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ON THE WEDDERBURN THEOREM 

GEORGE SZETO 

1. I n t r o d u c t i o n . In [6], Pierce studied the modules over a commuta t ive 
regular ring R by using the representation of R as the global sections of 
a sheaf which we call the Pierce sheaf. When the stalks of the Pierce sheaf 
are regular, Magid gave a Galois theory and some properties for a central 
separable i?-algebra [4, (2.4), (2.5), (2.6) and (2.7)]. When the stalks of the 
Pierce sheaf are semi-local, DeMeyer presented a Galois theory for a central 
separable iv-algebra [3, sections 2 and 3] and the author characterized the 
finitely generated and projective modules over a central separable jR-algebra 
in terms of the iv-modules in [7] and [8]. By keeping the same assumption on R, 
the present paper gives a s t ructural theorem for a finitely generated and pro­
jective i^-module and extends the Wedderburn theorem in the context of a 
connected ring as given in [2] by DeMeyer . The author wishes to t h a n k 
Professor DeMeyer for his suggestion of Theorem 3.4 and also to t h a n k the 
referee for his proof of Theorem 3.1. 

2 . Pre l iminar ie s . Throughout the present paper, R is assumed to be a 
commuta t ive ring with identi ty. We first describe the Pierce sheaf in [6]. Le t 
B (R) denote the Boolean algebra of idempotents of R, and let Spec B (R) be the 
set of all prime ideals in B(R) (hence they are maximal) . For any e in B(R), 
denote the set {x\x inSpec B (R) and (1 — e) inx} by£ / e .Then { Ue] form the basic 
open sets of a topology imposed on Spec B (R). Spec B(R) is a total ly dis­
connected compact and Hausdorff topological space. Let Rx = R/xR for x 
in Spec B (R). Then a sheaf is defined whose base space is Spec B (R) and whose 
stalks are Rx. Fur thermore , R is isomorphic with the global sections of this 
sheaf. Also, denote Rx ®R M by Mx for ani^-module M. Some facts given in [9] 
will be used in this paper, so they are listed below: 

( l .A) For e in B(R), the homomorphism R—^Re establishes a homeo-
morphism Ue —» Spec B (Re). Thus , if M is a finitely generated i?-module 
satisfying Mx = 0 for all x in Ue, we m a y conclude from (2.11) in [9] t h a t 
eM = 0. 

( l .B) Le t { Ue} be an open cover of Spec B(R). Then by compactness of 
Spec B (R), there is a finite subcover { Uei1 i = 1 , 2 , . . . , ^ for some integer n) 
such t h a t {Uei\ are disjoint. Thus {^} are orthogonal and YL%ex = 1 (see 
[9, (2.10) and the end of section 3]). 
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3. Projective modules. In this section, a structural theorem for a finitely 
generated and projective i^-module is proved; also a relation between the 
finitely generated projective property and the indecomposable property of an 
.R-module is given. 

THEOREM 3.1. Assume Rx has the property that its projective modules are free 
for each x in Spec B{R). Let M be a finitely generated and projective R-module. 
Then there is a decomposition of R, R ~ 0 ]T?=i Ret for some orthogonal 
idempotents et and an integer n such that Met is a free Rermodule for each i. 

Proof. Since M is a finitely generated and projective i?-module, there exists 
an i^-module P such that M 0 P = Rn, a free i^-module of rank n for some 
integer n. Let ai, . . . , an be a set of free generators of Rn, considered as global 
sections. For a point x of Spec B(R), choose free generators bix, . . . , brx of 
Mx, and bT+\Xy . . . , bnx of Px. The bjx can be considered as the values of local 
sections at x. Then it is possible to write 

n 

(*) aix = X) rtjJ)jx 

where the matrix [rijx] is invertible. Again, consider the rijx as the values of 
local sections at x. By the basic property of sheaves, there is a neighbourhood 
Ue of x in which (*) holds, and moreover the matrix [rijy] is invertible for all y 
in this neighbourhood Ue- This implies that the elements b\y, . . . , bTy are free 
generators of My for all y's in the given neighbourhood Ue. Thus by using 
(l.A), we can show that Me is a free i^e-module; that is, Me ~ (Re)T. The 
proof is then completed by application of the partition property (l .B). 

COROLLARY 3.2. Let M be a finitely generated projective and indecomposable 
R-module. If all of the stalks of R have the property that their projective modules 
are free, then M = Re for some minimal idempotent e in R. 

COROLLARY 3.3. Assume all of the stalks of R have the property that their 
projective modules are free. Let M, N be two finitely generated and projective 
R-modules. Then, M ~ N if and only if r2LiikBx(Mx) = rankRx(Nx) for each x 
in Spec B(R). 

The following theorem is due to F. DeMeyer. Keeping the above assumption 
on R, we have: 

THEOREM 3.4. Assume x in SpecB(R) is a limit point. If M is a finitely 
generated and projective R-module with Mx ^ 0, then M is decomposable. 

Proof. Since M is a finitely generated and projective i^-module, there is a 
basic open neighbourhood of x, Ue, such that Me is a free i?e-module by the 
proof of Theorem 3.1. On the other hand, by hypothesis, Mx 9^ 0, so My ^ 0 
for all y in Ue. Noting that x is a limit point of Spec B (R), we have at least 
one y ^ x in Ue- Spec B(R) is Hausdorff, so there exists a Ue' of x such that 
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y is not in Ue>\ and hence y is in U\-.e'. But then Spec B(R) is covered by 
{Us, Ui-e'} and 

R^Rë ®R{\ - ë), 

where Spec B(Rë) ^ Ue' and SpecB(R(l - ë)) ^ Ui-e> by (l.A). This 
gives a decomposition of M, M ^ ik/V © ikf (1 - e')- Since Mx = (Me')* ^ 0 
and since My = {Mil — e'))y ^ 0, ikf is decomposable. 

Remark. The technique in the above proof is similar to Theorem 1.3 in [8]. 
Also we note that for some x in Spec B (R) there is no finitely generated 
projective and indecomposable i^-module M with Mx 7^ 0 (see the example 
given by D. Zelinsky in [8]). Furthermore, it is not hard to see that if for 
each x in Spec B{R), there is a finitely generated projective and indecomposable 
i^-module M with Mx 9^ 0, then R is isomorphic with a finite direct sum of 
connected rings. 

COROLLARY 3.5. By keeping the above assumption on R, there is a one-to-one 
correspondence between the following sets of elements: 

(a) The set of all isolated points x in Spec B (R). 
(b) The set of all minimal idempotents e in R. 
(c) The set of all classes of the finitely generated projective and indecomposable 

R-modules M with Mx ^ 0. 

Proof. For (a) => (c), it is not hard to see that Rx is a member in (c) if x is 
in (a) by Lemma 2.10 in [5] ; (c) ==> (a) is a consequence of the above theorem, 
(b) t=> (c) is immediate because the idempotent e in (b) corresponds to M 
in (c), where Mx y^ 0 and Ue = {%}> 

4. A general Wedderburn theorem. In this section, we shall show a 
general Wedderburn theorem. This is an extension of Corollaries 1 and 2 in [2]. 

THEOREM 4.1. Assume Rx is semi-local for each x in Spec B(R). Let A be a 
central separable R-algebra. Then there exists a central separable R-algebra D in 
the same class as A in the Brauer group of R such that 

A ®RD0^ HomR{AE, AE) 

for an idempotent E in A with {AE) a finitely generated projective and faithful 
R-module and 

(1) D = EAE where D° is the opposite ring of D; 
(2) there is a decomposition of R, R = 0 £)?=i Ret for some orthogonal 

idempotents et in R and an integer n so that A ~ 0 £?=i Aeu D ~ 0 £?=i Dei 
and Aet ~ Mki (Dei), the full matrix nng of degree kt over Dex for an integer kt; 

(3) for each i, Det == {Eet)A (Eet), and Det is unique if (Ee^)y is a minimal 
idempotent in {Ae^)y for each y in Spec B{Ret); and iEe^)y is a minimal idem-
potent in {Aei)y for each y in Spec B{Rei) if and only if all idempotents in Dei 
are in Ret; 
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(4) there is exactly one isomorphic class of the finitely generated and projective 
left Aermodules with the same Rerrank for each i. 

Proof. (1) Since AX(=RX ®R A) is a central separable ,Rx-algebra and since 
Rx is semi-local, there exists a unique central separable i?x-algebra Dx in the 
same class as Ax in the Brauer group of Rx such that 

Ax ®Rx (ZV)° ^ HomBMxEx\ AXEX') 

where Ex is a minimal left idempotent in Ax and (Dx')° is the opposite ring 
of Dx'. Also, DJ ^ EX'AXEX' [2, Corollaries 1 and 2]. By [4, (1.6)], we have a 
central separable jR-algebra D such that 

(*) Dx ^ Dx' ^ EX'AXEX'. 

Furthermore, by [9, (2.12)], Ex is lifted to an idempotent E in A so that 
Ex = Ex . Hence 

(**) Ex
fAxEx

f ^ (EAE)X and HomRx(AxEx'} AxEx
r) ^ ( H o m , ( i £ , AE))X 

by [9, (2.7)]. So, from (*) and (**), Ax ®Rx (Dx)" ^ ( H o m , ( i £ , AE))X and 
Dx ^ CEL4E)*; that is, (A ®R D°)x ^ (HomBC4£, AE))X and £>* ̂  (EAE)X. 
Thus, by [4, (1.7)], there is a basic open neighbourhood Ue> of x such that 
(A ®R D°)y == (Hom^C^E, -4-E))y for each y in Ue

f, and there is a basic open 
neighbourhood of x, Ue", such that Dy £= (EAE)y for each y in Ue". This 
gives e'(i4 ® s D°) <^ e'(UomR(AE, AE)) and e"D Ç* e"(EAE). Denote the 
intersection of C7e, and Ue" by Z7e. Then e(4 ®BD°) ^ e(HomR(AE} AE)) 
and &D =^ e{EAE) as .Re-algebras. Noting that eAE is a finitely generated 
projective and faithful .Re-module, we have that eA and eD are in the same 
class in the Brauer group of Re. Let x vary over Spec B (R) and cover Spec B (R) 
with {Ue}' By (l .B), we have a finite subcover of Spec B (R) with 
{ Uei, i = I, . . . > n for some integer n\, where {^} are orthogonal and 
summing to 1. Then, 

n 

R 2* © X) -R**. *i(4 ® A £>*°) = etHomB(AEt, AEt) and ««D, ̂  e^EtAEi) 
i=l 

for each i. Consequently, let D be 0 J21=i c%D % and £ = S?=i e*-E*. Then 
4 0 B D 0 ^ H o m ^ E , AE) and £> ^ EAE. So, 4 and Z> are in the same 
class of the Brauer group of JR. 

(2) Since ^4E and D are finitely generated and projective i^-modules from 
the proof of part (1), there are basic open neighbourhoods of x, VV and Ue", 
such that e'D and e"AE are free Re' and ^" -modules respectively. Denote 
the intersection of Ue>, Ue" and Ue in part (1) by £/eo. Then Ueo is a basic 
open neighbourhood of x so that e0(A ®B D°) ~ eQHomB(AE, AE) as 
i?<?o-algebras. Noting that (eQAE)y and (e0D)y are free i^-modules for each 
y in Ueo, we have (eoD)^ ^ 0 X);=i C^Vi ^-copies of Ry for some integer 5. 
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But from the proof of part (1), (e0D)x has no proper idempotents. Then 
(e0AE)x is a free (e0D)x-module [2, Theorem 1]; that is, 

(e0AE)x ^ 0 £5-1 (eoD),', 

^-copies of (e0D)x for some integer k; that is, 

(eoAE)x ^ 0 Z (e0D)x
j ^ 0 É ( © E (**)') ' = © E (**)', 

&s-copies of Rx. Since e0AE and e0£> are free i^e0-niodules and since 
Spec B(Re0) ^ Ueo, 

(eoAE), ^ 0 Ë (RvY = © Ê ( ^ V 

for each 3; in Uê0. Thus eoAE ^ © Z*=i (eo-D)' as e0£>-modules [4, (1.7)]. 
ô̂ 4 (g)Re0eoD0 = HomReo(e0AE, e0AE), so e0A ^HomeoDo(eoAE, e0AE) (for 

£0̂ 4 and eo£> are Mori ta equivalent); and so it is isomorphic with Mk(eoD), a 
full matrix ring of degree k over e0D. Finally, by (l.B) again, we have a 
decomposition of R, R ^ © £ L i e ^ , 4 ^ © ^ = 1 M , £> = © LJLi e*£> 
and £zv4 = Tkf̂  (etD), a full matrix ring of degree &* over eiD for an integer &*. 

(3) Since D ^ EAE, ej) ^ (eiE)A{etE) for each i. Now, if (etE)v is a 
minimal idempo tent in {etA ) y , then {etD)y is unique with no proper idempotents 
by [2, Corollaries 1 and 2]. Thus etD is unique by [4, (1.7)]. 

Furthermore, if all idempotents in etD are in Reu then (eiD)y has no proper 
idempotents. But {etD)y = EyAyEy; then Ey is a left minimal idempo tent in 
Ay for each y in Z7«t- by [2, Corollaries 1 and 2]. Conversely, if Ey is a left 
minimal idempotent in (eiA)y for each y in C/ei, then {eiD)y = EyAyEy is 
unique with no proper idempotents for each y in Uei by the same corollaries. 
Thus all idempotents in eiD are in Ret. This follows because for an idempotent 
E in etD, Ret is a submodule of (Ret + (Ret)E). Noting that 

(Ret)y = {Ret + {Ret)E)y = (Ite,)* + ( i ^ £ ) , 

for each y in f/e-, we have that Ey is in (Rei)y; and hence i?ez = (Ret + RetE) 
by [9, (2.11)]. Thus £ is in Ret. 

(4) Since e^4 and etD are in the same class in the Brauer group of Reù 
that is, eiA = HomeiD0(^zv4E, etAE) from part (2), it suffices to show the 
statement for the e^-central separable algebra etD by the Morita theorem. 
In fact, if M and N are two finitely generated and projective ^D-modules 
with the same i?e rrank, then My = Ny for each y in Uei as free i^-modules. 
Thus M ^N ^ © £*= i (é^£>)j, ^-copies of e*Z> for some integer k, by the 
argument used in part (2). This completes the proof. 

COROLLARY 4.2. There is exactly one isomorphism class of the finitely generated 
and projective e^D-modules with minimal rank over Rei. 

Proof. We observe in fact, that they are isomorphic with etD. 
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Remark. By [4, (1.6)], it is proved that for each central separable i?x-algebra 
Ax there is a central separable i?-algebra D such that Dx = Ax. But it is not 
known whether there is a central separable i?-algebra D such that Dx = Ax 

and Dy has no proper idempotents for each y in some basic open neighbourhood 
of x when Ax has no proper idempotents. Suppose there was; then the central 
separable i?e ralgebra Det in part (3) of the above theorem would be unique. 
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