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ON THE WEDDERBURN THEOREM

GEORGE SZETO

1. Introduction. In [6], Pierce studied the modules over a commutative
regular ring R by using the representation of R as the global sections of
a sheaf which we call the Pierce sheaf. When the stalks of the Pierce sheaf
are regular, Magid gave a Galois theory and some properties for a central
separable R-algebra [4, (2.4), (2.5), (2.6) and (2.7)]. When the stalks of the
Pierce sheaf are semi-local, DeMeyer presented a Galois theory for a central
separable R-algebra [3, sections 2 and 3] and the author characterized the
finitely generated and projective modules over a central separable R-algebra
in terms of the R-modules in [7] and [8]. By keeping the same assumption on R,
the present paper gives a structural theorem for a finitely generated and pro-
jective R-module and extends the Wedderburn theorem in the context of a
connected ring as given in [2] by DeMeyer. The author wishes to thank
Professor DeMeyer for his suggestion of Theorem 3.4 and also to thank the
referee for his proof of Theorem 3.1.

2. Preliminaries. Throughout the present paper, R is assumed to be a
commutative ring with identity. We first describe the Pierce sheaf in [6]. Let
B(R) denote the Boolean algebra of idempotents of R, and let Spec B(R) be the
set of all prime ideals in B(R) (hence they are maximal). For any e in B(R),
denote the set {x|x in Spec B(R) and (1 — ¢) inx} by U,. Then { U,}form the basic
open sets of a topology imposed on Spec B(R). Spec B(R) is a totally dis-
connected compact and Hausdorff topological space. Let R, = R/xR for x
in Spec B(R). Then a sheaf is defined whose base space is Spec B (R) and whose
stalks are R,. Furthermore, R is isomorphic with the global sections of this
sheaf. Also, denote R, ®z M by M, for an R-module M. Some facts given in [9]
will be used in this paper, so they are listed below:

(1.A) For e in B(R), the homomorphism R — Re establishes a homeo-
morphism U, — Spec B(Re). Thus, if M is a finitely generated R-module
satisfying M, = 0 for all x in U,, we may conclude from (2.11) in [9] that

eM = 0.
(1.B) Let {U,} be an open cover of Spec B(R). Then by compactness of
Spec B(R), there is a finite subcover {U,;, 7 = 1,2, ..., n for some integer n}

such that {U,;} are disjoint. Thus {e;} are orthogonal and > .,; = 1 (see
[9, (2.10) and the end of section 3]).
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3. Projective modules. In this section, a structural theorem for a finitely
generated and projective R-module is proved; also a relation between the
finitely generated projective property and the indecomposable property of an
R-module is given.

TarorEM 3.1. Assume R, has the property that its projective modules are free
for each x in Spec B(R). Let M be a finitely generated and projective R-module.
Then there is a decomposition of R, R = @ Y i1 Re; for some orthogonal
idempotents e, and an integer n such that Me; is a free Re-module for each 1.

Proof. Since M is a finitely generated and projective R-module, there exists
an R-module P such that M @ P = R", a free R-module of rank # for some

integer n. Let a4, . . ., a, be a set of free generators of R", considered as global
sections. For a point x of Spec B(R), choose free generators by, ..., by, of
M,, and b,y14, . . ., byy of P,. The b;, can be considered as the values of local

sections at x. Then it is possible to write

n
*) Qig = Zl 732D jx
=

where the matrix [r;;] is invertible. Again, consider the 7;; as the values of
local sections at x. By the basic property of sheaves, there is a neighbourhood
U, of x in which (*) holds, and moreover the matrix [r;;,] is invertible for all y
in this neighbourhood U,. This implies that the elements by, . . ., b,, are free
generators of M, for all ¥'s in the given neighbourhood U,. Thus by using
(1.A), we can show that Me is a free Re-module; that is, Me = (Re)". The
proof is then completed by application of the partition property (1.B).

CoROLLARY 3.2. Let M be a finitely generated projective and indecomposable
R-module. If all of the stalks of R have the property that their projective modules
are free, then M = Re for some minimal idempotent e in R.

COROLLARY 3.3. Assume all of the stalks of R have the property that their
projective modules are free. Let M, N be two finitely generated and projective
R-modules. Then, M = N if and only if rankg, (M,) = rankg, (N,) for each x
in Spec B(R).

The following theorem is due to F. DeMeyer. Keeping the above assumption
on R, we have:

THEOREM 3.4. Assume x in Spec B(R) s a limit point. If M 1is a finitely
generated and projective R-module with M, # 0, then M 1s decomposable.

Proof. Since M is a finitely generated and projective R-module, there is a
basic open neighbourhood of x, U,, such that Me is a free Re-module by the
proof of Theorem 3.1. On the other hand, by hypothesis, M, # 0, so M, = 0
for all y in U,. Noting that x is a limit point of Spec B(R), we have at least
one y % x in U,. Spec B(R) is Hausdorff, so there exists a U, of x such that
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¥ is not in U,; and hence y is in U_,. But then Spec B(R) is covered by
{Ue, Ur—e} and
R=~=Re @R —¢),

where Spec B(Re') = U, and Spec B(R(1 — ¢')) = U,_, by (1.A). This
gives a decomposition of M, M = Me' @ M (1 — ¢’). Since M, = (M), # 0
and since M, = (M(1 — ¢')), # 0, M is decomposable.

Remark. The technique in the above proof is similar to Theorem 1.3 in [8].
Also we note that for some x in Spec B(R) there is no finitely generated
projective and indecomposable R-module M with M, % 0 (see the example
given by D. Zelinsky in [8]). Furthermore, it is not hard to see that if for
each x in Spec B(R), there is a finitely generated projective and indecomposable
R-module M with M, 5 0, then R is isomorphic with a finite direct sum of
connected rings.

COROLLARY 3.5. By keeping the above assumption on R, there is a one-to-one
correspondence between the following sets of elements:

(@) The set of all 1solated points x in Spec B(R).

(b) The set of all minimal idempotents e in R.

(c) The set of all classes of the finitely generated projective and indecomposable
R-modules M with M, # 0.

Proof. For (a) = (c), it is not hard to see that R, is a member in (c) if x is
in (a) by Lemma 2.10 in [5]; (c) = (a) is a consequence of the above theorem.
(b) & (c) is immediate because the idempotent e in (b) corresponds to M
in (c), where M, # 0 and U, = {x}.

4. A general Wedderburn theorem. In this section, we shall show a
general Wedderburn theorem. This is an extension of Corollaries 1 and 2 in [2].

THEOREM 4.1. Assume R, is semi-local for each x in Spec B(R). Let A be a
central separable R-algebra. Then there exists a central separable R-algebra D in
the same class as A in the Brauer group of R such that

A ®z D'~ Homz(AE, AE)

for an idempotent E in A with (AE) a finitely generated projective and faithful
R-module and

(1) D = EAE where D° is the opposite ring of D;

(2) there is a decomposition of R, R = @ Y i1 Re; for some orthogonal
idempotents e; in R and an integer n so that A = @ > i1 Ae;, D = @ X iz1 De;
and Ae; = My, (De;), the full matrix ring of degree k; over De, for an integer k;

(3) for each i, De; =2 (Ee;)A (Ee;), and De; is unique if (Ee;)y s @ minimal
idempotent in (Ae,), for each y in Spec B(Re;); and (Ee;), is a minimal idem-
potent in (Ae;), for each y in Spec B (Re;) if and only if all idempotents in De;
are in Re;;
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(4) there is exactly one isomorphic class of the finitely generated and projective
left Ae;-modules with the same Re-rank for each i.

Proof. (1) Since 4,(=R, ®g A) 1s a central separable R,-algebra and since
R, is semi-local, there exists a unique central separable R,-algebra D, in the
same class as 4, in the Brauer group of R, such that

A Rk, (Dz/)o = Home (ArEz,y AzErI)

where E,” is a minimal left idempotent in 4, and (D,’)? is the opposite ring
of D,'. Also, D,’ =~ E,/4.E,’ [2, Corollaries 1 and 2]. By [4, (1.6)], we have a
central separable R-algebra D such that

*) D,>~ D, ~E,A,E, .

Furthermore, by [9, (2.12)], E,’ is lifted to an idempotent E in 4 so that
E, = E,/. Hence

(**)  E/A,E, =~ (EAE), and Homg, (4,E,’, A,E,") =~ (Homgz(4E, AE)),

by [9, (2.7)]. So, from (*) and (**), 4, Qgr, (D.)° =~ (Homg(4E, AE)), and
D, = (EAE),; that is, (4 ®& D), = (Homgz(AE, AE)), and D, =~ (EAE),.
Thus, by [4, (1.7)], there is a basic open neighbourhood U, of x such that
(4 @& D%y = (Homg(AE, AE)), for each y in U,, and there is a basic open
neighbourhood of x, U,, such that D, =~ (EAE), for each y in U,.. This
gives ¢ (4 ®zD°) = ¢/ (Homz(4E, AE)) and ¢’'D =< ¢’ (EAE). Denote the
intersection of U, and U, by U,. Then ¢(4d ®zD°) =2 e(Homg(AE, AE))
and eD = ¢(EAE) as Re-algebras. Noting that eAE is a finitely generated
projective and faithful Re-module, we have that e4 and eD are in the same
class in the Brauer group of Re. Let x vary over Spec B (R) and cover Spec B (R)
with {U,. By (1.B), we have a finite subcover of Spec B(R) with
{Ueryt =1,...,n for some integer =}, where {e;] are orthogonal and
summing to 1. Then,

R~® Z Re;, e (4 ®RD,-°) =~ ¢;Homgz(4E;, AE,) and ¢;D; =~ ¢, (E,AE;)
i=1

for each 7. Consequently, let D be @ Y. i-1¢:D; and E = Y7 j e;E;. Then
A ®r D= Homgr(AE, AE) and D =< EAE. So, A and D are in the same
class of the Brauer group of R.

(2) Since AE and D are finitely generated and projective R-modules from
the proof of part (1), there are basic open neighbourhoods of x, U, and U,,
such that ¢’D and ¢’AE are free Re’ and Re'’-modules respectively. Denote
the intersection of U,, U+ and U, in part (1) by U,. Then U,, is a basic
open neighbourhood of x so that e (4 @z D°) = e Homg(4E, AE) as
Reo-algebras. Noting that (eed E), and (e(D), are free R,-modules for each
y in U,,, we have (eD), = @ > j-1 (R,)?, s-copies of R, for some integer s.
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But from the proof of part (1), (¢,D), has no proper idempotents. Then
(e0AE), is a free (e,D),-module [2, Theorem 1]; that is,

(€dE), = @ Xja1 (D).,

k-copies of (eoD), for some integer k; that is,

(e0AE), = @ ]Zzl (eoD),” = @ ; (@ ; (R,)1)J ~@ 2 (R,)’,

ks-copies of R,. Since edE and eoD are free Rer-modules and since
Spec B(Rey) = U,,,

ks k
(edAE), =~ @ Zl R) ~a Zl (esD),’
i= i=

for each y in Us. Thus edE = @ Y %1 (eD)? as e,D-modules [4, (1.7)].
e0d RreseoD? =2 Hompe, (€A E, e0AE), so esA = Hompo(eodE, epAE) (for
eyd and e)D are Morita equivalent); and so it is isomorphic with M} (e.D), a
full matrix ring of degree k over e¢,D. Finally, by (1.B) again, we have a
decomposition of R, R @Y ii1eR, A= PYiied, D=PYiieD
and e;A = My, (e.D), a full matrix ring of degree k; over e;D for an integer k.

(3) Since D = EAE, e;D = (e;E)A (e;E) for each 7. Now, if (¢;E), is a
minimal idempotentin (e;4),, then (e,D), is unique with no proper idempotents
by [2, Corollaries 1 and 2]. Thus e;D is unique by [4, (1.7)].

Furthermore, if all idempotents in ¢,D are in Re;, then (e;D), has no proper
idempotents. But (e;D), = E,A,E,; then E, is a left minimal idempotent in
A, for each y in U,; by [2, Corollaries 1 and 2]. Conversely, if E, is a left
minimal idempotent in (e;A), for each y in U,;, then (eD), = E,A,E, is
unique with no proper idempotents for each y in U,; by the same corollaries.
Thus all idempotents in e;D are in Re;. This follows because for an idempotent
E in e;D, Re; is a submodule of (Re; + (Re;)E). Noting that

(Re,)y, = (Re; + (Re,)E), = (Re;), + (Re.E),

for each y in U,;, we have that E, is in (Re;),; and hence Re, = (Re; + Re,E)
by [9, (2.11)]. Thus E is in Re,.

(4) Since e;4 and e;D are in the same class in the Brauer group of Rey;
that is, ;4 =2 Hom,,;po(e;AE, e;AE) from part (2), it suffices to show the
statement for the e;R-central separable algebra e¢;D by the Morita theorem.
In fact, if M and N are two finitely generated and projective e,D-modules
with the same Re;-rank, then M, = N, for each y in U,; as free R,-modules.
Thus M = N == @ X*_, (e:D)?, k-copies of e;D for some integer k, by the
argument used in part (2). This completes the proof.

COROLLARY 4.2. There is exacily one isomorphism class of the finitely generated
and projective e;D-modules with minimal rank over Re;.

Proof. We observe in fact, that they are isomorphic with e;D.
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Remark. By [4, (1.6)], it is proved that for each central separable R,-algebra
A, there is a central separable R-algebra D such that D, = A4,. But it is not
known whether there is a central separable R-algebra D such that D, =~ 4,
and D, has no proper idempotents for each y in some basic open neighbourhood
of x when 4, has no proper idempotents. Suppose there was; then the central
separable Re;-algebra De; in part (3) of the above theorem would be unique.
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