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A LOCAL APPROACH TO A CLASS OF LOCALLY FINITE GROUPS

A. BALLESTER-BOLINCHES AND TATIANA PEDRAZA

This paper is devoted to the study of a class of generalised p-nilpotent groups in the
universe cC of all radical locally finite groups satisfying min-g for every prime q. Some
results of finite groups are extended and a characterisation of the injectors associated
with this class is given.

1. INTRODUCTION

A property of groups is said to be "local" if it is generalised in a form referring to a
prime. An interesting problem in this context is to find out whether the original property
can be described as the conjunction of all the local properties for all primes. For instance,
if we consider the property of finite groups of being nilpotent, a local version is that of
being p-nilpotent, p a prime. Obviously every finite nilpotent group is p-nilpotent and
a finite group which is p-nilpotent for all primes p is nilpotent. A similar approach to
the class of locally nilpotent groups has been obtained by using the same definition of
p-nilpotent groups as in the finite case (see [6, (1.3.5)]).

In this paper we consider another generalisation of the class of nilpotent groups.
Denote by cC the class of all radical locally finite groups with min-g for all primes g and
let B be the class of all c£-groups in which every proper subgroup has a proper normal
closure. This is a class of generalised nilpotent groups. It is shown in [3] and [4] that
this class behaves in the universe cC as the nilpotent groups in the finite universe.

Our purpose here is to introduce and study a local version of the class B. In par-
ticular, some properties appear relating the p-Fitting subgroup and a new characteristic
subgroup which is defined by intersections of certain types of major subgroups. This
subgroup can be considered as the local version of the Frattini-like subgroup introduced
by Tomkinson in [12]. Moreover, we study the injectors associated with this class in our
universe.
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2. PRELIMINARY RESULTS

We begin by recalling some definitions. Notation that is not specifically cited here

is consistent with that used in [6, 7, 10].

Let U be a subgroup of a group G and consider the properly ascending chains

U = U0<U1<...<Ua = G

from U to G. We define m(U) to be the least upper bound of the types o; of all such
chains. Clearly m(U) — 1 if and only if U is a maximal subgroup of G. A proper subgroup
M of G is said to be a major subgroup of G if m(U) — m(M) whenever M ^ U < G.

Then we define fj,(G) to be the intersection of all major subgroups of G.

Following [14], a group G is semiprimitive if it is the split extension, G — [D]M, of
a divisibly irreducible ZM-module D by a finite soluble group M with trivial core.

In the sequel all groups considered belong to the class cC of all radical locally finite

groups with min-q for all primes q.

As an attempt to extend the concept of a chief factor of a finite group we introduced
the following concept. Let G be a group and consider H and K, two normal subgroups
of G such that K is contained in H. Then H/K is called a 5-chief factor of G if H/K is
either a minimal normal subgroup of G/K or a divisibly irreducible ZG-module, that is,
H/K has no proper infinite G-invariant subgroups.

Let G be a group and consider a major subgroup M of G. Write MG = CoreG(M).

Then, applying [1, Theorem 1], the factor group G/MG is either a finite soluble primitive
group, if M is a maximal subgroup of G, or a semiprimitive group, and therefore a
Chernikov group, if M is not maximal in G. This result motivates the following definition:

DEFINITION: ([4]) Let G be a group and let M be a major subgroup of G. We
define

_ J Soc(G/MG), if M is a maximal subgroup of G
1 (G/MG)°, if M is not a maximal subgroup of G

In both cases, we have that DM/MG = F(G/MG), (DM/MG) n (M/MG) = 1 and
CG/MCC-DM/^G) = DM/MG for every major subgroup M of G.

For the sake of completeness, we list some results which are needed to prove our
theorems. We begin with a result that uses the Frattini-like subgroup introduced by
Tomkinson to obtain a complete characterisation of the class B of generalised nilpotent
groups analogous to the finite one for nilpotent groups and the Frattini subgroup.

THEOREM A. ([3, Theorem 1].) Let G be a group. The following statements are
equivalent:

(i) G is a B-group.

(ii) G/fx(G) is a B-group.

(iii) G'
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(iv) Every major subgroup ofG is a normal subgroup ofG.

(v) G is a direct product ofnilpotent Sylow subgroups.

(vi) G is locally nilpotent and the radicable part ofG is central.

(vii) Every 6-chief factor ofG is central.

THEOREM B. ([3, Theorem 5].) Every group G has a unique largest normal B-
subgroup, denoted by S(G). In fact, 6(G) = F(G), the Fitting subgroup ofG.

THEOREM C. ([3, Theorem 7].) Suppose that G is a group. Then F(G) is the
intersection of the centralisers of all 6-chief factors ofG.

THEOREM D. ([2, Theorem 5].) Let G be a group and let H be a subgroup ofG.
Then H is a descendant B-subgroup ofG if and only ifH is contained in F(G).

3. THE SUBGROUP fj.p(G) AND THE CLASS BP

The purpose of this section is to introduce and study a local version of the class B.
Groups in this class are called Bp-groups. They play the same role in the universe cC
as finite p-nilpotent groups do in the finite one. We shall prove that this class can be
associated in a natural way with a local version of Tomkinson's Prattini-like subgroup.
We begin with the following definition.

DEFINITION 1: Let p be a prime. We say that a group G is a Bp-group if G is
p-nilpotent and the Sylow p-subgroups of G are nilpotent.

It is clear that a finite group is a Bp-group if and only if it is p-nilpotent. Moreover,
applying Theorem A and [6, (1.3.5)], a group G is in the class B if and only if G is a
Sp-group for every prime p.

The next results analyse the behaviour of Bp as a class of groups.

Recall that a class T of c£-groups is said to be a cC-formation if T is Q-closed and it
satisfies that every c£-group G containing normal subgroups {TVjjg/ such that f̂ |A^ = 1
and G/Ni e T for every i € / also belongs to T. l 6 /

Taking into account the fact that the class of all p-nilpotent groups is a subgroup-
closed c£-formation and using the same arguments as those used in [3, Theorem 3], we
have:

THEOREM 1 . Bp is a subgroup-closed cC-formation for every prime p.

THEOREM 2 . Let G be a group. Assume that H and K are two normal Bp-

subgroups. Then HK is a Bp-group.

PROOF: Since H and K are p-nilpotent normal subgroups, it follows that HK is
p-nilpotent. Let P be a Sylow p-subgroup of HK. By [6, (3.1.6)] and [6, (5.1.9)] we have
that P = (P n H)(P n K) and PnH and P D K are Sylow p-subgroups of H and K,
respectively. Since H and K are Sp-groups, we have that PnH and PD K are normal
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nilpotent subgroups of P. Consequently, we conclude that P is nilpotent by Fitting's

Theorem ([10, (5.2.8)]). D

THEOREM 3 . Every group G has a unique largest normal Bp-subgroup denoted

by 6p,p{G) and called the Bp-radical ofG. Moreover, F(G) = C\Sp>p(G).
p

P R O O F : We argue as in [3, Lemma 3]. It is easy to prove that if G is a Chernikov

group which is the union of a totally ordered set of normal Sp-subgroups then G is a

Bp-group. Consequently, using this fact and Theorem 1, we apply Zorn's Lemma to

construct a largest normal Bp-subgroup of G, 5V-P{G).

Finally the Fitting subgroup of G can be described as the intersection of the Bp-

radicals because F(G) is the largest normal B-subgroup of G. D

It is known that in a finite group G, the p-nilpotent radical Opip(G) is the intersection

ofthe centralisers of all p-chief factors of G. This result has been generalised in [6, (6.2.4)]

*to periodic locally soluble groups. We obtain an analogous result in c£-groups connecting

the subgroup 8P<P(G) and the (5-chief factors of G which are p-groups.

THEOREM 4 . Suppose that G is a group. Then Sp>p(G) is the intersection of the

centralisers of all 6-chief factors ofG which are p-groups.

P R O O F : The proof runs parallel to [3, Theorem 7]. D

Taking into account the fact that the Fitting subgroup of G is the intersection of the

members of the set {DM '• M is a major subgroup of G} ([4, Theorem 1]), the following

result seems to be natural.

THEOREM 5 . Let G be a group and let p be a prime. Then

6p>P(G) - D{DM : DM/MG isap-group}.

P R O O F : See the proof of [4, Theorem 1]. D

In [9] Lafuente introduces a new characteristic subgroup (j>p{G) (where p is a prime)

of a finite group G, satisfying </>((?) = (~)<t>p(G). Using this subgroup he obtains some
p

results concerning maximal subgroups, Frattini and Fitting subgroups. Following this line

of thought, we extend this concept to the universe cC. A local version of Tomkinson's

subgroup appears.

DEFINITION 2: Let p be a prime and let G be a group. Denote by nP{G) the

intersection of all major subgroups, M, of G such that DM/Mo is a p-group, if such M

exists; otherwise set np{G) — G.

Obviously, we deduce from the definition that np{G) is a characteristic subgroup of

G for every prime p and p.(G) = f)fj,p{G).
v

Note that if S and T are major subgroups of G such that SQ — To then Ds = DT.

Consequently nP{G) ^ Spip(G) by Theorem 5 and then fJ,p(G) is a £?p-group.
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In [9] it is proved that if G is a finite group then Oplp(G/<f>p{G)) = Oplp{G)/<j>p{G)
for some prime p. The following result and its corollary are the c£-version.

PROPOSITION 1 . Let T be a normal subgroup of a group G containing nP(G).
HT/IJ,P(G) is p-nilpotent, then T is p-nilpotent.

PROOF: Let Tpi be a Sylow p'-subgroup of T. Then Tpi is a Sylow p'-subgroup of
Tp>iip(G). Since T/fj.p(G) is p-nilpotent, it follows that Tp///P(G) is a normal subgroup
of G. Moreover the Sylow p'-subgroups of Tp/^P(G) are conjugate. This implies that
G = NG(Tp/)/ip(G). Assume that Nc(Tp') is a proper subgroup of G. Then there exists a
major subgroup M of G such that Nc{Tpi) ^ M. Since M is a proper subgroup of G, it
follows that np{G) is not contained in M and, therefore, DM/MG is a p'-group. Assume
that {DM/MG) n {TMG/MG) = 1. Then TMG/MG ^ C G / M G ( £ > M / M G ) = DM/MG and
hence T is contained in MG, a contradiction. Consequently, (DM/MG) n (TMG/MQ)

is a non-trivial normal p'-subgroup of G/Mc contained in TMG/MG- Hence (DM/MQ)

n (TMG/MG) ^ T^MG/MG ^ M/MG and so (DM/MG) D (TMG/MG) is contained in
[M/Mc) n (DM/MG) = 1, a contradiction. Therefore NG(Tp-) = G. Therefore T? is a
normal subgroup of T and T is p-nilpotent. D

COROLLARY 1 . Let N be a normal subgroup of a group G. Then N is p-nilpotent

if and only if N/N D fip(G) is p-nilpotent. In particular, we have that OJ/P{G/IJ.P(G))

= O,p{G)/th(G).

Our next objective is to get a similar result replacing Op>p(G) by Sp>p(G). The
following extension of [9, (1.4)] turns out to be crucial.

LEMMA 1 . Let G be a group and let p be a prime. Then fip(G)/Op'(G)

= n(G/Op'{G)). Therefore nP(G)/Op>{G) is a finite p-group.

PROOF: Suppose first that /xp(G) = G. We show that G is a p'-group. Suppose that
Oj,?^) is a proper subgroup of G. Let M be a major subgroup of G containing Cy(G).
On the other hand, G/Op>(G) is a p-group because G = Opip(G). Consequently, G/MG

is a p-group. Then DM/MG is a p-group, a contradiction. We conclude that Opi(G) = G
and the result is true in this case.

Assume now that /xP(G) is a proper subgroup of G. We begin by proving that
Op>{G) ^ HP(G). Since np{G) ^ G, there exists a major subgroup M of G such that
DM/MC is a p-group. Suppose that Cy(G) is not contained in M. Then OPI{G)MG/MG

is a normal p'-subgroup of G/MG contained in C G / M C ( - ^ ) M / ^ G ) = DM/Mc which is a
p-group, a contradiction. Hence Op>(G) ^ M. Let M/Op>(G) be a major subgroup of
G/Opi(G). Suppose that nP(G) is not contained in M. Then DM/MG is a p'-group.
Since nP(G) < Op>p(G), we have that /xp(G)/Op'(G) is a p-group and so nP(G)MG/MG

is a non-trivial p-group. It follows that IIP(G)MG/MG ^ CG/MC(DM/MG) = DM/MC, a
contradiction. Therefore np(G) is contained in M and we conclude that nP(G)/Op'(G)
^ fi(G/Op.(G)). Let T/Op.{G) = fi(G/Op>(G)). We prove that T ^ np(G). Let M be
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a major subgroup of G such that DM/Mc is a p-group. Then Opi{G) ^ M. Therefore
M/Op>{G) is a major subgroup olG/Op,{G) and so T/Op>(G) ^ M/Op.{G). We conclude
that T is contained in fip(G).

Applying [6, (2.5.13)] we have that G/Op>(G) is a Chernikov group. Therefore
HP(G)/Op>(G) = n{G/Op,{G)) is finite by [13, (1.2)]. Since np{G) is p-nilpotent, we have
that fj.p(G)/Op>(G) is a finite p-group.

THEOREM 6 . Let G be a group and let p be a prime. Then:

(i) pP{G) is contained in Sp>p(G).

(ii) 6,p[G/pp{G)) = Sp,p(G)/nP(G) = F(G/np{G)) is Abelian.

(iii) CG(6p,p(G)/Hp(G))=6p,p(G).

P R O O F , (i) It has been already noted above.

(ii) Let T/np(G) = 6plp(G/nP{G)). Applying Theorem 4 to G/np(G) we deduce
that T centralises every <J-chief factor H/K of G such that H/K is a p-group and fJ-p{G)
< K < H. Note that DM/MG is a 5-chief factor of G for every major subgroup M
of G. Moreover, if DM/MQ is a p-group we have that nP(G) < MG. Consequently, T
^ CG{DM/MG) = DM for every major subgroup M of G such that £)M/MG is a p-
group. By Theorem 5 we conclude that T ^ Spip(G). Since the other inclusion is obvious,
it follows that Sp>p(G/fj,p{G)) = 6p>p(G)/nP(G). On the other hand, it is clear that
F(G/fip(G)) is contained in 6p>p(G)/fj,p(G). We prove now that Sp>p(G)/fip(G) is Abelian.
We may assume that fJ.p(G) ^ G. Let M be a major subgroup of G such that DM/MG

is a p-group. Applying Theorem 5, it follows that SP>P{G)/MG ^ DM/MG, which is
Abelian. Since np(G) = n{Mc : DM/MG is a p-group}, we conclude that 5p>p{G)/pLp{G)
is Abelian. This implies that 6plp(G)/nP(G) = F(G/nP{G)).

(iii) Since every group is hyperabelian, it follows that CGII,P(G)\F{G/^P{G))\

is contained in F(G/fj.p(G)) by [11, (2.17)]. By (ii) we know that <VP(G/>?(<?))

is Abelian. Therefore CG/llp(G)(Sp>p(G/i*p(G))'\ = Splp(G/fip(G)). This means that

cG(<vP(G)/MG)) = <W(G). D
COROLLARY 2 . Let N be a normal subgroup of a group G. Then N is a Bp-group

if and only if N/N D nP{G) is a Bp-group.

COROLLARY 3 . Let G be a group and let p be a prime. Then CG(6p>p(G))

COROLLARY 4 . Let G be a group. Then 5j,p{G/Oj,(G)) = 6p,p{G)/Ovf{G) for
every prime p.

PROOF: Our proof starts with the observation that Opi(G) is a Bp-group and so

it is contained in (5p-p(G). Let T/OP>{G) = 8p.p(G/Ol/{G)). We shall prove that T
< Sp-P(G). From Lemma 1 and Theorem 6 we see that nP(G)/Op>(G) = n(G/Op>{G))
< HP(G/Op.{GJ) ^ 5p.p(G/Op-(G)) and hence nP{G) ^ T. Thus the group T/fj,p(G) is
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isomorphic to a quotient of 6p>p(G/Opi(G)), and so it is a Bp-group. From Theorem 6 we
conclude that 7 > P ( G ) ^ 8p>p(G / np(G)) = fyp(G)//xp(G) and T ^ 5,,P(G). D

In [4] we obtain a description of the Fitting subgroup of a group in terms of the locally
nilpotent radical and the radicable part. Now we obtain the corresponding description
of the #p-radical of a group. This result will be very useful in the characterisation of the
Sp-injectors in the next section.

LEMMA 2 . Let G be a group and let p be a prime. Then 5p>p{G) = Op-piG)
n CG((G°)P). Here (G°)p denotes the Sylowp-subgroup ofG°.

PROOF: Write X - Op>p(G) n CG((G°)P). Obviously X is a normal p-nilpotent
subgroup of G. Let P be a Sylow p-subgroup of X. Since G° is Abelian we have that
it is contained in X and so (X°)p - (G°)p. Moreover P° = (X°)p. We deduce that
P° = (G°)p and P° ^ Z(P). Furthermore P is locally nilpotent and it is a Chernikov
group. We conclude that P is nilpotent and so X is a Bp-group. Conversely, every Bp-
group is p-nilpotent and so 5p>p(G) < Op/p(G). Let us prove that Sp>p(G) ^ C G ( ( G ° ) P ) .

Let P be a Sylow p-subgroup of V P ( G ) -
 T h e n P° ^ z(p) by I6. (1-5.12)]. Since

G° < <VP(G) it follows that G° = ( V P ( G ) ) ° - Then (G°)p ^ Z(P). On the other hand,
Op-(fyp(G)) is the Sylow p'-subgroup of 5p,p(G) and so <VP(G) = P0p-{6vfp[G)) by [6,
(3.1.6)]. Since (G°)p centralises Opl{5p>p{G)) we conclude that (G°)p centralises 6P>P{G)
and so 5pip(G) ^ C G ( ( G ° ) P ) , which completes the proof. D

4. INJECTORS

In infinite groups the definition of Fitting class is done in terms of the different
generalisations of subnormality. In this paper we shall be concerned with Fitting classes
defined using descendant subgroups. We say that a subclass T of cC is a cC-Fitting class
if it satisfies the following properties:

1. If G e T and H is a descendant subgroup of G, then H € T.

2. If G = (Hi : i e I) 6 cC and, for each t 6 / the subgroup Ht is a descendant

^"-subgroup of G, then G € F.

Applying Theorem D, the subgroup generated by descendant B-subgroups of a group
is a B-group. Therefore it is clear that B is a a£-Fitting class with the above definition.
The corresponding injectors have been obtained in [4]. We prove in the sequel that Bp

is also a Fitting class and study the Bp-injectors. We begin with the local version of
Theorem D.

THEOREM 7 . Let H be a descendant Bp-subgroup of a group G. Then H is

contained in 6j/p(G).

PROOF: Since G is hyperfinite we apply [6, (7.2.11)] to conclude that H is ascendant

in G. By [11, (1.31)], H ^ Op>p{G) because H is p-nilpotent. If H ^ < V P ( ° V P ( G ) )
 t h e n
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)- Then there is no loss of generality in assuming that G is p-nilpotent. From
[6, (3.1.6)] it follows that G = PCy(G) for every Sylow p-subgroup P of G. The task
is now to show that if P is a Sylow p-subgroup of G then F(P) is a Sylow p-subgroup
of 6p,p(G). We have that F(P) is nilpotent by Theorem A. It follows that F^Q-jiG)
is in the class Bp and so F{P)Opi{G) is contained in 8pip{G) because it is normal in
POpi(G) — G. On the other hand, P D Spip(G) is nilpotent. Consequently, we have
that F(P) = P f l <VP(G) and thus 5j,p{G) = F{P)Op>(G). Hence F(P) is a Sylow p-
subgroup of 6p>p(G). Since H is p-nilpotent, it follows that H — PHOpi(H) where PH

is a Sylow p-subgroup of H. Moreover, there exists a Sylow p-subgroup P of G such
that PH — PC\H. Consequently PH is a nilpotent descendant subgroup of P and hence,
applying Theorem D, PH ^ F{P). Moreover Cy(#) ^ Oj,>{G) by [11, (1.31)]. We
conclude that H = PHOp,{H) ^ F{P)Oj,{G) = 6,,P{G). D

COROLLARY 5 . Let H be a descendant subgroup of a group G. Then Sp>p(G)

PROOF: Obviously Spip(G) D H is a normal Z?p-subgroup of # and so it is contained
in <5p<p(if). Conversely, since # is descendant in G it follows that Spip(H) is a descendant
Bp-subgroup of G and hence, by Theorem 7, it is contained in 6P-P(G). D

As a consequence of Theorem 7, the subgroup generated by descendant 5p-subgroups
of a group is a Bp-group. We conclude that Bp is a c£-Fitting class. Note that this is
not true if we replace, in the definition of a Fitting class, descendant subgroups by serial
subgroups (which are in fact ascendant in a c£-group). For instance, the locally dihedral
2-group is an example of a join of serial ^-subgroups which is not a B2-group. Moreover,
this group has ascendant S2-subgroups which are not contained in the S2-radical.

Let T be a subclass of cC and G € cC. An T-injector of G is a subgroup V of G

such that for all descendant subgroups H of G we have that V n H is J'-maximal in H.

We denote the set of all ^"-injectors of the group G by Inj^(G).
The following result describes the injectors for the Fitting class of all p-nilpotent

groups.

THEOREM 8 . Let G be a group. Then

InJeySj;(G) = {POpf(G) : P is a Sylow p-subgroup ofG}.

Therefore the p-nilpotent injectors of G are exactly the maximal p-nilpotent subgroups

ofG containing Ov>p{G) and they form a conjugacy class of subgroups ofG.

P R O O F : Let P be a Sylow p-subgroup of G. We prove that POp>(G) is a p-nilpotent
injector of G. Let us first show that POpi{G) is a maximal p-nilpotent subgroup. Obvi-
ously PO,/(G) is p-nilpotent. Let W be a p-nilpotent subgroup of G such that POV/(G)

^ W. It follows that P is a Sylow p-subgroup of W and so W = PO^iW). Therefore,
it remains to prove that O^(W) = O^G). Since Opl(W)/Op>{G) = OP<{WlOpl{G))y
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there is no loss of generality in assuming that Opi{G) — 1 and proving that O^{W) = 1.
According to [6, (2.5.13)], G is a Chernikov group, that is G — G°A where A is a
finite subgroup of G. We can certainly assume that G° ^ 1, since otherwise G is fi-
nite and then the result is true (see [8]). Since Opi{G) = 1, we have that G° is a
p-group. Therefore Op>(W) is finite. Suppose, contrary to our claim, that OP>{W) / 1.
Write Ap = OP(G) D A. Then G°AP = OP{G). Since OP(G) ^ P ^ W it follows
that Ap ^ W and hence Ap normalises Oy(W). By ([7, (A.12.5)]), we have that
OP,(W) = [OAW),Ap]COAw){Ap). Moreover, [OAW),AP] ^ OP{G) n O^W) = 1.
We deduce that Op,{W) = COpl(w)(Ap), that is, 0^{W) < CG{AP). On the other
hand, G° = [G°,Op,(iy)]CGo(Oy(WO) by [11, (3.29.1)]. Since G° ^ P < W we have
that G° normalises Op-(W) and so [G°,Op.(W)] < G° n Op>(W) = 1. Consequently
G° = Coo (Op. (W)), that is Oy(W0 ^ CO(G°). Since G % = OP(G) we conclude that
Op-(W) ^ CG(OP(G)) ^ OP(G) / 1, a contradiction. Therefore Oy(W0 = 1 and thus
we have proved that POpi(G) is a maximal p-nilpotent subgroup of G. We are now in
position to show that if H is a descendant subgroup of G, then POpi{G)C\H is a maximal
p-nilpotent subgroup of H by the above argument. Since PC\H is a Sylow p-subgroup of H
by [5, (2.7)], we have that (Pr\H)Opi(H) is a maximal p-nilpotent subgroup of H. More-
over, Oj,{H) ^ O^iG). Therefore {Pr\H)O^{H) = (Opl{H)P)nH ^ (Oj/(G)P)nH
and hence (P l~l H)Op>{H) = (Op>{G)P) D H because (Op-(G)P) D H is p-nilpotent. We
conclude that (Opi(G)P) l~l H is 6p/6p-maximal in H and so we have that POP'{G) is
a p-nilpotent injector of G. We shall be done if we show that every p-nilpotent injector
appears in that way. Let / be a p-nilpotent injector of G. In particular we can write
I = Opi (7)/p where Ip is a Sylow p-subgroup of / . We show that O^ (I) — Op> (G). Clearly,
since / is a p-nilpotent injector of G, it follows that Op>p(G) ^ / and thus Op<(G) ^ Op>(I).
Because OP>{I)/OP'{G) = OP>(I/OP>(G)), there is no loss of generality in assuming that
Op/(G) = 1. Arguing as above we deduce that Op-(7) = 1. Therefore / = Op>(I)Ip is
contained in the p-nilpotent subgroup Op>(G)P where P is a Sylow p-subgroup of G. We
conclude, by maximality of / , that / = Opi{G)P, which is our claim.

Furthermore, by the same method as above, it can be proved that every maximal p-
nilpotent subgroup V of G containing Opip(G) can be described as V = POp>(G) where P
is a Sylow p-subgroup of G, and consequently V is a p-nilpotent injector of G. Therefore
the maximal p-nilpotent subgroups of a group containing the p-nilpotent radical are
precisely the p-nilpotent injectors. D

Note that using the same arguments to those used in the proof of Theorem 8 we
have that if V is a p-nilpotent injector of a group G and H is an ascendant subgroup of
G, then V (~) H is a. p-nilpotent injector of G.

We now proceed to show that the Bp-injectors of a group can be described in terms
of the p-nilpotent injectors of one of its subgroups. We require a preliminary result. It
deals with the situation in which we take a product of a Bp-subgroup of a descendant
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subgroup with the Sp-radical.

LEMMA 3 . Let G be a group and let W be a Bp-subgroup ofG. Suppose that H
is a descendant subgroup ofG and Sp>p(H) ^ W ^ H. Then W6p>p(G) is a Bp-subgroup
ofG.

PROOF: By Corollary 5 we have that 6pip(G) C\ H — 6pip(H). Moreover, applying
Theorem 7, the join of descendant Z?p-subgroups is a 5p-group. Using these facts, the
result follows by the same method as in [6, (7.3.5)]. D

THEOREM 9 . Let G be a group. Then the Bp-injectors ofG are exactly the p-
nilpotent injectors ofC — Cc({G°)p). In particular the Bp-injectors ofG are conjugate
in G.

PROOF: Denote C - CG((G°)P) and let V be a p-nilpotent injector of C. We show
that V e InjB)>(G). According to Lemma 2, 8p,p(G) = Cyp(G) n G = Cyp(C). Of course,
Op>p(C) ^ V because V is a p-nilpotent injector of C. It follows that Sp,p(G) < V. Let
H be a descendant subgroup of G and suppose that W is a Sp-subgroup of H such that
V n H < W. From Corollary 5, we have that 6p-p(H) = 6p.p(G) D H ^ V n H ^ W
^ H. This clearly forces that W<VP(G) is a Bp-group by Lemma 3. Since G° ^ 6j,p{G)
we have that (G°)p is contained in a Sylow p-subgroup P of W6pip(G). Consequently
(G°)p ^ P° ^ Z(P) because W6p>p(G) is a Sp-group. Thus P ^ C. On the other hand,
OP,(W<VP(G)) ^ C. Since WSp>p(G) = 0p.{W5plp{G))P we conclude that W6j,p{G)
< C. In particular, W is contained in C. On the other hand, V f~l H — V D (H D C) is a
maximal p-nilpotent subgroup of H (~\C because V is a p-nilpotent injector of C. Since
VnH^W^HnCit follows that V n H = W. Therefore V D if is a maximal 5P-
subgroup of i/ , and we have proved that V e InjBj)(G). Conversely, suppose that V is a
Bp-injector ofG. Let us first observe that V is contained in C. Clearly G° ^ Sp,p(G) ^ V.
It follows that (G°)p is normal in V, and consequently Oj/{V) < CG((G°)P). Moreover
(G°)p < Vp where Vp is a Sylow p-subgroup of V and Vp° ^ Z(VP). Therefore Vp ^ C.
Since V = Op>(V)Vp we conclude that V ^ C. We may now prove that V is a p-nilpotent
injector of C. Let D be a descendant subgroup of C and suppose that W is a p-nilpotent
subgroup of D such that V n D < W. It is easy to check that W is a 5p-group. Since £>
is also descendant in G we deduce that V CiD = W because V is a Bp-injector of G. We
conclude that V is a p-nilpotent injector of C as required. D

Finally, we can show that, in fact, the maximal Z?p-subgroups of a group containing
the Sp-radical are precisely the Sp-injectors.

THEOREM 10 . Tie maximal Bp-subgroups of a group G which contain the Bp-

radical ofG are precisely the Bp-injectors ofG.

PROOF: Obviously, every Bp-injector of G is a maximal Sp-subgroup of G and
contains the Bp-radical of G. Conversely, let V be a maximal Sp-subgroup of G such that
8p>p(G) ^ V. We wish to show that V € InjB (G). By Theorem 9, we are reduced to
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proving that V is a p-nilpotent injector of C G ( ( G ° ) P ) . Write C - C G ( ( G ° ) P ) . Arguing
as in the proof of Theorem 9, it is easily seen that V ^ C. We proceed to show that V is
a maximal p-nilpotent subgroup of C. Clearly V is p-nilpotent because it is a Bp-group.
Suppose that W is a p-nilpotent subgroup of C such that V ^ W. It is clear that W is
a Bp-group. Therefore, since V is a maximal Bp-subgroup of G, it follows that W = V
and hence V is a maximal p-nilpotent subgroup of C. Furthermore, applying Lemma 2,
SP'P(G) = Op>p(G) (~l C — Of/p(C). Therefore V is a maximal p-nilpotent subgroup of C
containing Op>p(C). As a consequence of Theorem 8, we deduce that V is a p-nilpotent
injector of C, which is the desired conclusion. D
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