first enumerates ground bindings for the goal's logical variables,
then for each enumeration, attempts to find a derivation using ground instantiations
of the program clauses. Rather than instantiating blindly, and then trying to complete
a derivation, the resolution method (van Emden and Kowalski, 1976; Lloyd, 1987)
avoids redundant work by interleaving instantiation and derivation stages. In
resolution, a logical variable becomes instantiated only to the extent necessary to
satisfy the inference rule's equality test. Partial instantiation of two or more non-
ground terms to ensure their equality is called unification. The substitution computed
to implement such a partial instantiation is called a unifier. The result of a resolution
derivation is a most general computed answer substitution. This is a partial binding of
the logical variables in the goal for which every ground extension is a correct answer
substitution (a substitution that would instantiate the goal in such a way as to be
implied by the program clauses).

The derivation of the general answer substitution resembles a parameterised
ground derivation. That is, for every ground extension of the computed answer
substitution, there is a direct proof of the instantiated goal that can be viewed as an
instantiation of the resolution derivation. The need for an infinity of essentially
similar derivations is thus avoided. Though it is easy to extend a most general answer
substitution, to produce (ground) correct answer substitutions, in practice this is not
done, and in a sense, the solution is left unfinished. Reporting results via most general
computed answer substitutions is more economical than individually reporting each
of the infinite ways in which each most general solution can be extended.

To gain the efficiency of the resolution method, an analogous approach must be
taken in the implementation of PowerFuL, to treat enumeration parameters of hu as
logical variables, rather than instantiating them with each individual member of this
set. To recognise when this case occurs, we make hu a built-in syntactic primitive.

4.2.1 First-order universe

This section makes the set hu, the user-defined Herbrand universe, a syntactic
primitive in PowerFuL. First, we must add the following line to the BNF:

expr ••— h u .

Every syntactic construct must have a denotational equation to give it meaning.
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Hence the following:
IUJ p = hus.

The definitions below lead to the definition of the set hu.

Definition 4.10
The set bools:^(B) is defined to be {TRUE} U {FALSE}.

Definition 4.11
Given that domain A contains atoms Ax... An, the set atoms: ^"(A) is defined to be
{A,} U ... U {A,}.

Definition 4.12
Given the above definitions, we recursively define the set hu: ^(D), as follows:

hu = (kx.{xb})+(boo]s) U (>.x.{xa})+(atoms) U (kx.(ky.{<x,y>p})+ha)+hu.

The first subset of hu is therefore {TRUE6, FALSEJ, the second subset is {(AJ,,,...,
(An)J, and the third contains all pairs of the form <x,y>p where xand y are also
elements of hu.

4.2.2 Logical variable abstraction

Because logical variables in a Horn logic clause are universally quantified over the
Herbrand universe, a program clause actually represents the set of all its possible
ground instantiations. Analogously, an expression of the form

(kx.body)+hu,

represents the union of all possible sets 'bodya', where a is a substitution replacing
x with any element of hu. The brute force way of computing this would begin by
reducing hu into its component subsets, atoms, booleans and ordered pairs, as per
Definition 4.11, whereupon,'+' could be simplified, distributing the abstraction body
over each subset, and eventually applying it to each ground term as it appears.
Instead, such an expression is rewritten to

hu{x). body,

indicating our intention to treat x as a logical variable constrained to denote a value
from hu. Though Horn logic variables are implicitly constrained to represent values
from the Herbrand universe, our constraints are made explicit. This is necessary
because other kinds of constraints are also considered. For instance, the expressions
atom(x).body and bool(x).body are analogously constructed from (kx.body)+ atoms
and (kx. body)+ bools, respectively. Later, we will allow logical variables to be further
constrained by inequalities. Thus, a parameterised set expression has two parts, a set
of constraints which introduce logical variables and delimit their scope, and a

12 FPR2
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parameterised body. Instead of recomputing body for each trivial instantiation, we
will evaluate body in its parameterised form, which compactly denotes the union of
all instantiations satisfying the constraints. A fully-computed set will still be
represented as a union tree whose leaves are singleton sets (or sometimes 0), but we
now permit the singleton sets to be in parameterised form, analogous to Horn logic's
non-ground computed answer substantiations. So that singleton sets will be
parameterised individually, a parameterised union is broken up into the union of two
parameterised subsets. Because of the commutativity and associativity of set union,
an expression of the form

constraints.(expx U exp2)
can be rewritten as

constraints.exp1 U constraints.exp2.

The ' + ' operation is the only primitive function which is strict in an argument from
a powerdomain. We need a new simplification rule permitting l + > to accept a
parameterised singleton set as an argument. Thus, an expression of the form

(Xx. bodyY'{constraints. {element}),
will be rewritten as

constraints. ((kx. body)+{element}).

This transformation is valid due to the associativity and commutativity of set union.
Finally, a parameterised empty set, such as constraints. <j>, will be simplified to <j>.
It is not enough that ' + ' accept parameterised sets - we must also ensure that the

presence of the parameters themselves will not impede simplification of the basic
operators. When evaluating a parameterised set expression, one strives to compute
the parameterised body just as though every logical variable had been replaced by any
arbitrary value satisfying the constraints. Whenever the outermost constructor of a
primitive's leftmost argument is available, that expression is simplifiable. A primitive
must remain simplifiable if a logical variable appears as its leftmost argument instead.

4.2.3 Simplifying primitives applied to logical variables

The presence of a logical variable in place of a fully computed element of hu presents
no special problems, until it appears as the leftmost argument of a primitive we wish
to simplify. Were the logical variable replaced by any fully-computed value that
satisfied the variable's constraints, the primitive would be simplifiable. If the
computation rule would indeed choose to perform this simplification at this time,
then presence of a logical variable could impede simplification of the primitive. In
such a case, simplification of the primitive may require narrowing the range of values
a logical variable may assume (by a case analysis of the possibilities).

We have introduced logical variables which represent elements of B, A and D.
Therefore, we must consider operators whose leftmost parameters represent
arguments from any of these domains. We describe each case using the notation:

constraint{u). (... prim(u)...).
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Here, a logical variable u is introduced by a constraint, and occurs as the argument
of prim somewhere in the body. The primitive's position in the expression is relevant
only to the extent that we assume the computation rule chooses prim to simplify in
the current computation step.

The only primitive with leftmost argument of domain B is if. When a logical
variable of domain B is its leftmost argument, we simplify split into two subsets. That
is, an expression of the form

bool(B).{... ii{B, exp2, expz)...)

is rewritten as the union of two subsets, each with the logical variable constraint
removed, as follows:

(... if(5, exp2, exp3)...) [TRUE/5]

U (... if(B, exp2, exp3)...) [FALSE/B].

The primitives strict in an argument of domain A are AeqA? and, for each atom A4,
isAj?. Let us consider an expression of the form

atom(A). (... is A f(A)...).

Given n atoms in the program, we might split this into n subsets, analogous to the
treatment of boolean variables. This would be inefficient in a program with many
atoms. Indeed, we divide into two cases, the first where the logical variable is assumed
to be Aj (so the primitive can simplify to TRUE), and the other where it is assumed
to be something else (so the primitive can simplify to FALSE). The first case
eliminates the logical variable, binding it to A(, and the other case generates an
inequality constraint:

U atom(A). {A 4= A(). (... FALSE...).

This is the basic idea, but there are a few exceptions to keep in mind. Had the set
expression already contained the constraint {A 4= A(), we could have simplified the
isAJ directly, without splitting into subsets, knowing that the result would be false
for any possible instantiation.

A possible complication of using inequality constraints with atoms is that, with a
sufficient number of inequality constraints, the constraints may become unsatisfiable.
When the constraints are unsatisfiable, the parameterised set expression is equivalent
to (f>, and further computation of the body is wasted effort. Although this problem
is unlikely to arise in a program containing many atoms, a concerned implementer of
PowerFuL might seek to insert tests to ensure satisfiability.

Handling of AeqA? is only a bit trickier. If only the first argument is a logical
variable, a simple remedy is to swap the two arguments (by Theorem 2.3, AeqA? is
symmetric in its arguments), and thus delay the need to examine the logical variable.
Even if both arguments are logical variables, their equality may already be known. If
there is already an inequality constraint between them, then the AeqA? expression

12-2
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simplifies to FALSE; if both arguments are the same variable, then it simplifies to
TRUE. Otherwise, one must split into subsets, analogous to the split for isA;?. An
expression of the form

atom(X).(...atom(Y).(...AeqA1(Y,X)...))

is replaced with the union of subset

atom(X).{... Aeq?(7 , X)...) [X/ Y]

(in which the resulting atom?(X, X) simplifies to TRUE) with subset

atom{X).(...atom(Y).X* Y.(... AeqA?(F,X)...)),

(in which atom?(7, X) may be simplified to FALSE). Note that the order of
arguments to AeqA? is irrelevant. The second expression will reduce to 0 should X
and Y later become bound to the same atom, or to one another.

The primitives with a leftmost parameter of domain D are DeqD? (and its
supporting primitives DeqB?, DeqA?, DeqP?, DeqF?, and DeqS?), the type checking
primitives (bool?, atom?, pair?, func? and set?), and the retracts _|fc, _|a, _|/>, _|/and
_|s).

The handling of DeqD? is analogous to that just described for AeqA?, except that
we need no longer worry about unsatisfiability from too many constraints (since its
variables range over an infinite set). A parameterised expression reduces to cj> when
both sides of an inequality become identical. An inequality constraint may be
dropped when the two sides are no longer unifiable.

Simplification of the remaining primitives depends on the tag of the leftmost
argument. The primitives func?, set?, _ | / and _|J, DeqF and DeqS each simplify
uniformly over every object that a logical variable may represent (because logical
variables never denote functions or sets). Thus, no instantiation is necessary in the
following simplifications:

hu{D).(... func?(£>) ...)->hu{D).{... FALSE...)

hu{D).(... func !(£>)...) -> hu{D).(... Q...)

hu{D).(... set?(£>)...)-> hu{D).(...FALSE...)

hu(D). (...set\(D)...)^hu(D).(...<f>...).

hu{D).(... Yteq¥1{D Junction) ...)->hu(D).(... FALSE...).

hu{D).(... DeqS?(£>,set)...)->hu(D).{...FALSE...).

The other primitives (bool?, atom?, pair?, _|6, _|a, _|/>, DeqB?, DeqA? and DeqP?)
require case analysis. The simplification rule depends upon the subdomain of the
(leftmost) argument. If the argument is a logical variable, the three alternatives, which
must be considered separately, are boolean, atom, and ordered pair. We divide the
parameterised set expression into three subsets, each of which instantiate the logical
variable only to the extent of exposing the tag (so that the ordinary reduction rule will
apply).
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Let prim represent any of these primitives. An expression of the form

hu{u).{...prim{u)...)

(for primitives with arity 2, the second argument is ' understood') is replaced by:

bool(w).{...prim(u) ...)[wb/u]

U atom(w).(...prim(u)...)[wa/u]

U hu(v).hu(w).(...prim(u) ...)[<v,w>v/u\.

In the first branch of the union, the logical variable is partly instantiated to represent
a boolean; in the second branch, to represent an atom; and in the third branch, to
represent an ordered pair of subterms. All references to the old logical variable are
replaced by references to the new variable(s). In each subset, the tag is now available,
permitting prim to simplify using an ordinary rewrite rule.

4.2.4 Example

Consider the unification of two non-ground first-order terms: [A | B] and [C | ' d ] .
We seek replacements for logical variables A, B and C such that [A|B] = [C | ' d ] .

To calculate the set of unifiers, one might execute the PowerFuL program:

{[A,B,C] : A,B,C € hu, [A | B] = [C | 'd ]}

Each unifier will be represented by a linked-list, whose elements are the respective
bindings for A, B and C. Removing some syntactic sugars, the denoted object is
defined as

S\ { cons(A,cons(B, c o n s ( C , ' n i l ) ) ) : A e hu, B € hu, C e hu ,
cons(A, B) =cons(C, ' d) } J A.

Compiling this into the semantic domain and simplifying retracts yields:

(XA. XB.XC.(if DeqD?«^, B)p, <C, 'd >p), {{A, <£, <C, 'nile>p>p>p}, <j>)+hu+hu+hu\.

If not for the optimisations, this program would produce a set in the form of an
infinite union tree. Each leaf in the tree would represent one possible assignment of
values to A, B and C. For those assignments which unify (A,B)P with <C,'d>p, the
leaf would be the singleton set {</!, <5, <C, 'nila>p>p>p}. At leaves corresponding to
assignments which are not unifiers, the value would be <p.

Instead, we treat A, B, and C as logical variables:

(term(A). term{B). term{C). (if DeqD?«/(, B}p, <C, 'd >p),

Simplifying the equality yields

(term(A). term(B). term(C). (if(DeqP?«C, 'da>p, {A, B)),

https://doi.org/10.1017/S095679680000040X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000040X


314 F. S. K. Silbermann and B. Jayaraman

which reduces to:

(term(A). term{B). term{C). (if(if(DeqD?(C, A), if(DeqD?('do! B),

TRUE, FALSE) FALSE),

We should reduce the leftmost occurrence of'DeqD?'. This splits into two subsets,
one which assumes the equality of C and A, and one which assumes their inequality.
The subset corresponding to the inequality of C and A is:

(term(A). term(B). term{C) .C*A. (if(if(FALSE, if(DeqD?('d0, B),

TRUE, FALSE) FALSE,

The above simplifies to:

(term(A). term(B). term(C) .C + A. (j))s,

or, simply $.
The subset which assumes the equality of A and C is:

(term{A). termifi). (if(if(DeqD?(y4, A), if(DeqD?('da, B), TRUE, FALSE) FALSE),

which simplifies to

(term(A). term{B). if(if(DeqA?(5, 'd), TRUE, FALSE)

To simplify DeqA?, we must consider three possibilities for logical variable B - i.e.
that it is either an atom, a boolean or an ordered pair. Clearly, the three subsets
corresponding to the second and third option will both simplify to cj). The subset
which instantiates B to be an atom (Da) is:

(term(A). atom(D). if(if(DeqA?(Z)a, 'd), TRUE, FALSE)

The subexpression DeqA?(Z)a, 'd) simplifies to AeqA?(Z>, 'd). Because only the left
argument is a logical variable, this is rewritten to AeqA?('d, D), which further
simplifies to is'd?(£>). The greater expression therefore simplifies to:

{term{A). atom(D). if(if(is'd?(Z)), TRUE, FALSE) {(A, (Da, {A, 'nilo>p>p>p}, 0)),.

This splits into two subsets, one which assumes that B =t='' d, which quickly
simplifies to 0 , and the following, which assumes the opposite:

(term(A). if(if(is'd?(W), TRUE, FALSE) {(A, <'de, <A, 'nila>p>p> J , <j>)\,
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which simplifies to:

£term(A). {{A, <'de, {A, 'nilo>p>p>p})s.

Thus, the set contains all lists of the form

<^s<'da><^,'nil.>,>p>p,

where A is any arbitrary element of hu.

4.2.5 Discussion

The technique just described is analogous to narrowing in constructor-based term-
rewriting systems (Reddy, 1985), where, to enable reduction obstructed by a logical
variable, one instantiates the variable in all possible ways which would permit further
reduction. The computational explosion usually associated with narrowing is avoided,
however, because we need only narrow with respect to a handful of semantic
primitives, into which all PowerFuL programs are compiled.

As discussed earlier, this technique is analogous to resolution's computation of a
Horn logic program's most general computed answer substitutions. The handling of
inequality resembles Lee Naish's inequality predicate for Prolog (Naish, 1985). His
inequality predicate also fails when two terms are identical, succeeds when two terms
cannot be unified, and delays until further instantiation has occurred when two terms
are unifiable but not identical. If all other subgoals have succeeded, but the variables
in an inequality constraint are still insufficiently bound to ensure satisfaction of the
constraint, Naish's Prolog gives an error message. In such a situation, we prefer to
report the inequality constraint as part of the solution, i.e. as a kind of negative
binding (Khabaza discusses negative unification in (Khabaza 1984). Constraint logic
programming (Jaffar and Lassez, 1987) provides a precedent for permitting
constraints in answers, and one might choose to expand PowerFuL's capabilities
along those lines.

In PowerFuL, logical variables must be instantiated to simplify a whole range of
primitives, not just equality. Therefore, unification cannot be a single monolithic
operation, as it is in Prolog, but has to be broken into its component parts. That is,
the binding of one logical variable to another is handled separately from the
narrowing of a variable's range into subdomains. This follows the approach taken by
Robinson in LogLisp (Berkling et al., 1982). Traces of logic programs in PowerFuL
may therefore seem longer than their Prolog equivalents, but execution is not
necessarily slower, because in actual execution of Prolog, unification must still be
performed one step at a time.

4.2.6 Correctness observations
Soundness
Given any parameterised derivation t ->* t(, for every instantiation a which replaces
each logical variable with an element (from hu, atoms or bools, as is appropriate) that
satisfies the logical variable's constraints, t( cs[±.] approximates t.

This is true because of the meaning of a parameterised expression (in terms of' + '),
and the fact that all steps in a parameterised derivation replace expressions by equals.
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Completeness
Any element of a set which can be computed by a non-optimised derivation can be
computed as an instantiation of a parameterised derivation.

This is true because when dividing a parameterised expression into cases (for the
purpose of simplifying a primitive), every possible instantiation of logical variables
which satisfies the constraints is a possible instantiation of one of the subcases. No
possible instantiation is ever lost. Furthermore, any computation which can be
performed after replacement of the enumeration variable by a term can be performed
on the parameterised body.

4.2.7 Summary

A sound and complete operational semantics was developed via direct implementation
of the denotational semantics. Then, we demonstrated that computation with logical
variables can avoid the need to explicitly enumerate the Herbrand universe. This
optimisation required only minor modifications to the denotational definition's direct
implementation. Only when the set abstraction generator is the Herbrand universe
is the enumeration parameter treated as a logical variable. Logical variables are
instantiated only to the extent needed to perform primitive simplifications. Wherever
simplification of a primitive operation depends on specific information about the
element represented by a logical variable, the set is divided into subsets, each making
a different assumption about the element being represented. Within each subset, the
primitive now has enough information to simplify.

The syntax and denotational semantics of PowerFuL made no reference to logical
variables. The logical variable is merely an operational concept to improve the
execution efficiency when hu is used as a generator. More complicated sets are
therefore permitted as generators (e.g. such as sets of functions, sets of sets, etc.), and
in these cases, the default mechanism (generate, instantiate, and continue) is used.

5 Conclusions

Throughout the past decade, there has been substantial interest in combining
functional and logic programming. This section evaluates the language PowerFuL by
comparing it to previous work, and presents areas of further work.

5.7 Related work

Many of the early proposals sought to weave together the operational semantics of
Lisp-Like and Prolog-like languages (Robinson and Sibert, 1982; Lindstrom, 1985;
Reddy, 1985; Smolka and Panangadan, 1985; Darlington et al., 1986). Often there
was little regard as to whether the resulting language contained an easily-described
declarative subset. Since our drive to combine functional and logic programming was
motivated by the observation that both were declarative paradigms, we consider the
development of a pure and declarative combined paradigm to be a key aspect of the
problem.

Much of the recent work has dealt with equational programming (Goguen and
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Meseguer, 1984; Dershowitz and Plaisted, 1985; Jayaraman and Silbermann, 1986;
You and Subrahmanyam, 1986; Darlington and Guo, 1989). In this approach,
functions over a domain of first-order terms are defined and implemented by a set of
equations which provide a confluent set of left-to-right rewrite rules. These rewrite
rules may be used to reduce an expression to a normal form and, through the
technique of narrowing (Goguen and Meseguer, 1984; Dershowitz and Plaisted, 1985)
to solve for variables in a goal equation. This approach recalls from functional
programming the ability to define and use functions, and from logic programming,
the ability to solve for values which satisfy constraints. Nevertheless, approaches
based on syntactic term-rewriting fail to address the idea of functions as first-class
objects.

Incorporation of higher-order functions into equational programming requires
higher-order unification (Robinson, 1986), which is not generally computable.
Though it is always possible to simulate higher-order functions in a first-order
language (Warren, 1982; Smolka and Panangaden, 1985; Goguen, 1988), there is no
guarantee of referential transparency; reliance upon such simulation reduces the
usefulness of the formal semantics in reasoning about programs making use of this
feature. One would prefer the language's semantics to speak of such objects (and their
properties) explicitly.

Equality is not decidable over the functions implementable in typical functional
languages. Therefore, an implementable higher-order functional language will either
relinquish referential transparency through the use of an efficient but unreliable
equality test (Abelson and Sussman, 1985) or let the language refuse to compare
higher-order objects for equality (Milner, 1984). Pure higher-order functional
programming must take the latter choice. Even this approach is not as readily
available in logic programming, where equality (or rather a generalisation of equality,
i.e. unification) is the basis for propagation of procedure arguments. For these
reasons, we chose functional programming as the foundation.

Using the primitives of domain theory, we defined and implemented a lazy higher-
order functional programming language. We prefer domain theory to purely syntactic
formal theories because it combines the computational aspects of function application
(p-reduction of ^.-expressions) with the mathematical definition of function as a
mapping from one domain into another, understood intuitively as a set of
input/output pairs. One advantage of this approach is the ability to reason about
recursively-defined objects, e.g. functions and infinite lists, via fixed point induction.

After enriching the semantic domain with the lower powerdomain (whose elements
represent subsets of the enriched domain), we added a relative set abstraction
construct (based on Zermelo-Frankel set notation (Hudak, 1989)) to denote
powerdomain elements. This feature not only maintains the language's simplicity,
regularity and orthogonality, but with it one can define the Herbrand universe of a
first-order logic program, and model Horn logic relations as subsets of the domain of
lists, whose elements are drawn from the Herbrand universe. When construction of
the Herbrand universe is built into the implementation, computation of set
abstractions generated by the Herbrand universe may be optimised, treating the
enumeration parameters as logical variables, rather than using the more general
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method of 'generate and instantiate' (the default technique used with other set
abstraction generators). These optimisations provide the efficiency of unification-
based evaluation ((Lloyd, 1987), and together with the simplification rules for (weak)
equality, implements a kind of lazy unification. In our language, the logical variable
is not an explicit construct in the declarative reading of a program, but results instead
from an implementation optimisation.

The optimised-evaluation procedure provides a kind of lazy narrowing (Reddy,
1985). This degree of narrowing is more efficient than narrowing in general term-
rewriting systems (Goguen and Meseguer, 1984; Dershowitz and Plaisted, 1985),
because our narrowing is performed in the semantic domain, rather than in the
syntactic program domain. Narrowing only need be performed with respect to a
handful of predefined semantic primitives, rather than with respect to an arbitrary set
of user-defined functors.

The use of set abstraction in functional programming for logic programming
capability was pioneered by Darlington (Darlington et al. 1986; Darlington and Guo,
1989) and Robinson (Robinson and Sibert, 1982). Darlington's absolute set
abstraction differs from our relative set abstraction in that the first-order universe of
terms was the only permitted set abstraction generator. This decision had two effects:
(i) In Darlington's language, set abstraction was a top-level construct only; there was
no natural way to construct new sets from simpler sets, or to treat sets as first-class
objects; (ii) The enumeration of set abstraction parameters by the use of the first-
order universe of terms is understood and unstated; hence the syntactic differences
between relative and first-order absolute set abstraction. A computable generalisation
to higher-order absolute set abstraction has not been discovered. Robinson's set
abstraction in LogLisp (Robinson and Sibert, 1982) was not limited to the top-level;
however, his language did not support lazy evaluation.

The syntax of relative set abstraction was proposed by Darlington and
implemented in Turner's Miranda (Turner, 1985). If PowerFuL's optimisations were
omitted, and if a binary set union's two subsets are evaluated sequentially rather than
in parallel, then computation of our set abstraction would be similar to Turner's,
except that Turner uses cons instead of set union (and the result may be used as may
any other list). Though the user might intend that the resulting list comprehension
(Peyton Jones, 1987) represent a set, the declarative semantics show no loyalty to this
understanding. Turner's syntactic ' set union' is neither commutative, associative, nor
idempotent. PowerFuL maintains these properties by limiting use of set abstraction to
those operations which may be modelled by the lower powerdomain. In PowerFuL,
set union is lazy. For completeness, computation requires a degree of parallel
evaluation, though not so much as the full parallel-outermost rule. In practice, this
is likely to be implemented via backtracking. Sequential reduction suffices outside of
set abstraction, thus preserving the efficiency of purely functional computation.

The reader may feel disappointed that PowerFuL does not implement higher-order
unification. As stated earlier, higher-order equality (and therefore its generalisation,
higher-order unification) is undecidable, and therefore has no place in a functional
language which maintains referential transparency. Pure first-order Horn logic
programming lacks higher-order unification as well (by default, since it supports no
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higher-order objects at all). We consider it reasonable to omit a feature that is absent
from both base paradigms.

5.2 Further work

There are several areas of additional research:
(1) Many modern functional languages are enriched with polymorphic type systems.
In adding a type system to PowerFuL, one would have to consider its effect on the
optimisations for computing with logical variables, since many constructors would be
available. Our feeling is that it might make the interpreter more complex, but ought
not to hurt efficiency. A very interesting theoretical task would be the generalisation
of the denotational framework to deal with polymorphism. Another interesting
theoretical task would be investigation of analogs to negation by failure in Horn Logic
(Lloyd, 1987). This would probably require use of the Egli-Milner powerdomain
(Main, 1987) in place of the lower powerdomain.
(2) Practical programming would inevitably lead to the need for features such as
negation-as-failure (Clocksin and Mellish, 1981), which has been found to be useful
in languages like Prolog. (Prolog, in fact, does not implement negation-as-failure
correctly, due to its omission of the groundness check for negated goals). While our
own interest is that the purely declarative subset of the language be as powerful and
reliable as possible, these extensions are legitimate topics for investigation.
(3) To make PowerFuL a practical programming language, we also must consider
the incorporation of arithmetic. The addition should cause less violence to
PowerFuL's basic paradigm as compared with arithmetic in Prolog (Prolog is
sometimes unable to solve for logical variables when important system predicates are
used (Clocksin and Mellish, 1981), since in PowerFuL, inability to compute with
logical variables over some types (e.g. functions) does not prevent the use of those
types as first-class objects. We would also like to adapt the results from research in
constraint logic programming (Jaffar and Lassez, 1987; Hickey, 1989).
(4) This work strives to unify the declarative aspects of functional and logic
programming. It would be interesting to consider how to unify the efficient
implementation strategies developed for these kinds of languages (Warren, 1983;
Peyton Jones, 1987). Another issue is that the computation of infinite sets requires
closer interaction between user and interpreter. This places additional demands on
the language environment, so new programming environments may also need to be
developed.
(5) Some aspects of the operational semantics, in particular the assumed completeness
of safe computation rules (see section 4.1), and the correctness of the optimisations
for logic programming (see section 4.2) have been given only intuitive justification.
Provision of rigorous proofs of these ideas is one of our priorities.
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