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The Grothendieck Trace and the de Rham
Integral

Pramathanath Sastry and Yue Lin L. Tong

Abstract. On a smooth n-dimensional complete variety X over C we show that the trace map θ̃X :

Hn(X,Ωn
X) → C arising from Lipman’s version of Grothendieck duality in [L] agrees with

(2πi)−n(−1)n(n−1)/2

∫

X

: H2n
DR(X,C) → C

under the Dolbeault isomorphism.

This short paper is concerned with explicating the relationship between the trace
that occurs in Grothendieck duality and its counterpart (the integral) in the de Rham
theory. The sign (−1)n(n−1)/2 seen in our main theorem is forced upon us by our
sign conventions on spectral sequences and the fact that we use the trace in Lipman’s

book [L] as the concrete version of Grothendieck’s trace. This sign differs from the
one obtained by Conrad in [C2], primarily because of the different definitions of the
trace in Grothendieck duality. We elaborate on this in Section 5. Our sign differs
from the one obtained by Deligne [D] because of hidden conventions. This issue

is discussed on pp. 2–3 of [C1]—where the discrepancy is traced to the fact that
Conrad uses the transitivity relations [C, p. 29, (2.2.3) and (2.2.4)], and Deligne uses
a different set of transitivity relations. Our results are consistent with Conrad’s and
hence—via the discussion in [C1] and [C2] mentioned above—with Deligne’s.

The justification for one more proof is in the methods. The two traces—one aris-
ing from Grothendieck duality and the other from de Rham theory—give two ver-
sions of the fundamental class of a point p of an n-dimensional smooth variety M
over the complex numbers. The Grothendieck duality version of this fundamental

class is the cohomology class in Hn
p(Ωn

M) of dz1 ∧ · · · ∧ dzn/z1 · · · zn where z1, . . . , zn

form a local system of coordinates at p (cf. [G1, Section 4]). On the other hand, from
the de Rham point of view this fundamental class is the class of the Dirac delta dis-
tribution at p. We relate the two via the Bochner-Martinelli kernel. The relationship

follows from the fact that the distributional derivative of the Bochner-Martinelli ker-
nel (restricted to the second factor in C

n × C
n) is the Dirac distribution at a point.

We assume that all manifolds we deal with are paracompact and Hausdorff.

1 Currents

Recall that on a complex manifold M of dimension n, the cohomology groups
Hs(M,Ωr

M) can be represented as follows:
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(a) by ∂̄-closed forms of degree (r, s) and
(b) by ∂̄-closed currents of degree (r, s), where a current of degree (r, s) is an ele-

ment of the space of continuous linear functionals on the space of compactly
supported forms of degree (n − r, n − s) [dR, Chapter III], [GH, Chapter 3.1].

If Aa,b (resp. Da,b) represent the sheaf of forms (resp. currents) of degree (a, b), then
the natural inclusion Aa,b ⊂ Da,b respects the ∂̄ operation and hence we have a map
of complexes (of sheaves), Ar,• ↪→ Dr,• between two fine resolutions of Ω

r
M , and

on taking global sections the resulting map Γ(M,Ar,•) → Γ(M,Dr,•) is a quasi-
isomorphism giving an isomorphism

(1.1) Hr,s

∂̄
(M)

∼
−→ Hr,s

∂̄,curr
(M)

where H
r,s

∂̄
(M) = Hs

(
Γ(M,Ar,•)

)
and H

r,s

∂̄,curr
(M) = Hs

(
Γ(M,Dr,•)

)
. If Ω

r
M → I•

is an injective resolution, then we have a homotopy commutative diagram

Ar,• �

� //

αA !!C
CC

CC
CC

C
Dr,•

αD}}{{
{{

{{
{{

I•

of quasi-isomorphisms lifting the identity map on Ω
r
M . Up to homotopy the arrows

αA and αD are unique. Since Ar,• and Dr,• are fine, αA and αD induce isomorphisms

(1.2) H
r,s

∂̄
(M)

∼
−→ Hs(M,Ωr

M)

and

(1.3) H
r,s

∂̄,curr
(M)

∼
−→ Hs(M,Ωr

M)

and we have a commutative diagram

H
r,s

∂̄
(M)

∼

(1.1)

//

(1.2)

��

H
r,s

∂̄,curr
(M)

(1.3)xxrrrrrrrrrr

Hs(M,Ωr
M).

We say that an (r, s)-form (resp. (r, s)-current) β represents a cohomology class
µ ∈ Hs(M,Ωr

M) if β is ∂̄-closed and the cohomology class of β maps to µ under (1.2)

(resp. (1.3)). This gives a precise meaning to the opening sentence of this section.
There is a need to get our conventions correct, for we want to get our signs “on the
nose” for our theorem. Appealing to the Hodge-de Rham spectral sequence creates a
sign ambiguity depending on the conventions one uses for double complexes.
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In this short note, we will use the fact that if p ∈ M is a point, then the Dirac
delta distribution at p, δ{p}, which acts on compactly supported smooth functions

(compactly supported forms of degree (0, 0)), is an (n, n) current. Recall that if T is
an (n, n) current with compact support (e.g., T = δ{p}) then

∫
M

T = T[1] is defined
[dR, Chapter III, Section 8, pp. 42–43]. In fact T[ϕ] is defined for every C∞ function
ϕ on M—including those whose support is not compact [dR, Chapter III, Section 8,

p. 41]. In particular, it follows that
∫

M
δ{p} = δ{p}[1] = 1.

Let Φ = ΦM denote the family of compact subsets of M, and let ΓΦ(M, ) be
the functor of compact supports on M. Let H i

Φ
(M, ) denote the corresponding i-th

derived functor, i.e., H i
Φ

(M, ) denotes cohomology with compact support. It is well

known that any sheaf of modules over the sheaf of algebras of C∞ functions on M
is Φ-soft [I, Chapter III, 2.8, 2.9, 3.2]. Therefore the preceding discussion can be
reproduced with subscript Φ and one concludes that elements in Hn

Φ
(M,Ωn

M) can
be represented by (n, n) currents with compact support1—two such currents rep-

resenting the same class if they differ by ∂̄η, where η is an (n, n − 1) current with
compact support. Clearly

∫
M

: Hn
Φ

(M,Ωn
M) → C is well defined (since ∂̄η = dη for

an (n, n − 1) current η, and since Stokes theorem extends to currents [dR, p. 54]).

2 Comparison of Cohomologies

In this section we give our conventions for comparing Čech, derived functor, and
Dolbeault cohomologies (the latter two have already been compared). We remind
the reader about the need for care about signs, and hence the need to lay down our

conventions clearly and without ambiguity.
Let U = {Ui}i be an open cover of our complex manifold M, i varying over a well

ordered set and F a sheaf of abelian groups on M. Let C•
= C•(U,F) be the ordered

sheaf Čech complex associated to U (cf. [Ha, pp. 218–220] for the definition of the

Čech complex and its sheafified version). Then we have a canonical resolution F →
C•. Let F → I• be an injective resolution of F. Let αC : C• → I• be the homotopy
unique map of complexes lifting the identity map F. Applying H s

◦Γ(M, αC ) we get

the well-known comparison map

(2.1) Ȟs(U,F) → Hs(M,F).

If F = Ω
r
M , then (2.1) can be described in a different way, as follows: Let Cp,q

=

Cp(U,Ar,q) and δ : Cp,q → Cp+1,q the Čech coboundary. Let T• be the complex given
by Tm

=
⊕

p+q=m Cp,q, the coboundary dm : Tm → Tm+1 being given on Cp,q by

δ+(−1)p∂̄. Now C•
= C•(U,Ωr

M) and Ar,• are clearly subcomplexes of T• under the
obvious inclusions Cp ⊂ Cp,0 and Ar,q ↪→ C0,q. Now, the inclusions (of complexes)

(2.2) α ′
C : C

• ↪→ T
•, α ′

A : A
r,• ↪→ T

•

are quasi-isomorphisms. Moreover, the composition Ω
r
M → C• ⊂ T• is a quasi-

isomorphism (and it equals the composition Ω
r
M → Ar,• ↪→ T•). Let H =

1The meaning of represented being analogous to our earlier meaning, with the functor of sections with
compact support ΓΦ(M, ) replacing Γ(M, ).
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Hs
(
Γ(M,T•)

)
. Applying Hs

◦Γ(M, ) to the inclusions in (2.2), we get maps

ϕ : Ȟs(U,Ωr
M) −→ H, ψ : H

r,s

∂̄
(M) −→ H.

Since Ar,• and T• are complexes of fine sheaves, therefore ψ is an isomorphism. This

gives us a map

(2.3) ψ−1
◦ϕ : Ȟs(U,Ωr

M) −→ H
r,s

∂̄
(M).

The map (2.1) is well known to be determined by the commutativity of:

(2.4) Ȟs(U,Ωr
M)

(2.3)
//

(2.1) &&MMMMMMMMMM

H
r,s

∂̄
(M)

(1.2)

��

Hs(M,Ωr
M).

Indeed consider the diagram

Ar,•

α ′

A

��

αA
// I•

T•

αT

=={{{{{{{{

C•

α ′

C

oo

αC

OO

where αT is the homotopy unique map lifting the identity on Ω
r
M . We point out

that all arrows are maps between resolutions of Ω
r
M , and they all lift the identity on

Ω
r
M . Therefore, since I• is injective, the above diagram commutes up to homotopy.

Applying Hs ◦ Γ(M, ) we get the commutativity of (2.4).

3 Key Proposition

Suppose p is a point of M, and U ⊂ M is a coordinate neighborhood of p; z =

(z1, . . . , zn) : U → C
n the coordinates, z(p) = 0. Assume further that U is Stein. Let

U∗
= U \ {p}. If Ui = {q ∈ U | zi(q) 6= 0}, then U = {U i} is an ordered Stein

cover of U ∗. The element

dz1 ∧ · · · ∧ dzn

z1 · · · zn
∈ Cn−1(U,Ωn

M)

defines an element

τp ∈ Hn−1(U∗,Ωn
M).

If I• is an injective, or for that matter, flasque, resolution of Ω
n
M , we have a short exact

sequence of complexes

0 → Γp(U , I•) → Γ(U , I•) → Γ(U ∗, I•) → 0
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whence a connecting homomorphism2

Hn−1(U∗,Ωn
M) → Hn

p(U ,Ωn
M) = Hn

p(M,Ωn
M).

Composing this with the natural map Hn
p(M,Ωn

M) → Hn
Φ

(M,Ωn
M) we get a map

cp : Hn−1(U∗,Ωn
M) → Hn

Φ(M,Ωn
M).

Proposition 3.1 The image of τp in Hn
Φ

(M,Ωn
M) under cp is represented by the (n, n)

current (2πi)nε(n)δ{p}, where ε(n) = (−1)n(n−1)/2 and δ{p} is the Dirac distribution

at p.

Proof As above, let I• be an injective resolution of Ω
n
M . We have a commutative dia-

gram with exact rows, induced by the homotopy unique quasi-isomorphism Dn,• →
I• lifting the identity map on Ω

n
M ,

0 // Γp(U ,Dn,•)

��

// Γ(U ,Dn,•)

��

// Γ(U∗,Dn,•)

��

0 // Γp(U , I•) // Γ(U , I•) // Γ(U∗, I•) // 0.

If β0 is an (n, n− 1) current on U ∗ representing τp, and β an (n, n− 1) current on U
extending β0, then ∂̄β is an (n, n) current supported at p, and can hence be thought of
as a compactly supported current on M. From the above commutative diagram and

our conventions about connecting homomorphisms, the image of ∂̄β in Hn
Φ

(M,Ωn
M)

is precisely cp(τp). Our task then is to pick β0 and its extension β in such a way that
∂̄β = (2πi)nε(n)δ{p}. To do this we may as well identify U with its image in C

n (so
that p = 0 ∈ C

n). Let Cp,q, T•, etc., be as in the discussion in the previous section,

with r = n, s = n − 1 and M = U ∗. Set T•
= Γ(U∗,T•), and C p,q

= Γ(U∗,Cp,q).
Let

β ′
0 = cn

∑
i(−1)i−1z̄idz̄1 ∧ · · · ∧ d̂z̄i ∧ · · · ∧ dz̄n ∧ dz1 ∧ · · · ∧ dzn

|z|2n

where cn = ε(n)(n − 1)!/(2πi)n so that

∫

S2n−1

β ′
0 = 1,

where the orientation on S2n−1 is the one which makes the closed unit ball in C
n an

oriented manifold with boundary, the interior having the standard orientation of C
n.

2In our convention, if 0 → A• → B• → C• → 0 is a short exact sequence of of complexes of abelian
groups, then the connecting map H i (C•) → Hi+1(A•) sends [γ] to [dBβ], where

(a) β ∈ Bi is a pre-image of γ ∈ C i , and
(b) dBβ is identified with an i + 1-cocycle in A•, since the image of dBβ in C i+1 is 0.

This convention (without signs) is compatible with the computations in the proof of [L, Lemma (8.6),
pp. 79–81], a crucial ingredient in the proof of the Residue Theorem [loc. cit., Theorem (0.6)(d), p. 25].
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For n = 1, β ′
0 = 1/(2πi) × dz/z. If n > 1, according to [GH, p. 654], [T, p. 907, 2.6]

(see also [ibid, pp. 910–911, Section 4]), [TT, pp. 287, 297] and [H, p. 87], we can

find elements ξp ∈ C p,n−p−2, p = 0, . . . , n − 2, ωp ∈ C p,n−p−1, p = 0, . . . , n − 1
such that

• ωn−1 = α ′
C

(
dz1∧···∧dzn

z1···zn

)
,

• ω0 = α ′
A

(
(2πi)nβ ′

0

)
,

• ∂̄ξp = ωp , p = 0, . . . , n − 2, and
• δξp = ωp+1, p = 0, . . . , n − 2.

(See p. 907, Prop. 2.6 and Section 4(i), pp. 910–911 of [T].) Now

dT•

( n−2∑

p=0

(−1)p(p−1)/2ξp

)
=

n−2∑

p=0

(−1)p(p−1)/2[(−1)pωp + ωp+1]

= ω0 +

n−3∑

p=0

[(−1)p(p−1)/2 + (−1)(p+2)(p+1)/2]ωp+1

+ (−1)(n−2)(n−3)/2ωn−1

= ω0 + (−1)(n−2)(n−3)/2ωn−1

(since (−1)p(p−1)/2 + (−1)(p+2)(p+1)/2
= 0).

It follows that ωn−1 and −(−1)(n−2)(n−3)/2ω0 represent the same cohomology class
in T•. Now

ω0 = α ′
A

(
(2πi)nβ ′

0

)
and − (−1)(n−2)(n−3)/2

= (−1)n(n−1)/2
= ε(n).

Let β0 = ε(n)(2πi)nβ ′
0 (the case n = 1 included). The above computations, together

with the diagram (2.4) show that for n > 1, β0 represents τp. This statement is
obviously true for n = 1.

One checks—by following the growth of β ′
0 at the origin—that

∫
U
β ′

0 ∧ ϕ is finite
for every compactly supported (0, 1) form ϕ on U , and that ϕ 7→

∫
U
β ′

0 ∧ ϕ defines
an (n, n − 1) current β ′ on U extending β ′

0 ∈ Γ(U∗,Dn,n−1). It is well known that
∂̄β ′

= δ{0} (see e.g., [TT, (2.13)]). Setting β = ε(n)(2πi)nβ ′, we see that we are

done.

We wish to point out that in [GH], the definition of the Dolbeault isomorphism
is different from ours. In loc. cit., the Dolbeault isomorphism is obtained by breaking
up the Dolbeault resolution into short exact sequences and then repeatedly using
connecting homomorphisms (isomorphisms in this case) to obtain Hn,n−1(M) '
Hn−1(M,Ωn

M). Our procedure instead is to use the map Dn,• → I•. The conclusion
reached in [GH] then is that (2πi)nβ ′

0 represents τp. The two conventions differ by
a factor of ε(n) as the above computations show. Similar comments apply to [H]
and [T].
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4 Grothendieck Trace vs. the Integral

For an algebraic scheme X over C, let Xan denote the corresponding analytic space.
From now on let M = Xan where X is a smooth complete variety of dimension n over
C. Then M is compact and hence Hn

Φ
(M,Ωn

M) = Hn(M,Ωn
M). Recall that we have a

natural map M → X of locally ringed spaces, and the natural map g : Hn(X,Ωn
X) →

Hn(M,Ωn
M) is an isomorphism (this follows from Grothendieck’s generalization of

GAGA in [G2, XII]). There is a natural isomorphism

(4.1) Hn(M,Ωn
M)

∼
−→ H2n

DR(M,C)

which is compatible with integration of top degree forms. In greater detail, if ν ∈
Hn(M,Ωn

M), and β is an (n, n)-form representing it, then, the image of ν under (4.1)
is the de Rham class represented by β (viewed as a 2n-form).

We point out that the above isomorphism is the standard isomorphism arising
from “the” Hodge to de Rham spectral sequence, and not the isomorphism arising
from the EGA conventions for spectral sequences associated with double complexes

(see [C2] for the issues involved with using different conventions, which is why we
put quote marks around the word “the” in the previous sentence).

For the trace map in Grothendieck duality we use Lipman’s version

θ̃X : Hn(X,Ωn
X) → C

defined in [L, p. 25, Theorem (0.6)(d)].

Our main theorem is:

Theorem 4.1 The following diagram commutes:

(4.2) Hn(X,Ωn
X)

'g

��

θ̃X

// C

Hn(M,Ωn
M)

(4.1)

// H2n
DR(M,C).

(2πi)−nε(n)
∫

M

OO

Proof Since all vector spaces in the diagram are one dimensional over C and all maps
are non-zero, therefore it is enough to show that for any one judiciously picked non-

zero element µ ∈ Hn(X,Ωn
X), (2πi)−nε(n)

∫
M

g(µ) = θ̃X(µ).

Pick an element p ∈ Xmax = |M| (here Xmax means the set of closed points of X).
Let z1, . . . , zn ∈ OX,p be a regular system of parameters. Let V = Spec A be an affine
open neighborhood of p in X on which

(a) z1, . . . , zn are defined,
(b) the maximal ideal of A corresponding to p is (z1, . . . , zn)A, and
(c) z defines an étale map z : V → A

n.
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The set Vmax may be thought of as an open set in M, and we can find a Stein open
subset U ⊂ Vmax containing p such that z : U → C

n is an open immersion. Let

V ∗
= V \ {p}. Just as we defined τp, we can define τ

alg
p ∈ Hn−1(V ∗,Ωn

X) as the

image of the Čech co-cycle dz1 ∧ · · · ∧ dzn/z1 · · · zn ∈ Cn−1(V,Ωn
X), where V = {Vi}

and Vi = Spec Azi
.

We have connecting maps Hn−1(V ∗,Ωn
X) → Hn

p(V,Ωn
X) = Hn

p(X,Ωn
X), and a map

c
alg
p : Hn−1(V ∗,Ωn

X) → Hn(X,Ωn
X). We define the fundamental class of {p} to be the

class [p] = c
alg
p (τ

alg
p ) ∈ Hn(X,Ωn

X). One checks easily that

(a) the natural map Hn−1(V ∗,Ωn
X) → Hn−1(U∗,Ωn

M) sends τ
alg
p to τp and

(b) the diagram

Hn−1(V ∗,Ωn
X)

��

c
alg
p

// Hn(X,Ωn
X)

��

Hn−1(U∗,Ωn
M)

cp

// Hn(M,Ωn
M)

commutes.

It follows from Proposition 3.1 that g[p] = (2πi)nε(n)[δ{p}]. Clearly [p] is non-zero
(since g is an isomorphism), and this is our judiciously chosen µ. It is immediate that

(2πi)−nε(n)
∫

M
g[p] = 1. On the other hand, the image of τ

alg
p in Hn

p(X,Ωn
X) is given

by the generalized fraction
[

dz1∧···∧dzn
z1,...,zn

]
(see [L, p. 59]). It follows from the residue

theorem in [loc. cit., Theorem (0.5)(d), p. 25] and from the residue formulas in p. 64
of loc. cit. that

θ̃X[p] = resp

[
dz1 ∧ · · · ∧ dzn

z1, . . . , zn

]

= 1

= (2πi)−nε(n)

∫

M

g[p].

5 Comparison with Conrad’s Results

Let X be an n-dimensional variety over C, i.e., a non-empty reduced irreducible sep-
arated C-scheme of finite type. If X is complete and smooth over C, let

γX : Hn(X,Ωn
X) → C

be the trace map of Conrad [C, p. 150, (3.4.11)]. We claim that

(5.1) γX = (−1)n(n+1)/2θ̃X .
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For brevity set ε̃(n) = (−1)n(n+1)/2. In [C2, p. 10, Theorem 2.2], Conrad proves (with
M = Xan as before) that

(5.2) Hn(X,Ωn
X)

'g

��

γX

// C

Hn(M,Ωn
M)

(4.1)

// H2n
DR(M,C)

(2πi)−n(−1)n
∫

M

OO

commutes. Since ε(n) = (−1)nε̃(n), (5.1) follows from (4.2) and (5.2). It is however

psychologically more reassuring if we can directly prove (5.1) without using either
Theorem 4.1 or [C2, Theorem 2.2]. Such a direct proof would imply that these two
theorems are compatible with each other. We give a brief outline (with relevant ref-

erences) of how this can be done, without getting into too many details.

There is an important case where (5.1) can be easily verified. Let

P = Proj C[T0, . . . ,Tn] = P
n
C
.

Set ti = Ti/T0, i = 1, . . . , n, Ui = {Ti 6= 0}, i = 0, . . . , n, and U = {U i}
n
i=0.

Then U is an affine open cover of P and dt1 ∧ · · · ∧ dtn/t1 · · · tn is a Čech n-cocycle
in Cn(U,Ωn

P
) and hence represents an element c ∈ Hn(P,Ωn

P
) via the map (2.1).

It is well known that c does not depend on the choice of the “coordinate system”

T0, . . . ,Tn.

By [L, p. 74, Remarks] and [C, p. 32, (2.3.1)] (see also [ibid, (2.3.2) and (2.3.3)]3)
we have:

θ̃P(c) = 1 and γP(c) = (−1)n(n+1)/2

giving (5.1) for X = P.

To say more we must expand our discussion to include singular varieties. We
begin by putting a “canonical structure” on the dualizing structures in Conrad’s book
[C] (restricting ourselves to C-varieties). For X an n-dimensional variety over C,

let ωX = H−n(π!
X C) where πX : X → Spec C is the structural map and π!

X is as in
[C, pp. 133–136, (3.3.1), (3.3.6)—(3.3.13)]. If X is smooth ωX can be identified with
Ω

n
X . This is seen by setting f = πX and K•

= C in [C, p. 136, (3.3.16)] and appealing
to the definitions in p. 31, (2.2.7) and p. 134, (3.3.6) of ibid. One checks that the

data ω = {ωX} over all such X is an O-module in the sense of Lipman [L, pp. 28–
32, Chapter I, Section 1]. The O-module ω has a canonical structure in the sense
of Lipman [ibid, pp. 32–33, (2.1)]. This is seen from [C, p. 31, (2.2.9)] and [ibid,
p. 79]—especially the discussion on finite étale maps in which equations (2.7.9) and

(2.7.10) of ibid are embedded. Therefore ωX can be identified with ω̃X—the sheaf
of regular differential forms on X (cf. [L, p. 34, Lemma (2.2)] as well as the Remark
following it). The sheaf ω̃X is a coherent OX submodule of the sheaf of meromorphic
differentials on X, and on the smooth locus X◦ of X, it equals Ω

n
X◦ .

3Note however that the assertion made in [C, p. 33, (2.3.4)] is off by a sign of (−1)n—see [C2].
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Suppose X is complete. Let

γX : Hn(X, ω̃X) −→ C

be the map induced by the trace map TrπX
: RπX∗

π!
XC → C of [C, pp. 146–150,

3.4]. A few remarks are in order. The complex π !
XC can be identified with a residual

complex π∆
X C which is concentrated in degrees−n, . . . , 0 (the notion of π∆

X is already
embedded in the definitions of π!

X referred to above), and hence we have a natural

map ω̃X[n] → π!
XC. The other important remark is this: in order to define γX in a

manner compatible with its definition when X is smooth, we must follow Conrad’s
conventions for (3.4.13) of [C]. It is easy to check that (ω̃X , γX) is an n-dualizing pair,
i.e., it represents the functor HomC

(
Hn(X, ),C

)
of quasi-coherent sheaves.

Let h : V → W be a proper surjective map between n-dimensional C-varieties.
Such a map must necessarily be generically finite, and since we are working with
fields of characteristic zero, this map must actually be generically étale. According to
[L, p. 38, Lemma (3.2)], there is a unique map

th : h∗ω̃V → ω̃W

(denoted t#
h in loc. cit.) which localizes to trace ⊗1 at the generic point of W

[L, pp. 32–33, (2.1.1)]. If W is complete then by [C, p. 149, (3.4.3) (TRA1) and

(TRA2)] and [ibid, p. 79, (2.7.10)], it is not difficult to see that

(5.3) Hn(W, h∗ω̃V )

th

��

L
// Hn(V, ω̃V )

γV

��
Hn(W, ω̃W )

γW

// C

commutes, where L is the edge homomorphism from the Leray spectral sequence.
We point out that in this instance the two double complex conventions (giving rise
to the Leray spectral sequence) mentioned in [C1, p. 1] give rise to the same L. By

[L, p. 15, (0.2.1)], (5.3) commutes after substituting (γV , γW ) with (θ̃V , θ̃W ). We
could, at this stage appeal to [L, pp. 15–16, (0.2B)], to settle (5.1). The arguments
used so far from [L] are elementary, but loc. cit. requires the full strength of the main
theorems of ibid. We therefore point out another way by modifying some of the

arguments in ibid.
If X is an n-dimensional complete C-variety, by Chow’s Lemma and Noether nor-

malization, we have a diagram

V
f

����
��

��
� π

��?
??

??
??

X P
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such that V is a projective variety, f is birational, and π is finite surjective. Let
(tV , tX , tP) ∈ {(θ̃V , θ̃X , θ̃P), (γV , γX , γP)}. Then (5.3) and [L, p. 15, (0.2.1)] give us a

commutative diagram

Hn(X, f∗ω̃V )

t f

��

L
// Hn(V, ω̃V )

tV

��

Hn(P, π∗ω̃V )
L

(')

oo

tπ

��

Hn(X, ω̃X)
tX

// C Hn(P,Ωn
P

).
tP

oo

Since γP = ε̃(n)θ̃P, therefore, using the right half of the above diagram, especially the
fact that the westward pointing L is surjective, we get

(∗) γV = ε̃(n)θ̃V .

Next, we have a non-empty open subscheme U of X such that under f , f −1(U ) is
isomorphic to U . By [L, p. 38, Lemma (3.2)] the map t f : f∗ω̃V → ω̃X is injective and

its cokernel C is supported in X \U . Clearly (since U is non-empty), Hn(X,C) = 0.
It follows that Hn(X, t f ) is surjective. The left half of the above commutative diagram
now gives γX = ε̃(n)θ̃X (we are using (∗)). Hence (5.1) is true (and not just for
smooth X).
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