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The effect of replicated selection for body weight in mice on
vertebral shape
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Summary

The shapes of Tl and T2 vertebrae from unselected Q strain mice and from strains selected for
large and small body size were studied by Fourier analysis in order to ascertain whether shape
change was produced by size selection. The vertebrae of large, small and control strains were easily
distinguishable, but between replicate groups shape differences were less marked. The main
component of shape change was size related, but mice unselected for size also showed a non-size-
related shape change.

1. Introduction

Those biological variables which are under genetic
control are amenable to selection. It is possible to take
a population, say of dogs, and to modify their shape
and size by breeding from those which most closely
approach an externally applied set of desiderata so as
to produce a mastiff, a bulldog or a chihuahua.

Classical theory suggests that when we choose size
as a criterion for selection we also modify shape. This
size-related shape change is usually thought of as the
result of mechanical influences: engineering mathe-
matics dictates that because of surface area to volume
relations a large cylinder must be proportionately
thicker than a small one of the same strength. Galileo
noted that the cylindrical long bones of mammals
obeyed this rule. The problem was lucidly discussed
by D'Arcy Thompson (1961, ch. 2). Although this
approach is classically confined to comparison
between species we see no reason why it should not
also apply within a species: shape should not vary
isometrically between small and large mice - a larger,
heavier mouse is subjected to different forces to which
the bone responds by assuming a different shape.

If this is so one might expect that selection for size
might constrain shape. Replicated selection would
therefore result in shapes more similar than in
unselected controls. On the other hand different
shapes might fulfil the necessary mechanical con-
straints: in this case repeated selection might lead to
shapes less similar than in unselected controls.

Falconer (1973) took an outbred strain of mice,
* Corresponding author.

divided it into six groups and selected for large and
small six week body weight in each line. Truslove
(1976), who looked at skeletal preparations of
Falconer's mice, commented that 'the skeletons of
Large and Small mice have characteristic bones (i.e.
size, shape, density, etc.) which presumably are the
direct or indirect result of selection. The study of these
differences... may well turn out to be of considerable
interest'.

The availability of this material, in the form of
skeletal preparations of the six Large and Small lines
after some thirteen or fourteen generations of
selection, together with unselected Controls, led us to
ask the following questions. First, did the increase or
decrease in size produced by selection lead to a
measurable size-related shape change in the skeleton?
Secondly, was any induced shape change similar
amongst replicates of the experiment?

In this paper we have used the powerful technique
of Fourier analysis to derive a representation of shape
for each of Falconer's selected groups and examined
the way in which selection for size has affected
shape.

2. Materials and methods

We looked at the first and second thoracic vertebrae
(Tl and T2) of fifteen males and fifteen females taken
at random from the 13th or 14th generation of the
selection experiment (Large QLA-QLF, Small
QSA-QSF, Controls QCA-QCF). These preparations
form part of the Griineberg collection, and were
loaned by the British Museum, Natural History. The

https://doi.org/10.1017/S0016672300024149 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300024149


D. R. Johnson, P. O'Higgins and T. J. McAndrew 130

original derivation of the Q strain and details of
experimental procedure are given by Falconer
(1973).

Vertebrae were videodigitized according to the
protocol of Johnson et al. (1985). This may be briefly
summarized as follows. Images of the anteroposterior
projections of Tl and T2 vertebrae were obtained by
placing them on the stage of a dissecting microscope,
which was illuminated from below. An image,
captured by a standard black and white television
camera was fed to a simple video camera interface and
digitized by a BBC microcomputer. The image was
subjected to a series of routines which convert it to a
binary form (black and white only), enhance the edge
of the image (a commonly used procedure) and locate
the edge. A stream of co-ordinate pairs (0, 1; 1, 2; 2,
3 etc.) representing the edge was transferred to the
mainframe computer for further analysis. At the
magnification used this stream of co-ordinates con-
tained around 300 pairs per vertebra (Fig. 1 a, b).

The Cartesian co-ordinates were converted to 128
polar co-ordinates aligned on their centres of area,
rotated to give the best least squares fit and normalized
for area. The opened-out graph of polar co-ordinates
can be considered as a wave form and the technique of
Fourier analysis applied. Jean Baptiste Fourier
(1768-1830) described a method which splits a
complex waveform into a series of sine and cosine
components of varying amplitude. Lestrel (1974,
1982) applied this series to biological shapes. The
general Fourier series can be represented:

F{6) = a0 + ax cos 6 + b1 sin 0 + a2 cos 20
+ b2sin20...ancosn0 + bn (1)

where a0 is a constant, al-an are known as cosine
components, b1-bn are known as sine components and

(a)

QLA

QCA

QSA

QLA

QCA

QSA

Fig. 1. Outlines of vertebral shapes reconstructed from
polar co-ordinates. («) First thoracic vertebrae (Tl), (b)
second thoracic vertebrae (T2). These outlines are the
mean shapes for one replicate (A) of Falconer's
experiment and have not been scaled to the same area.
They thus differ from each other in both size and shape.

F(Q) is the magnitude of a polar radius r. Because the
sine and cosine components are 90° out of phase the
Fourier series can describe highly irregular waveforms
by means of a series of numbers. The Fourier series is
infinite: in practice a simple shape with low frequency
outline undulations is adequately described by the
early members of the series. More sophisticated
shapes demand more components. The higher fre-
quency components are influenced by errors in the
measurement process. Since too few Fourier com-
ponents produce an over-simplified version of the
shape and too many introduce error in the form of
random noise it is obviously necessary to find a
compromise value for the number of Fourier com-
ponents used. An objective test of the value of n is to
perform a discriminant function analysis which
compares all chosen variates simultaneously. In each
often successive analyses random tenths were removed
from our data sets. Each tenth was then compared
with the remaining 90% by discriminant analysis
using the first two Fourier components (SAS, 1982).
The analyses were repeated using increasing numbers
of Fourier components until the quality of dis-
crimination began to decline (see O'Higgins &
Williams, 1987). This number of components was then
taken to best describe the observed shape differences,
and used to calculate Mahalanobis' distances between
group centroids. Canonical axes were calculated by
the method of Gower (1966 a, b) who extracted
principle co-ordinates from the Mahalanobis' D
matrix. Cluster analysis was performed using Ward's
minimum variance method (Ward, 1963).

3. Results

The numerical value of the components of the Fourier
series tends to zero while the accuracy with which they
are computed is constant. Because of this later
components are less reliably estimated than earlier
ones (O'Higgins & Williams, 1987, p. 417). If too few
components are used to describe a shape we
oversimplify it: if too many are used we introduce
error. In order to achieve a compromise we must find
the number of Fourier components best suited to the
data set. This is done in practice by repeated
discriminant analyses using different numbers of
components until discrimination is maximized.

When we removed successive random tenths of the
data and looked for misclassification we found the
lowest error with 30 Fourier components for both Tl
and T2. Smaller or larger numbers gave worse
classification.

The numbers of Tl and T2 vertebrae respectively
classifying correctly and misclassifying with 30
components are given in Tables 1 and 2. Data from
both sexes are pooled. For Tl (Table 1) a mean of
450% of Control vertebrae, 62-8% of Large and
56-6% of Small were classified correctly by replicate
and 86-90% classified correctly by group. These
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Table 1. Percentages of correct classification achieved for Tl vertebrae using Fourier components 2-31.
n = number of mice per sample

Control

QCA
29

QCB
29

QCC
29

QCD
29

QCE
30

QCF
28 Mean

Classifying correctly (%)
Classifying within Control (%)
Classifying as Large/Small (%)

33-3
96-3

3-7
Large

70-3
88-9
111

370
92-5

7-5

55-5
92-5

7-5

35-7
96-4

3-6

30-7
61 5
38-5

QLA
30

QLB
28

QLC
28

QLD
30

QLE
26

QLF
28

450
880
120

Mean

Classifying correctly (%)
Classifying within Large (%)
Classifying as Control/Small (%)

57-1
89-2
10-8
Small

61-5
96-2

3-8

57-6
80-8
19-2

57-1
78-6
21-4

62-5
79-2
20-8

80-8
92-3

7-7

68-8
861
13 9

n ...

Classifying correctly (%)
Classifying within Small (%)
Classifying as Control/Large (%)

QSA
28

53-8
92-3

7-7

QSB
28

69-2
100

0

QSC
28

34-6
731
26-9

QSD
29

55-5
88-9
111

QSE
29

55-5
88-9
111

QSF
23

61 9
100

0

Mean

56-6
90-5

9-5

Table 2. Percentages of correct classification achieved for T2 vertebrae using Fourier components 2—31.
n = number of mice per sample

Control

QCA
29

QCB
30

QCC
30

QCD
25

QCE
30

QCF
26 Mean

Classifying correctly (%)
Classifying within Control (%)
Classifying as Large/Small (%)

22-2
740
260
Large

53-6
64-3
35-7

32-1
821
17-9

65-2
86-9
131

21-4
71-4
28-6

29-2
500
500

QLA
24

QLB
27

QLC
26

QLD
27

QLE
29

QLF
28

37-3
71-5
28-5

Mean

Classifying correctly (%)
Classifying within Large (%)
Classifying as Control/Small (%)

36-4
86-4
13-6
Small

520
760
240

500
79-2
20-8

600
760
240

190
76-2
23-8

42-3
731
26-9

43-2
77-8
22-2

n

Classifying correctly (%)
Classifying within Small (%)
Classifying as Control/Large (%)

QSA
... 20

421
89-4
10-6

QSB
28

61-5
80-7
193

QSC
26

541
750
250

QSD
27

240
840
160

QSE
24

46-6
68-2
31 8

QSF
20

57-8
89-4
10 6

Mean

47-7
811
18-9

results were mainly internally consistent with the
exception of QCF which had 9 members classifying
erroneously, 3 as Large, 6 as Small. QSC mice were
also poorly classified.

Once the number of Fourier components had been
optimized we were able to perform Canonical analyses
of the data. Plots of the first versus second Canonical
axis (Fig. 2) using the first 30 components showed
large, control and small group centroids well

separated. Clustering, by Ward's method (Fig. 3),
grouped all replicates correctly into Control, Large or
Small.

For T2 (Table 2) the classification was less good
with only 3 7 3 % of Control vertebrae, 43-2% of
Large and 47-7 % of Small having classified correctly
by replicate and 72-81% classifying correctly by
group. On the plot of first versus second and first
versus third Canonical axes (Figs. 4 & 5) the divisions
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Fig. 2. Group centroids of Large (QLA-QLF), Control
(QCA-QCF) and Small (QSA-QSF) Tl vertebrae. The X
axis is Canonical axis 1, the Y axis Canonical axis 2. For
Tl the proportions of the variance accounted for by the
first three axes are as follows: 1, 26-4%; 2, 22-4%, 3,
12-6%.
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Fig. 4. Group centroids of Large (QLA-QLF), Control
(QCA-QCF) and Small (QSA-QSF) T2 vertebrae. The X
axis is Canonical axis 1, the Y axis Canonical axis 2. For
T2 the proportions of the variance accounted for by the
first three axes are as follows: 1, 37-1 %; 2, 13-4%, 3,
11-3%.
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Fig. 3. Minimum spanning tree (Ward's method) for
Large (QLA-QLF), Control (QCA-QCF) and Small
(QSA-QSF) Tl vertebrae.

between Large, Small and Control are less marked
than in T l . Ward's method (Fig. 6) shows two groups
of Controls clustering outside their groups: QCB
clusters early with Larges and QCF with the Smalls.

The mean generalized distance between replicates
centres (Table 3) was similar within Tl and T2, but
that the T2 figures were slightly smaller. The mean
distance between group centres was also similar
(Table 4).

4. Discussion

Fourier analysis expresses a shape (in this case the
mean outline of a number of vertebrae) as a series of
numbers. These numbers allow us to make a
comparison between the mean shapes, and, if they
differ, to give an estimate of the difference. The
technique is very poor at identifying differences in

• QSA

QCD, • QSE

• QSB

QSD

- 1 0

• • 1 - 5

• 1 0

-0-5

-f-

- 2 5 - 2 0 - ' - 5 Q S C - - 0 ' 5

QCF»
• QSF «QCC

QCA • «

QLF.

QLE«

• QLB

- t - -4-
QLA ,

0-5 10 1-5 2 0 2-5

-0-5
• QLD

QCE
• - 1 0

• QLC

• - 1 - 5
QLB i

Fig. 5. Small (QSA-QSF) T2 vertebrae. The X axis is
Canonical axis 1, the Y axis Canonical axis 3.

particular areas of a shape because such a difference
will affect many Fourier components in a complex
manner. Our results thus allow us to ask only one
question: does selection for size affect shape? We are
developing different analyses which will allow us to
discuss regional differences in shape.

It is clear that in Falconer's experiment selection for
size also changed shape. Even though we equalized
the areas of the particular view of the vertebra with
which we worked our discriminant analysis had no
difficulty in classifying over 90% of Tls into Large,
Small, or Control. The accuracy of classification
between replicates was less and suggests that while
replicates in each group differed from each other
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Fig. 6. Minimum spanning tree (Ward's method) for
Large (QLA-QLF), Control (QCA-QCF) and Small
(QSA-QSF) T2 vertebrae.

Table 3. Mean generalized distance between replicate
centres (SDU) for each group of Tl and T2

Tl T2

Control
Large
Small

3-30
3-67
2-92

3-31
3-60
303

Table 4. Mean generalized distance between group
centres (SDU) for Tl and T2

Large
Small
Control

Tl

Large

2-96
305

Small

309

T2

Large

2-78
2-17

Small

204

somewhat in shape, these differences were con-
siderably less than differences between groups. The
difference (% classifying correctly— % classifying
within group) is a rough inverse measure of the
variation within a group. This number was largest
(and hence variation between replicates least) at
17-9% in Small mice, and less (11-6, 11-7%) in
Controls and Large mice. This suggestion, that
variance is less in the Small replicates, is borne out by
the generalized distances between individual Control,
Large and Small replicate group centroids (Table 3).
Since the Large group were the most dispersed this
might be taken to support weakly the argument that
engineering constraints are most critical in the Small
line where available material has to be placed to the
best advantage. We might expect genetic drift, in the
absence of selection in the Control group to emphasize
the dispersal of the Control line.

In the T2s the situation was less clear cut. The
accuracy of classification within groups and between
replicates was a little less, but 82-88 % still classified

accurately as Large, Small or Control. A Canonical
plot of group centroids (Fig. 4) shows overlapping of
the groups and Cluster analysis showed that two
groups of Control mice, QCB and QCF, joined at a
low level with Large and Small respectively.

The poor classification of T2 clearly needs an
explanation. This could be a real effect or an error due
to some aspect of the shape of T2 vertebrae which
does not respond well to our analysis. We discard the
latter hypothesis. We have previously looked at T2
and other vertebrae from many strains of mice
(Johnson et al. 1985; O'Higgins et al. 1986, 1987): the
shapes of T2 vertebrae can usually be classified no
better and no worse than those of other vertebrae. We
believe that the misgrouping of QCB and QCF is a
property of their shapes.

Truslove (1976) gives a table (her table 1) of the six
week weights of the replicates at generation 13-14
when our skeletal preparations were obtained. QCB is
the heaviest of the Control replicates with a mean
weight of 25-5 g and QCF the smallest at 200 g. We
think that this accounts for the misclassification seen
in our data: the largest and smallest Controls classified
with Large and Small respectively.

Canonical axes allow us to visualize high dimen-
sional space as a series of projections into two
dimensions. The first Canonical axis is calculated such
that it takes up the largest between-group variance
relative to within-group variance. The second and
subsequent axes represent progressively smaller
components of the variance. Canonical axes are
orthogonal in Mahalanobis' D space. Studies in the
primates (Ashton, 1981) have shown that in certain
circumstances a biological meaning can be attributed
to dispositions along these axes. Jolicoeur (1963) has
suggested that the first principal component be used
for (allometric) size correction (Canonical axes are
equivalent to principal components). This seems to be
a reasonable approach only when size accounts for the
major part of the differences between groups.

In this study we have removed size as a variable by
equalizing the areas of vertebral outlines. Any
differences between vertebrae are therefore not due to
size difference per se, but reflect the effect of size on
shape. On Canonical axis 1 for T l (Fig. 2) Large and
Small vertebrae occupy opposite poles: the Controls
are intermediate. On the second Canonical axis Small
and Large occupy one pole and Control the other.
This is also largely true for T2 (Fig. 4), if we neglect
the groups which classify poorly. We suggest that
selection for size produces vertebrae whose shape is
size-related (along axis 1): controls, free from the
constraint of selection vary along axis 2, i.e. in a non-
size-related way, but are still arranged so that the
largest (QCB) and smallest (QCF) tend towards the
large and small poles of Canonical axis 1. Differences
in size thus result in differences in shape irrespective of
selection. These differences are almost universally of
the same type in Controls as in selected vertebrae:

GRH 51
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there is only one size/shape trend. Any genetic
differences in shape control in the selected lines are
swamped by size differences, but can be seen in the
Controls. If we plot the score on Canonical axis 1 (a
measure of size-related shape change) against body
weight (a measure of size) the relationship is linear
(Fig. 7) for all groups. QCF, a poor classifier, lies close
to the regression line and thus obeys the postulated
size/shape relationship; QCB is an outlier of the
Large group.

If the differences seen between Tl and T2 are real
they must reflect pleiotropic effects of the selected
genes which differ between these two vertebrae. We
have shown elsewhere (O'Higgins et al. 1987) that
vertebrae in the C1-T2 region of the mouse show this
very local pleiotropism, with adjacent vertebrae in FjS
from inbred strains resembling different parents. Any
future studies on pleiotropism must clearly bear this in
mind: conclusions based on one group of measure-
ments may not hold for measurements taken else-
where.

We did not have a sample of the original founder
populations: our Control group was 13-14 genera-
tions away from the founders, as were the Large and
Small populations. The six week weights of these
Control mice differed very little over 13 generations
(Falconer, 1973); it seems reasonable to suggest that
their mean vertebral shape was also fairly constant
with time, although we must beware circularity of
argument. If we equate founder population mean
shape with 13th generation mean shape then it seems
from the data in Table 4 that Smalls and Larges have
diverged by similar amounts. Falconer found that six
week weight was also increased or depressed by the
same amount during selection.

Truslove (1976) noted that the frequency of minor
skeletal variations within a population of mice was
governed (amongst other things) by diet, and that
about half of the diet-effected changes were correlated
with increase or decrease in size. She attempted to
investigate these variations in the Q strain to see if the

35
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£ 25-
bft

W
ei

;
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15-

T2

'• ] / '
/ .QCB

- 3 - 2 - 1

Score on Canonical axis 1
Fig. 7. Regression of a measure of shape (score on first
Canonical axis) against body weight. • , Large, # ,
Control, A, Smalls. The two Control groups
misclassifying are individually marked.

effect of genetically induced size change paralleled
that induced by dietary change. Unfortunately the
incidence of suitable variants was much lower in Q
than in the original work on C57BL, perhaps due to
the outbreeding introduced prior to the experimental
selection for size.

We must also ask if the changes due to size have
anything to do with those due to increasing age. As
the skeleton matures it changes its shape. Will a Small
mouse vertebra resemble a Large one taken at a
younger age? This result is predicted by a series of
linked studies on the Q strain. Bryne, Hooper &
McCarthy (1973) and Hooper & McCarthy (1976)
worked on muscle, Clarke (1969) on fatness and
Falconer, Gauld & Roberts (1978) on cell size and
number in lung, liver, spleen and kidney. All these
studies indicate that large size is produced by an
accelerated passage through the growth process which
affects both cell size and cell number. The effects of
this process on the skeleton can only be ascertained by
longitudinal study, or more realistically by killing of
mice at a series of known ages.
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