A BASIC ANALOGUE OF MACROBERT’S E-FUNCTION
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1. Introduction and notation. MacRobert [2] in 1937 defined the E-function as
E(o, B::2)= ) T(@T(B—0)z°F(ox;a—p+1; 2), ¢y)
@B

where the symbol ) denotes that to the expression following it, a similar expression with a
ap
and f interchanged is to be added. For (1) he also gave the integral representation

El@, B::2)= F(a)jwe'*l”“(l+/1/z)'“ dl, ¢))
0

where Re >0, |argz | < 7.

Since 1937 the E-function has been generalized and studied in detail by MacRobert and
others. In this paper, I give a basic analogue of (1) and study some of its fundamental
properties.

The following notation is used throughout the paper. Let

lg|<1, logg=—w=—(w,+iw,),

where w, w,, w, are constants, w; and w, being real. Also, let
@)h=@,=1-¢(1-g""") ... (1-g""""1),

@o=1, (@)-n=(=)g*""* Vg7 "/(q" "%, ;
then we define'the generalized basic hypergeometric function as

+1(I) Q1,05 -, Aryq s Z] — - (al)n (ar’i-l)nz'l (|Z |<1
r r ]

bl’ bz, Tt b" n=0 (q)n(bl)n (br)n

and the ““ confluent >’ hypergeometric function as

S A = o (a)n n, 4n(n—1)
L= L e

Also Ex) = 1‘[(1 xq") = Zo( =

f—"[ (L+yx~'q"
=o(Ll+yx~1g*™™

)n 4n(n—1)

’

(x+)=xA+yx7Y), =

1
(1+x)

and G() = {nljo(l - q“")} -

= ,®y(a;—x), for |x|<I,
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Further, following Hahn [1], the basic integral of a function under suitable conditions is de-

fined as
S10) d(@y) = x-0) ¥ difg,
Sro) dtay) = x1-0 3 71070
and thus Sy aan-a-o ¥ ).

b
As above we denote the basic integrals by the symbol S d(qu).

2. Definitions. We define the basic analogue of the E-function by the integral
G() & -
o B::2) = 7 SE@DH ™00~ 22) d(a), ®

where Re > 0, and let arg A = 0, for simplicity.
We now proceed to evaluate the integral on the right of (3). We know thatf

G(o) . _ 1 [ Gl=s)n@/
aq oA 2niLG(1—s)sinns @ @

where the contour C is a line parallel to Re (ws) = 0 with loops, if necessary, to include the
poles of G(a—s). The integral converges if Re [s log (z/4)—log sin ns] < 0 for large values of
| s | on the contour, i.e. if | {arg z—w; 1w, log | z |} | < =, since 0 < 4 <1. Hence (3) gives

.. =1_w & g1 G(a—s) n(z/A)*
Edoofe:2) 2ni 1—¢q §Eq(q/1)/1 4(ah c G(1—s) sinms as

Changing the order of integration, which is justified for Re (f—s) > 0 and the above argument
of z, we get

1 GO [ G(a—s) =nz* ¢ Bos—1
E(a,f::2)=— ds DE (q)A d(q’
(i) 2nil—q ) c G(1—5s) sin ns s§ 4% (a)

_1__] G@=5)G(B~s) nz* , )
2ni J ¢ G(1-s) sinms

valid by analytic continuation when Re g > 0 and |{arg z—w,w,llog | z |}| < =.

The contour integral (5) gives another integral representation for the E -function.
Evaluating (5) by considering the residues at the poles of G(x—s) and G(f—s)[3], we get

e G@G(B-—) S (A +z7 " (L4297
Eq(‘x, f::2) —a.zl; G(1) =0 (1+z—lqn)(1+zq1+n)

(6) gives the series definition for the E -function and shows that it is symmetrical in « and f.

1Oy 0—f+1; Zqz_’,)- (6)

t Cf. [3] Evaluating the integral (4) by considering the residues at the poles of G(« - s), we get an expression
which is identically equal to the left-hand side.
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3. Recurrence relations. We now prove the following recurrence relations:
(1—g)E o B::2)—Efa+1,B::2) = g E(a+1,8+1::2), Q)

(P —g)E (o, B:: 2)+q°E (o, B+1::2) = QP Efa+1,B::2), 8)
(1-gP)Efa, B::2) =z qP(1—q* " #")E (o, B+1:: 2)+(1 —q" " DE a—1,+1::2). (9)
To prove (7) we observe that the left-hand side is equal to

a —q“)f—““; :§Eq<qz)z”'hd>o(a ;= Ajz) d(g2)— Gia—zlllSEq(ql)l’_lﬂ’o(“'*'l .~ 2/2) d(gh)
- - 0

= D S (g~ [ayla s 1) - ol 15-412)] dla)
g .

LECED S (1)1, 0yfa+13-4j2) d(gh)
z(1—¢q) o

=z 'q°E a+1, f+1::2).

To prove (8), we take (7) and a similar relation with a replaced by f. Eliminating
Ea+1, f+1:: z) between these two relations we get (8).

To prove (9), we multiply (7) by ¢# —q* and (8) by 1 —g* and subtract. Changinga to a—1
in the result so obtained we obtain (9).

4. A generalization of (9). We next prove the following formula:

§ @GOGy g0 ngr, Banc D) = (@E@ B ). (10)
r=0 q*"")q),

To prove (10) we consider its left-hand side and use the contour integral (5) for the E -function
in it. This gives
]_ - (q_")r(qa_ﬂ_”)r(qa—")n(_z)—rqr(ﬂ+n) G(a—n’i‘r—S)G(ﬂ‘i‘n—S) 'TIZS ds.
27u.r'=0 (qa_")r(q)r C G(I—S) sin ns

Putting s = t+r, and changing the order of integration, which is obviously justified, we
get on simplification

—_ ] — _ t -n a=-f-n ,t.
‘l_f G@=n-G(+n—1) nz (qa-n)”q,z[q .q ,q,q]d,.

27i ) ¢ G(1—% sin 7t g ", gttt

Summing the @, by the basic analogue of Saalschiitz’s theorem, we get
@) Gla=G(E—-1) =z’
2ni J ¢ G(l-y) sin nt
which proves (10). For n =1, (10) reduces to (9).

dt = (q"),Ej(, B:: 2),

5. An integral representation for E(a, f::2). We show thatt

T We write f([x+h]) to denote the series T ar(x +h)r, where f(x) =X arx’.
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1 1
Eq(a: B ol Z) = 1__5 §Eq(d, .B+1 B Z/[].—qﬁt])[l —qt]ﬁ—ld(tq)’ (11)

where Rea>0,Ref>0and |¢g| < I.
Proof. The right-hand integral is given by

o~

ﬁ Eo, B+1:: z/[1—g*D[1~at],-,d(tq)
_ 1
(1—g)?

On changing the order of integration, which is valid for Rea >0, Re $ >0 and
| A(1-qfr)| < | z |, this becomes

1
(1—9)?

Expanding the ,®, and integrating term by term the z-integral, for Re # > 0, with the help of the
result

G(f+1) §[1 —qt]s_d(tq) éoEq(qA)l"'ll(I)o(ﬁ+ 1, —Az"'[1-¢’]) d(4g).

G(B+1) %Eq(ql)l“'ld(lq) 0é[l —qt]g-1 1Po(B+1, Az7[1—gPr]) d(tq).

1 1 a1y _ _ oo(l_qa+l+n)(l___ql+n)
= §x ( qx),l_ld(qx)—"];[0 QP (Re a>0, Re 1>0),

we get

1—ié0(ﬂ) S (0™ (0o(B ~4/2) d(a) = Ey(x, B 2).

6. An asymptotic expansion for E(«, f:: z) for | z | »co0. If we evaluate the integral (5)
by considering the residues at the poles of I'(s), we deduce the behaviour of E («, f: : z) for
large values of | z|. In particular, we find that

G(@)GB)
Efa, B::2) ~ ———=",®4a, f; ~1/2).
oo B::2) T (e B 1))

7. It may be of interest to generalize the E,(a, f : : z) function and also to define the basic
analogues of the Whittaker functions W, _and M, . withits help, as in the case of MacRobert’s
function, and then to study further properties of such functions. I hope to deal with these
functions in a subsequent paper.
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