ON THE WEDDERBURN THEOREM

GEORGE SZETO

- 1. Introduction. In [6], Pierce studied the modules over a commutative regular ring R by using the representation of R as the global sections of a sheaf which we call the Pierce sheaf. When the stalks of the Pierce sheaf are regular, Magid gave a Galois theory and some properties for a central separable R-algebra [4, (2.4), (2.5), (2.6) and (2.7)]. When the stalks of the Pierce sheaf are semi-local, DeMeyer presented a Galois theory for a central separable R-algebra [3, sections 2 and 3] and the author characterized the finitely generated and projective modules over a central separable R-algebra in terms of the R-modules in [7] and [8]. By keeping the same assumption on R, the present paper gives a structural theorem for a finitely generated and projective R-module and extends the Wedderburn theorem in the context of a connected ring as given in [2] by DeMeyer. The author wishes to thank Professor DeMeyer for his suggestion of Theorem 3.4 and also to thank the referee for his proof of Theorem 3.1.
- **2. Preliminaries.** Throughout the present paper, R is assumed to be a commutative ring with identity. We first describe the Pierce sheaf in [6]. Let B(R) denote the Boolean algebra of idempotents of R, and let $\operatorname{Spec} B(R)$ be the set of all prime ideals in B(R) (hence they are maximal). For any e in B(R), denote the set $\{x|x \text{ in }\operatorname{Spec} B(R) \text{ and } (1-e) \text{ in } x\}$ by U_e . Then $\{U_e\}$ form the basic open sets of a topology imposed on $\operatorname{Spec} B(R)$. Spec B(R) is a totally disconnected compact and Hausdorff topological space. Let $R_x = R/xR$ for x in $\operatorname{Spec} B(R)$. Then a sheaf is defined whose base space is $\operatorname{Spec} B(R)$ and whose stalks are R_x . Furthermore, R is isomorphic with the global sections of this sheaf. Also, denote $R_x \otimes_R M$ by M_x for an R-module M. Some facts given in [9] will be used in this paper, so they are listed below:
- (1.A) For e in B(R), the homomorphism $R \to Re$ establishes a homeomorphism $U_e \to \operatorname{Spec} B(Re)$. Thus, if M is a finitely generated R-module satisfying $M_x = 0$ for all x in U_e , we may conclude from (2.11) in [9] that eM = 0.
- (1.B) Let $\{U_e\}$ be an open cover of Spec B(R). Then by compactness of Spec B(R), there is a finite subcover $\{U_{e_i}, i = 1, 2, \ldots, n \text{ for some integer } n\}$ such that $\{U_{e_i}\}$ are disjoint. Thus $\{e_i\}$ are orthogonal and $\sum_i e_i = 1$ (see [9, (2.10) and the end of section 3]).

Received February 4, 1972 and in revised form, August 31, 1972. This research was supported by NSF Grant GU-3320.

3. Projective modules. In this section, a structural theorem for a finitely generated and projective *R*-module is proved; also a relation between the finitely generated projective property and the indecomposable property of an *R*-module is given.

THEOREM 3.1. Assume R_x has the property that its projective modules are free for each x in Spec B(R). Let M be a finitely generated and projective R-module. Then there is a decomposition of R, $R \cong \bigoplus \sum_{i=1}^{n} Re_i$ for some orthogonal idempotents e_i and an integer n such that Me_i is a free Re_i -module for each i.

Proof. Since M is a finitely generated and projective R-module, there exists an R-module P such that $M \oplus P \cong R^n$, a free R-module of rank n for some integer n. Let a_1, \ldots, a_n be a set of free generators of R^n , considered as global sections. For a point x of Spec B(R), choose free generators b_{1x}, \ldots, b_{rx} of M_x , and b_{r+1x}, \ldots, b_{nx} of P_x . The b_{jx} can be considered as the values of local sections at x. Then it is possible to write

(*)
$$a_{ix} = \sum_{i=1}^{n} r_{ijx} b_{jx}$$

where the matrix $[r_{ijx}]$ is invertible. Again, consider the r_{ijx} as the values of local sections at x. By the basic property of sheaves, there is a neighbourhood U_e of x in which (*) holds, and moreover the matrix $[r_{ijy}]$ is invertible for all y in this neighbourhood U_e . This implies that the elements b_{1y}, \ldots, b_{ry} are free generators of M_y for all y's in the given neighbourhood U_e . Thus by using (1.A), we can show that Me is a free Re-module; that is, $Me \cong (Re)^r$. The proof is then completed by application of the partition property (1.B).

COROLLARY 3.2. Let M be a finitely generated projective and indecomposable R-module. If all of the stalks of R have the property that their projective modules are free, then $M \cong Re$ for some minimal idempotent e in R.

COROLLARY 3.3. Assume all of the stalks of R have the property that their projective modules are free. Let M, N be two finitely generated and projective R-modules. Then, $M \cong N$ if and only if $\operatorname{rank}_{R_x}(M_x) = \operatorname{rank}_{R_x}(N_x)$ for each x in Spec B(R).

The following theorem is due to F. DeMeyer. Keeping the above assumption on R, we have:

THEOREM 3.4. Assume x in Spec B(R) is a limit point. If M is a finitely generated and projective R-module with $M_x \neq 0$, then M is decomposable.

Proof. Since M is a finitely generated and projective R-module, there is a basic open neighbourhood of x, U_e , such that Me is a free Re-module by the proof of Theorem 3.1. On the other hand, by hypothesis, $M_x \neq 0$, so $M_y \neq 0$ for all y in U_e . Noting that x is a limit point of Spec B(R), we have at least one $y \neq x$ in U_e . Spec B(R) is Hausdorff, so there exists a $U_{e'}$ of x such that

y is not in $U_{e'}$; and hence y is in $U_{1-e'}$. But then Spec B(R) is covered by $\{U_{e'}, U_{1-e'}\}$ and

$$R \cong Re' \oplus R(1 - e')$$
,

where Spec $B(Re') \cong U_{e'}$ and Spec $B(R(1-e')) \cong U_{1-e'}$ by (1.A). This gives a decomposition of M, $M \cong Me' \oplus M(1-e')$. Since $M_x = (Me')_x \neq 0$ and since $M_y = (M(1-e'))_y \neq 0$, M is decomposable.

Remark. The technique in the above proof is similar to Theorem 1.3 in [8]. Also we note that for some x in Spec B(R) there is no finitely generated projective and indecomposable R-module M with $M_x \neq 0$ (see the example given by D. Zelinsky in [8]). Furthermore, it is not hard to see that if for each x in Spec B(R), there is a finitely generated projective and indecomposable R-module M with $M_x \neq 0$, then R is isomorphic with a finite direct sum of connected rings.

COROLLARY 3.5. By keeping the above assumption on R, there is a one-to-one correspondence between the following sets of elements:

- (a) The set of all isolated points x in Spec B(R).
- (b) The set of all minimal idempotents e in R.
- (c) The set of all classes of the finitely generated projective and indecomposable R-modules M with $M_x \neq 0$.

Proof. For (a) \Rightarrow (c), it is not hard to see that R_x is a member in (c) if x is in (a) by Lemma 2.10 in [5]; (c) \Rightarrow (a) is a consequence of the above theorem. (b) \Leftrightarrow (c) is immediate because the idempotent e in (b) corresponds to M in (c), where $M_x \neq 0$ and $U_e = \{x\}$.

4. A general Wedderburn theorem. In this section, we shall show a general Wedderburn theorem. This is an extension of Corollaries 1 and 2 in [2].

THEOREM 4.1. Assume R_x is semi-local for each x in Spec B(R). Let A be a central separable R-algebra. Then there exists a central separable R-algebra D in the same class as A in the Brauer group of R such that

$$A \otimes_{\mathbb{R}} D^0 \cong \operatorname{Hom}_{\mathbb{R}}(AE, AE)$$

for an idempotent E in A with (AE) a finitely generated projective and faithful R-module and

- (1) $D \cong EAE$ where D^0 is the opposite ring of D;
- (2) there is a decomposition of R, $R \cong \bigoplus \sum_{i=1}^{n} Re_i$ for some orthogonal idempotents e_i in R and an integer n so that $A \cong \bigoplus \sum_{i=1}^{n} Ae_i$, $D \cong \bigoplus \sum_{i=1}^{n} De_i$ and $Ae_i \cong M_{k_i}(De_i)$, the full matrix ring of degree k_i over De_i for an integer k_i ;
- (3) for each i, $De_i \cong (Ee_i)A(Ee_i)$, and De_i is unique if $(Ee_i)_y$ is a minimal idempotent in $(Ae_i)_y$ for each y in Spec $B(Re_i)$; and $(Ee_i)_y$ is a minimal idempotent in $(Ae_i)_y$ for each y in Spec $B(Re_i)$ if and only if all idempotents in De_i are in Re_i ;

- (4) there is exactly one isomorphic class of the finitely generated and projective left Ae_i -modules with the same Re_i -rank for each i.
- *Proof.* (1) Since $A_x (= R_x \otimes_R A)$ is a central separable R_x -algebra and since R_x is semi-local, there exists a unique central separable R_x -algebra D_x' in the same class as A_x in the Brauer group of R_x such that

$$A_x \otimes_{R_x} (D_x')^0 \cong \operatorname{Hom}_{R_x}(A_x E_x', A_x E_x')$$

where E_x' is a minimal left idempotent in A_x and $(D_x')^0$ is the opposite ring of D_x' . Also, $D_x' \cong E_x' A_x E_x'$ [2, Corollaries 1 and 2]. By [4, (1.6)], we have a central separable R-algebra D such that

$$(*) D_x \cong D_x' \cong E_x' A_x E_x'.$$

Furthermore, by [9, (2.12)], E_x' is lifted to an idempotent E in A so that $E_x = E_x'$. Hence

(**)
$$E_x' A_x E_x' \cong (EAE)_x$$
 and $\operatorname{Hom}_{R_x}(A_x E_x', A_x E_x') \cong (\operatorname{Hom}_R(AE, AE))_x$

by [9, (2.7)]. So, from (*) and (**), $A_x \otimes_{R_x} (D_x)^0 \cong (\operatorname{Hom}_R(AE, AE))_x$ and $D_x \cong (EAE)_x$; that is, $(A \otimes_R D^0)_x \cong (\operatorname{Hom}_R(AE, AE))_x$ and $D_x \cong (EAE)_x$. Thus, by [4, (1.7)], there is a basic open neighbourhood $U_{e'}$ of x such that $(A \otimes_R D^0)_y \cong (\operatorname{Hom}_R(AE, AE))_y$ for each y in $U_{e'}$, and there is a basic open neighbourhood of x, $U_{e''}$, such that $D_y \cong (EAE)_y$ for each y in $U_{e''}$. This gives $e'(A \otimes_R D^0) \cong e'(\operatorname{Hom}_R(AE, AE))$ and $e''D \cong e''(EAE)$. Denote the intersection of $U_{e'}$ and $U_{e''}$ by U_e . Then $e(A \otimes_R D^0) \cong e(\operatorname{Hom}_R(AE, AE))$ and $eD \cong e(EAE)$ as Re-algebras. Noting that eAE is a finitely generated projective and faithful Re-module, we have that eA and eD are in the same class in the Brauer group of Re. Let x vary over $\operatorname{Spec} B(R)$ and cover $\operatorname{Spec} B(R)$ with $\{U_e\}$. By (1.B), we have a finite subcover of $\operatorname{Spec} B(R)$ with $\{U_e\}$. By (1.B), we have a finite subcover of $\operatorname{Spec} B(R)$ with $\{U_e\}$. By (1.B), we have a finite subcover of $\operatorname{Spec} B(R)$ with $\{U_e\}$. Then,

$$R \cong \bigoplus \sum_{i=1}^{n} Re_i, e_i(A \otimes_R D_i^0) \cong e_i \operatorname{Hom}_R(AE_i, AE_i) \text{ and } e_i D_i \cong e_i(E_i AE_i)$$

for each *i*. Consequently, let *D* be $\bigoplus \sum_{i=1}^{n} e_i D_i$ and $E = \sum_{i=1}^{n} e_i E_i$. Then $A \otimes_{\mathbb{R}} D^0 \cong \operatorname{Hom}_{\mathbb{R}}(AE, AE)$ and $D \cong EAE$. So, *A* and *D* are in the same class of the Brauer group of *R*.

(2) Since AE and D are finitely generated and projective R-modules from the proof of part (1), there are basic open neighbourhoods of x, $U_{e'}$ and $U_{e''}$, such that e'D and e''AE are free Re' and Re''-modules respectively. Denote the intersection of $U_{e'}$, $U_{e''}$ and U_e in part (1) by U_{e0} . Then U_{e0} is a basic open neighbourhood of x so that $e_0(A \otimes_R D^0) \cong e_0 \operatorname{Hom}_R(AE, AE)$ as Re_0 -algebras. Noting that $(e_0AE)_y$ and $(e_0D)_y$ are free R_y -modules for each y in U_{e0} , we have $(e_0D)_y \cong \bigoplus \sum_{j=1}^s (R_y)^j$, s-copies of R_y for some integer s.

But from the proof of part (1), $(e_0D)_x$ has no proper idempotents. Then $(e_0AE)_x$ is a free $(e_0D)_x$ -module [2, Theorem 1]; that is,

$$(e_0AE)_x \cong \bigoplus \sum_{j=1}^k (e_0D)_x^j$$

k-copies of $(e_0D)_x$ for some integer k; that is,

$$(e_0 A E)_x \cong \bigoplus \sum_{j=1}^k (e_0 D)_x^j \cong \bigoplus \sum_{j=1}^k \left(\bigoplus \sum_{i=1}^s (R_x)^i \right)^j \cong \bigoplus \sum_{j=1}^{ks} (R_x)^j,$$

ks-copies of R_x . Since e_0AE and e_0D are free Re_0 -modules and since $Spec\ B(Re_0)\cong U_{e_0}$,

$$(e_0AE)_y \cong \bigoplus \sum_{j=1}^{ks} (R_y)^j \cong \bigoplus \sum_{j=1}^k (e_0D)_y^j$$

for each y in U_{e_0} . Thus $e_0AE \cong \bigoplus \sum_{j=1}^k (e_0D)^j$ as e_0D -modules [4, (1.7)]. $e_0A \otimes_{Re_0}e_0D^0 \cong \operatorname{Hom}_{Re_0}(e_0AE, e_0AE)$, so $e_0A \cong \operatorname{Hom}_{e_0D^0}(e_0AE, e_0AE)$ (for e_0A and e_0D are Morita equivalent); and so it is isomorphic with $M_k(e_0D)$, a full matrix ring of degree k over e_0D . Finally, by (1.B) again, we have a decomposition of R, $R \cong \bigoplus \sum_{i=1}^n e_iR$, $A \cong \bigoplus \sum_{i=1}^n e_iA$, $D \cong \bigoplus \sum_{i=1}^n e_iD$ and $e_iA \cong M_{ki}(e_iD)$, a full matrix ring of degree k_i over e_iD for an integer k_i .

(3) Since $D \cong EAE$, $e_iD \cong (e_iE)A(e_iE)$ for each i. Now, if $(e_iE)_y$ is a minimal idempotent in $(e_iA)_y$, then $(e_iD)_y$ is unique with no proper idempotents by [2, Corollaries 1 and 2]. Thus e_iD is unique by [4, (1.7)].

Furthermore, if all idempotents in e_iD are in Re_i , then $(e_iD)_y$ has no proper idempotents. But $(e_iD)_y \cong E_yA_yE_y$; then E_y is a left minimal idempotent in A_y for each y in U_{e_i} by [2, Corollaries 1 and 2]. Conversely, if E_y is a left minimal idempotent in $(e_iA)_y$ for each y in U_{e_i} , then $(e_iD)_y \cong E_yA_yE_y$ is unique with no proper idempotents for each y in U_{e_i} by the same corollaries. Thus all idempotents in e_iD are in Re_i . This follows because for an idempotent E in e_iD , Re_i is a submodule of $(Re_i + (Re_i)E)$. Noting that

$$(Re_i)_y = (Re_i + (Re_i)E)_y = (Re_i)_y + (Re_iE)_y$$

for each y in U_{e_i} , we have that E_y is in $(Re_i)_y$; and hence $Re_i = (Re_i + Re_i E)$ by [9, (2.11)]. Thus E is in Re_i .

(4) Since e_iA and e_iD are in the same class in the Brauer group of Re_i ; that is, $e_iA \cong \operatorname{Hom}_{e_iD0}(e_iAE, e_iAE)$ from part (2), it suffices to show the statement for the e_iR -central separable algebra e_iD by the Morita theorem. In fact, if M and N are two finitely generated and projective e_iD -modules with the same Re_i -rank, then $M_y \cong N_y$ for each y in U_{e_i} as free R_y -modules. Thus $M \cong N \cong \bigoplus \sum_{j=1}^k (e_iD)^j$, k-copies of e_iD for some integer k, by the argument used in part (2). This completes the proof.

COROLLARY 4.2. There is exactly one isomorphism class of the finitely generated and projective e_iD -modules with minimal rank over Re_i .

Proof. We observe in fact, that they are isomorphic with e_iD .

Remark. By [4, (1.6)], it is proved that for each central separable R_x -algebra A_x there is a central separable R-algebra D such that $D_x \cong A_x$. But it is not known whether there is a central separable R-algebra D such that $D_x \cong A_x$ and D_y has no proper idempotents for each y in some basic open neighbourhood of x when A_x has no proper idempotents. Suppose there was; then the central separable Re_i -algebra De_i in part (3) of the above theorem would be unique.

References

- 1. M. Auslander and O. Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367-409.
- F. DeMeyer, Projective modules over central separable algebras, Can. J. Math. 21 (1969), 39-43.
- 3. —— Automorphisms of separable algebras. II, Pacific J. Math. 32 (1970), 621-631.
- 4. A. Magid, Pierce's representation and separable algebras, Illinois J. Math. 15 (1971), 114-121.
- 5. Locally Galois algebras, Pacific J. Math. 33 (1970), 707-724.
- 6. R. Pierce, Modules over commutative regular rings, Mem. Amer. Math. Soc. 70 (1967).
- G. Szeto, On a class of projective modules over central separable algebras, Can. Math. Bull. 14 (1971), 415-417.
- 8. On a class of projective modules over central separable algebras. II, Can. Math. Bull. 15 (1972), 411-416.
- D. Zelinsky and O. Villamayor, Galois theory for rings with infinitely many idempotents, Nagova Math. J. 35 (1969), 83-98.

Bradley University, Peoria, Illinois