ON SUBSETS WITH INTERSECTIONS OF EVEN CARDINALITY
E.R. Berlekamp

(received February 14, 1969)

This paper solves a question posed by P. Erdods:

THEOREM. If A ,AZ, vee, A are distinct subsets of n

1
elements and if IAi M AJ,I = 0 mod2 (i # j), then
[ n + 1 if n <5
n
2 .
M < < 2 if n evenand n > 6
n-1
2 .
1 + 2 if n oddand n > 7
~

and for each n, there exists a collection of subsets which achieves

this bound with equality.

Proof. Without loss of generality, we assume the sets are
ordered so that for some k,

|Ai|simod2 if i=1,2, Lk
and
IAiIEOmodZ if i =k +1, .M
-

-> —_
Let A1 s A2 e, AM be the corresponding n-dimensional binary
(GF(2)) row vectors. We may further assume that the sets are ordered

- - - . - - -
so that Ak+1 'Ak+2 ) e ’Ak+l form a basis of the set Ak+i 'Ak+2' e ,AM,
so that

?
(1) M < k +2
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. -> -> . .
Since the binary dot product Ai-Aj gives the parity of IAi M Ajl ,

we know that if 1 < i, j < k +14, then

>4
>
"

(2)

o 0 otherwise

- = —

We also claim that the vectors A1 'AZ e e 'Ak+z are linearly
independent, for if there were an integer i < k and binary elements
s b e, h

Pit1 Pige Pyyy Such that

k+4

- -

(3) A, = = b A

j=itd I

then we could take the dot product of Xi and each side of Equation (3)

to obtain the contradiction

k+4 k44
e - >
1 =A-A = = DbA-A = T 0=0
jeivr 21 j=i+l

If i is in the interval k < i < k +£ andif j # i, then we may
replace K_) by Kj + Ki and obtain a new set of k + £ linearly
independent binary vectors which also satisfy Equation (2). If we select
a column in which Xi has a 1 and then add Ki into each X_] which has
a 1 in that column (j # i), we obtain a set of vectors in which only

Ki has a 1 in the selected column. If we repeat this procedure for all

i in the interval k < i1 < k + £ , and then permute columns
appropriately, we obtain a set of vectors of the form
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—n-£— ¢ J >

T A

A1
- k
A
2 :
. v
. 1 »~
-
B 1
Ak
Ak+1 .
-
A 1
| ke ] > |
Let B,,B be the n - £ dimensional binary vectors

..., B
17727 k+4
obtained by deleting the last £ columns of these A's. Since these A's
satisfy Equation (2), we have

@i
Wy
i

for all 1 < i,j < k + £ . Since the B's are orthonormal, they are
linearly independent and we have that k + £ < n - £ or £ < [$(n-k)],
where [x] denotes the greatest integer not exceeding x . Equation (1)
now becomes

1 -
M < k +22(®-K]
Since k is arbitrary, we write
1 -
M < max k + 2[2 (n.- k)]
0<k<n
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If n < 5, amaximum is attained at k = n; if n > 6, a maximum
is attained at k = 0 or 1, depending on the parity of n . This proves
the bound stated in the theorem.

It is easy to construct collections of subsets satisfying the bound.
For n < 5, the empty subset and the n one-element subsets suffice.

1
For n > 6, we may selectall 2[2 o] subsets in which each of [3n]
disjoint pairs of elements always occur together. If n is odd, we may
also include the set consisting of the single unpaired element.

Remark. Professor J.E. Graver of Syracuse University also
solved this problem, independently of the author.
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